首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Treatment of malignant diseases with radiation therapy, chemotherapy, and immunodepressants requires subsequent restoration of bone marrow by the use of transplantation of donor bone marrow or separated adult stem cells to the body. During the next 1–15 years, in these patients, the risk of malignant neoplasia substantially increases as compared to healthy persons. This was previously considered as the effect of treatment. However, it has been found that part of cells and the stroma of a secondary tumor consist of progenies of transplanted stem cells. This demonstrates an important role of stem cells in tumorigenesis. Numerous studies also show that adult mouse or human stem cells cultured in vitro can form foci of sarcoma, cancer or other types of malignant growth. Malignant growth is more intense when chronic inflammation is present in the body. A lot of experimental data including studies in humans demonstrated that, after transplantation, stem cells actively occupy the tumor stroma, stimulate tumorigenesis and its metastasis. An important condition of human life is the presence of strong homeostatic mechanisms that control the number of stem cells in the body and limit their division even in regeneration foci. After transplantation of stem cells, their number in the blood and, correspndingly, in a pathological regeneration location increases by the dozens. This level of cells in the body cannot be reached spontaneously. This significantly enhances the rate of tissue regeneration, which creates conditions for malignant growth.  相似文献   

2.
Mesenchymal stem cells are multipotent cells that can be isolated from adult bone marrow and can be induced in vitro and in vivo to differentiate into a variety of mesenchymal tissues, including bone, cartilage, tendon, fat, bone marrow stroma, and muscle. Despite their potential clinical utility for cellular and gene therapy, the fate of mesenchymal stem cells after systemic administration is mostly unknown. To address this, we transplanted a well-characterized human mesenchymal stem cell population into fetal sheep early in gestation, before and after the expected development of immunologic competence. In this xenogeneic system, human mesenchymal stem cells engrafted and persisted in multiple tissues for as long as 13 months after transplantation. Transplanted human cells underwent site-specific differentiation into chondrocytes, adipocytes, myocytes and cardiomyocytes, bone marrow stromal cells and thymic stroma. Unexpectedly, there was long-term engraftment even when cells were transplanted after the expected development of immunocompetence. Thus, mesenchymal stem cells maintain their multipotential capacity after transplantation, and seem to have unique immunologic characteristics that allow persistence in a xenogeneic environment. Our data support the possibility of the transplantability of mesenchymal stem cells and their potential utility in tissue engineering, and cellular and gene therapy applications.  相似文献   

3.
4.
Solid tumors are composed of cancerous cells and non-cancerous stroma. A better understanding of the tumor stroma could lead to new therapeutic applications. However, the exact compositions and functions of the tumor stroma are still largely unknown. Here, using a Lewis lung carcinoma implantation mouse model, we examined the hematopoