首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Divergence and reproductive isolation in the early stages of speciation   总被引:2,自引:0,他引:2  
Tregenza T 《Genetica》2002,116(2-3):291-300
To understand speciation we need to identify the factors causing divergence between natural populations. The traditional approach to gaining such insights has been to focus on a particular theory and ask whether observed patterns of reproductive isolation between populations or species are consistent with the hypothesis in question. However, such studies are few and they do not allow us to compare between hypotheses, so often we cannot determine the relative contribution to divergence of different potential factors. Here, I describe a study of patterns of phenotypic divergence and premating and postmating isolation between populations of the grasshopper Chorthippus parallelus. Information on the phylogeographic relationships of the populations means that a priori predictions from existing hypotheses for the evolution of reproductive isolation can be compared with observations. I assess the relative contributions to premating isolation, postmating isolation and phenotypic divergence of long periods of allopatry, adaptation to different environments and processes associated with colonisation (such as population bottlenecks). Likelihood analysis reveals that long periods of allopatry in glacial refugia are associated with postmating reproductive isolation, but not premating isolation, which is more strongly associated with colonisation. Neither premating nor postmating isolation is higher between populations differing in potential environmental selection pressures. There are only weak correlations between patterns of genetic divergence and phenotypic divergence and no correlation between premating and postmating isolation. This suggests that the potential of a taxon to exercise mate choice may affect the types of factor that promote speciation in that group. I discuss the advantages and disadvantages of the general approach of simultaneously testing competing hypotheses for the evolution of reproductive isolation.  相似文献   

2.
Spatial patterns of intraspecific variation are shaped by geographical distance among populations, historical changes in gene flow and interactions with local environments. Although these factors are not mutually exclusive and operate on both genomic and phenotypic variation, it is unclear how they affect these two axes of variation. We address this question by exploring the predictors of genomic and phenotypic divergence in Icterus gularis, a broadly distributed Middle American bird that exhibits marked geographical variation in body size across its range. We combined a comprehensive single nucleotide polymorphism and phenotypic data set to test whether genome‐wide genetic and phenotypic differentiation are best explained by (i) isolation by distance, (ii) isolation by history or (iii) isolation by environment. We find that the pronounced genetic and phenotypic variation in I. gularis are only partially correlated and differ regarding spatial predictors. Whereas genomic variation is largely explained by historical barriers to gene flow, phenotypic diversity can be best predicted by contemporary environmental heterogeneity. Our genomic analyses reveal strong phylogeographical structure coinciding with the Chivela Pass at the Isthmus of Tehuantepec that was formed during the Pleistocene, when populations were isolated in north–south refugia. In contrast, we found a strong association between body size and environmental variables, such as temperature and precipitation. The relationship between body size and local climate is consistent with a pattern produced by either natural selection or environmental plasticity. Overall, these results provide empirical evidence for why phenotypic and genomic data are often in conflict in taxonomic and phylogeographical studies.  相似文献   

3.
Several theories argue that large changes in allele frequencies through genetic drift after a small founding population becomes allopatrically isolated can lead to significant changes in reproductive isolation and thus trigger the origin of new species. For this reason, founder speciation has been proposed as a potent force in the generation of new species. Nonetheless, the relative importance of such ‘founder effects’ remains largely untested. In this report, I used experimental evolution to create one thousand replicates that underwent an extreme bottleneck and to study whether founder effects can lead to an increase in reproductive isolation in Drosophila yakuba. Even though the most common outcome of inbreeding is extinction, founder effects can lead to increased premating reproductive isolation in a very small proportion of cases. Changes in reproductive isolation after a founding population bottleneck are similar to changes in other phenotypic traits, in which inbreeding might displace the mean phenotypic value and substantially increase the phenotypic variance. This increase in phenotypic variance does not confer an increase in the response to selection for reproductive isolation in artificial selection experiments, indicating that the increased phenotypic variance is not caused by increases in additive genetic variance. These results also demonstrate that, similar to morphological and life‐history traits, behavioural traits can be affected by inbreeding and genetic drift.  相似文献   

4.
Understanding the biological conditions and the genetic basis of early stages of sexual isolation and speciation is an outstanding question in evolutionary biology. It is unclear how much genetic and phenotypic variation for mating preferences and their phenotypic cues is segregating within widespread and human-commensal species in nature. A recent case of incipient sexual isolation between Zimbabwe and cosmopolitan populations of the human-commensal fruit fly Drosophila melanogaster indicates that such species may initiate the process of sexual isolation. However, it is still unknown whether other geographical populations have undergone evolution of mating preferences. In this study we present new data on multiple-choice mating tests revealing partial sexual isolation between the United States and Caribbean populations. We relate our findings to African populations, showing that Caribbean flies are partially sexually isolated from Zimbabwe flies, but mate randomly with West African flies, which also show partial sexual isolation from the United States and Zimbabwe flies. Thus, Caribbean and West African populations seem to exhibit distinct mating preferences relative to populations in the United States and in Zimbabwe. These results suggest that widespread and human-commensal species may harbor different types of mating preferences across their geographical ranges.  相似文献   

5.
A fundamental issue in speciation research is to evaluate phenotypic variation and the genomics driving the evolution of reproductive isolation between sister taxa. Above all, hybrid zones are excellent study systems for researchers to examine the association of genetic differentiation, phenotypic variation and the strength of selection. We investigated two contact zones in the marine gastropod Littorina saxatilis and utilized landmark‐based geometric morphometric analysis together with amplified fragment length polymorphism (AFLP) markers to assess phenotypic and genomic divergence between ecotypes under divergent selection. From genetic markers, we calculated the cline width, linkage disequilibrium and the average effective selection on a locus. Additionally, we conducted an association analysis linking the outlier loci and phenotypic variation between ecotypes and show that a proportion of outlier loci are associated with key adaptive phenotypic traits.  相似文献   

6.
The threespine stickleback ( Gasterosteus aculeatus ) species complex is well suited for identifying the types of phenotypic divergence and isolating barriers that contribute to reproductive isolation at early stages of speciation. In the present study, we characterize the patterns of genetic and phenotypic divergence as well as the types of isolating barriers that are present between two sympatric pairs of threespine sticklebacks in Hokkaido, Japan. One sympatric pair consists of an anadromous and a resident freshwater form and shows divergence in body size between the forms, despite the lack of genetic differentiation between them. The second sympatric pair consists of two anadromous forms, which originated before the last glacial period and are currently reproductively isolated. These two anadromous forms have diverged in many morphological traits as well as in their reproductive behaviours. Both sexual isolation and hybrid male sterility contribute to reproductive isolation between the anadromous species pair. We discuss the shared and unique aspects of phenotypic divergence and reproductive isolation in the Japanese sympatric pairs compared with postglacial stickleback species pairs. Further studies of these divergent species pairs will provide a deeper understanding of the mechanisms of speciation in sticklebacks.  © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 91 , 671–685.  相似文献   

7.
Contact zones between divergent forms of the same species are often characterised by high levels of phenotypic diversity over small geographic distances. What processes are involved in generating such high phenotypic diversity? One possibility is that introgression and recombination between divergent forms in contact zones results in greater phenotypic and genetic polymorphism. Alternatively, strong reproductive isolation between forms may maintain distinct phenotypes, preventing homogenisation by gene flow. Contact zones between divergent freshwater-resident and anadromous stickleback (Gasterosteus aculeatus L.) forms are numerous and common throughout the species distribution, offering an opportunity to examine these contrasting hypotheses in greater detail. This study reports on an interesting new contact zone located in a tidally influenced lake catchment in western Ireland, characterised by high polymorphism for lateral plate phenotypes. Using neutral and QTL-linked microsatellite markers, we tested whether the high diversity observed in this contact zone arose as a result of introgression or reproductive isolation between divergent forms: we found strong support for the latter hypothesis. Three phenotypic and genetic clusters were identified, consistent with two divergent resident forms and a distinct anadromous completely plated population that migrates in and out of the system. Given the strong neutral differentiation detected between all three morphotypes (mean FST = 0.12), we hypothesised that divergent selection between forms maintains reproductive isolation. We found a correlation between neutral genetic and adaptive genetic differentiation that support this. While strong associations between QTL linked markers and phenotypes were also observed in this wild population, our results support the suggestion that such associations may be more complex in some Atlantic populations compared to those in the Pacific. These findings provide an important foundation for future work investigating the dynamics of gene flow and adaptive divergence in this newly discovered stickleback contact zone.  相似文献   

8.
Biological invasions are opportunities to gain insight into fundamental evolutionary questions, because reproductive isolation and sudden alterations in selection pressures are likely to lead to rapid evolutionary change. Here I investigate the role played by invasive species in revealing the rate and form of contemporary phenotypic change in wild populations by expanding a database of more than 5,500 rates of phenotypic change from 90 species of plants and animals. Invasive species are frequently used as model organisms and thus contribute disproportionately to available rates of phenotypic change. However, the preponderance of these rates is the consequence of extensive study in a small number of species. I found mixed evidence to support the hypothesis that phenotypic change is associated with time depending on the metric of choice (i.e., darwins or haldanes). Insights from both invasive and native species provide evidence for abrupt phenotypic change and suggest that the environment plays a potentially important role in driving trait change in wild populations, although the environmental influence on the observed trajectories remains unclear. Thus, future work should continue to seek an understanding of the mechanistic underpinnings--both genetic and environmental--of how phenotypic variation allows populations to adapt to rapidly changing global environments.  相似文献   

9.
The moist and cool cloud forests of East Africa represent a network of isolated habitats that are separated by dry and warm lowland savannah, offering an opportunity to investigate how strikingly different selective regimes affect species diversification. Here, we used the passerine genus Zosterops (white‐eyes) from this region as our model system. Species of the genus occur in contrasting distribution settings, with geographical mountain isolation driving diversification, and savannah interconnectivity preventing differentiation. We analyze (1) patterns of phenotypic and genetic differentiation in high‐ and lowland species (different distribution settings), (2) investigate the potential effects of natural selection and temporal and spatial isolation (evolutionary drivers), and (3) critically review the taxonomy of this species complex. We found strong phenotypic and genetic differentiation among and within the three focal species, both in the highland species complex and in the lowland taxa. Altitude was a stronger predictor of phenotypic patterns than the current taxonomic classification. We found longitudinal and latitudinal phenotypic gradients for all three species. Furthermore, wing length and body weight were significantly correlated with altitude and habitat type in the highland species Z. poliogaster. Genetic and phenotypic divergence showed contrasting inter‐ and intraspecific structures. We suggest that the evolution of phenotypic characters is mainly driven by natural selection due to differences in the two macro‐habitats, cloud forest and savannah. In contrast, patterns of neutral genetic variation appear to be rather driven by geographical isolation of the respective mountain massifs. Populations of the Z. poliogaster complex, as well as Z. senegalensis and Z. abyssinicus, are not monophyletic based on microsatellite data and have higher levels of intraspecific differentiation compared to the currently accepted species.  相似文献   

10.
Species are separated by reproductive isolation as well as by more 'ordinary' differences in morphology and behavior that play no necessary role in blocking gene flow. Although a great deal is now known about the genetics of reproductive isolation, we are only beginning to understand the genetic basis of ordinary phenotypic differences between species. I review what is known about the number of genes involved in such differences, as well as about the role of major genes and epistasis in the evolution of these differences. I also compare and contrast these findings with those on the genetics of reproductive isolation.  相似文献   

11.
Species distributed along mountain slopes, facing contrasting habitats in short geographic scale, are of particular interest to test how ecologically based divergent selection promotes phenotypic and genetic disparities as well as to assess isolation‐by‐environment mechanisms. Here, we conduct the first broad comparative study of phenotypic variation along elevational gradients, integrating a large array of ecological predictors and disentangling population genetic driver processes. The skull form of nine ecologically distinct species distributed over a large altitudinal range (100–4200 m) was compared to assess whether phenotypic divergence is a common phenomenon in small mammals and whether it shows parallel patterns. We also investigated the relative contribution of biotic (competition and predation) and abiotic parameters on phenotypic divergence via mixed models. Finally, we assessed the population genetic structure of a rodent species (Niviventer confucianus) via analysis of molecular variance and FST along three mountain slopes and tested the isolation‐by‐environment hypothesis using Mantel test and redundancy analysis. We found a consistent phenotypic divergence and marked genetic structure along elevational gradients; however, the species showed mixed patterns of size and skull shape trends across mountain zones. Individuals living at lower altitudes differed greatly in both phenotype and genotype from those living at high elevations, while middle‐elevation individuals showed more intermediate forms. The ecological parameters associated with phenotypic divergence along elevation gradients are partly related to species' ecological and evolutionary constraints. Fossorial and solitary animals are mainly affected by climatic factors, while terrestrial and more gregarious species are influenced by biotic and abiotic parameters. A novel finding of our study is that predator richness emerged as an important factor associated with the intraspecific diversification of the mammalian skull along elevational gradients, a previously overlooked parameter. Population genetic structure was mainly driven by environmental heterogeneity along mountain slopes, with no or a week spatial effect, fitting the isolation‐by‐environment scenario. Our study highlights the strong and multifaceted effects of heterogeneous steep habitats and ecologically based divergent selective forces in small mammal populations.  相似文献   

12.
Understanding incipient sexual isolation and speciation is an important pursuit in evolutionary biology. The fruit fly Drosophila melanogaster is a useful model to address questions about the early stages of sexual isolation occurring within widespread species. This species exhibits sexual isolation between cosmopolitan and African flies, especially from Zimbabwe populations. In addition, we have recently described another example of partial sexual isolation between some US and Caribbean populations. This and other phenotypic data suggest that Caribbean flies might be segregating African traits. In the present work we study the geographical variation at the pheromone locus desaturase-2, as well as morphology and courtship behavior across the US-Caribbean region. We find that US and Caribbean populations show sharp geographical clines in all traits and demonstrate that Caribbean traits are more similar to those of Africa than to US populations. Further, African traits in the Caribbean are associated with sexual isolation and best explain variation in sexual isolation when all traits are considered together. These results imply that Caribbean mating preferences are likely to be based on African traits and that even at such early stages of sexual isolation, individuals may already cue in on several traits simultaneously during mate choice.  相似文献   

13.
光肩星天牛两型种群表型多样性分析   总被引:1,自引:0,他引:1  
【目的】光肩星天牛Anoplophora glabripennis(Motschulsky)是国内最重要的林木蛀干害虫之一,在中国分布范围较广。近年来,形态学以及分子生物学的研究表明,光肩星天牛与黄斑星天牛A.nobilis(Ganglbauer)很可能是同一种的不同型。定量研究光肩星天牛两型的差异与表型多样性。【方法】作者以光肩星天牛的20个地理种群的光肩星天牛分布区为研究对象,采用巢式方差分析和聚类分析对其头长、头后缘宽、前胸后缘宽等13个表型性状进行多样性分析。【结果】表型特征在群体间与群体内均存在着广泛的变异,13个性状的平均表型分化系数为11.78%,群体内变异是其表型性状变异的主要来源;后翅长度与经度呈极显著负相关,与海拔极显著正相关以及与年降水量呈显著负相关。体长与鞘翅斑纹颜色与海拔高度分别呈显著正相关和负相关关系;在不同地理种群中,鞘翅斑纹颜色的分化系数达到最大,为50.53%;而以鞘翅斑纹颜色分类的两型差异显示各性状的表型分化系数均大幅度降低。【结论】本研究首次将鞘翅斑纹的颜色进行数字化处理,并进行分类,结果显示各个颜色类群的分化系数均大幅度减小,说明颜色类群之间的分化要小于地理隔离所造成的差异,进一步验证了光肩星天牛与黄斑星天牛为同一种的不同型。  相似文献   

14.
During the process of ecological speciation, reproductive isolation results from divergent natural selection and leads to a positive correlation between genetic divergence and adaptive phenotypic divergence, that is, isolation by adaptation (IBA). In natural populations, phenotypic differentiation is often autocorrelated with geographic distance, making IBA difficult to distinguish from the neutral expectation of isolation by distance (IBD). We examined these two alternatives in a dramatic case of clinal phenotypic variation in an Andean songbird, the Line‐cheeked Spinetail (Cranioleuca antisiensis). At its geographic extremes, this species shows a near threefold difference in body mass (11.5 to 31.0 g) with marked plumage differences. We analysed phenotypic, environmental and genetic data (5,154 SNPs) from 172 individuals and 19 populations sampled along its linear distribution in the Andes. We found that body mass was tightly correlated with environmental temperature, consistent with local adaptation as per Bergmann's rule. Using a PSTFST analysis, we found additional support for natural selection driving body mass differentiation, but these results could also be explained by environment‐mediated phenotypic plasticity. When we assessed the relative support for patterns of IBA and IBD using variance partitioning, we found that IBD was the best explanation for genetic differentiation along the cline. Adaptive phenotypic or environmental divergence can reduce gene flow, a pattern interpreted as evidence of ecological speciation's role in diversification. Our results provide a counterexample to this interpretation. Despite conditions conducive to ecological speciation, our results suggest that dramatic size and environmental differentiation within C. antisiensis are not limiting gene flow.  相似文献   

15.
Ecotypes are relatively frequent in flowering plants and considered central in ecological speciation as local adaptation can promote the insurgence of reproductive isolation. Without geographic isolation, gene flow usually homogenizes the allopatrically generated phenotypic and ecological divergences, unless other forms of reproductive isolation keep them separated. Here, we investigated two orchid ecotypes with marked phenotypic floral divergence that coexist in contact zones. We found that the two ecotypes show different ecological habitat preferences with one being more climatically restricted than the other. The ecotypes remain clearly morphologically differentiated both in allopatry and in sympatry and differed in diverse floral traits. Despite only slightly different flowering times, the two ecotypes achieved floral isolation thanks to different pollination strategies. We found that both ecotypes attract a wide range of insects, but the ratio of male/female attracted by the two ecotypes was significantly different, with one ecotype mainly attracts male pollinators, while the other mainly attracts female pollinators. As a potential consequence, the two ecotypes show different pollen transfer efficiency. Experimental plots with pollen staining showed a higher proportion of intra‐ than interecotype movements confirming floral isolation between ecotypes in sympatry while crossing experiments excluded evident postmating barriers. Even if not completely halting the interecotypes pollen flow in sympatry, such incipient switch in pollination strategy between ecotypes may represent a first step on the path toward evolution of sexual mimicry in Orchidinae.  相似文献   

16.
The relative importance of the Pleistocene glacial cycles in driving avian speciation remains controversial, partly because species limits in many groups remain poorly understood, and because current taxonomic designations are often based on phenotypic characteristics of uncertain phylogenetic significance. We use mtDNA sequence data to examine patterns of genetic variation, sequence divergence and phylogenetic relationships between phenotypically distinct groups of the yellow-rumped warbler complex. Currently classified as a single species, the complex is composed of two North American migratory forms (myrtle warbler Dendroica coronata coronata and Audubon's warbler Dendroica coronata auduboni), and two largely sedentary forms: Dendroica coronata nigrifrons of Mexico, and Dendroica coronata goldmani of Guatemala. The latter are typically considered to be races of the Audubon's warbler based on plumage characteristics. However, mtDNA sequence data reveal that sedentary Mesoamerican forms are reciprocally monophyletic to each other and to migratory forms, from which they show a long history of isolation. In contrast, migratory myrtle and Audubon's warblers form a single cluster due to high levels of shared ancestral polymorphism as evidenced by widespread sharing of mtDNA haplotypes despite marked phenotypic differentiation. Sedentary and migratory forms diverged in the early Pleistocene, whereas phenotypic differentiation between the two migratory forms has occurred in the Holocene and is likely the result of geographical isolation and subsequent range expansion since the last glaciation. Our results underscore the importance of Quaternary climatic events in driving songbird speciation and indicate that plumage traits can evolve remarkably fast, thus rendering them potentially misleading for inferring systematic relationships.  相似文献   

17.
Adaptation can occur with or without genome‐wide differentiation. If adaptive loci are linked to traits involved in reproductive isolation, genome‐wide divergence is likely, and speciation is possible. However, adaptation can also lead to phenotypic differentiation without genome‐wide divergence if levels of ongoing gene flow are high. Here, we use the replicated occurrence of melanism in lava flow lizards to assess the relationship between local adaptation and genome‐wide differentiation. We compare patterns of phenotypic and genomic divergence among lava flow and nonlava populations for three lizard species and three lava flows in the Chihuahuan Desert. We find that local phenotypic adaptation (melanism) is not typically accompanied by genome‐wide differentiation. Specifically, lava populations do not generally exhibit greater divergence from nonlava populations than expected by geography alone, regardless of whether the lava formation is 5,000 or 760,000 years old. We also infer that gene flow between lava and nonlava populations is ongoing in all lava populations surveyed. Recent work in the isolation by environment and ecological speciation literature suggests that environmentally driven genome‐wide differentiation is common in nature. However, local adaptation may often simply be local adaptation rather than an early stage of ecological speciation.  相似文献   

18.
Discerning the relative roles of adaptive and nonadaptive processes in generating differences among populations and species, as well as how these processes interact, is a fundamental aim in biology. Both genetic and phenotypic divergence across populations can be the product of limited dispersal and gradual genetic drift across populations (isolation by distance), of colonization history and founder effects (isolation by colonization) or of adaptation to different environments preventing migration between populations (isolation by adaptation). Here, we attempt to differentiate between these processes using island populations of Berthelot's pipit (Anthus berthelotii), a passerine bird endemic to three Atlantic archipelagos. Using microsatellite markers and approximate Bayesian computation, we reveal that the northward colonization of this species ca. 8500 years ago resulted in genetic bottlenecks in the colonized archipelagos. We then show that high levels of genetic structure exist across archipelagos and that these are consistent with a pattern of isolation by colonization, but not with isolation by distance or adaptation. Finally, we show that substantial morphological divergence also exists and that this is strongly concordant with patterns of genetic structure and bottleneck history, but not with environmental differences or geographic distance. Overall, our data suggest that founder effects are responsible for both genetic and phenotypic changes across archipelagos. Our findings provide a rare example of how founder effects can persist over evolutionary timescales and suggest that they may play an important role in the early stages of speciation.  相似文献   

19.
Melandrium album (Silene alba) is a dioecious species showing a clear-cut correlation between the phenotypic sex and the presence of heteromorphic sex chromosomes. The paper reviews basic aspects on taxonomy and flowering, concentrating on classical and more recent experiments on sex conversion: hormonal balance in planta or in vitro, interactions with the fungus Ustilago violacea, haploid production from anthers, induction of sex chromosomal aberrations via crosses between polyploids and interspecific crosses, isolation of sexual mutants through pollen irradiation, etc. The experimental data is used to discuss the current understanding of sex determination in this species. The phenotypic and genetic characteristics of Melandrium are underlined and enable alternative and complementary cloning strategies for genes involved in sex determination and differentiation.  相似文献   

20.
Hendry AP  Day T 《Molecular ecology》2005,14(4):901-916
Many populations are composed of a mixture of individuals that reproduce at different times, and these times are often heritable. Under these conditions, gene flow should be limited between early and late reproducers, even within populations having a unimodal temporal distribution of reproductive activity. This temporal restriction on gene flow might be called "isolation by time" (IBT) to acknowledge its analogy with isolation by distance (IBD). IBD and IBT are not exactly equivalent, however, owing to differences between dispersal in space and dispersal in time. We review empirical studies of natural populations that provide evidence for IBT based on heritabilities of reproductive time and on molecular genetic differences associated with reproductive time. When IBT is present, variation in selection through the reproductive season may lead to adaptive temporal variation in phenotypic traits [adaptation by time (ABT)]. We introduce a novel theoretical model that shows how ABT increases as (i) selection on the trait increases; (ii) environmental influences on reproductive time decrease; (iii) the heritability of reproductive time increases; and (iv) the temporal distribution of reproductive activity becomes increasingly uniform. We then review empirical studies of natural populations that provide evidence for ABT by documenting adaptive temporal clines in phenotypic traits. The best evidence for IBT and ABT currently comes from salmonid fishes and flowering plants, but we expect that future work will show these processes are more widespread.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号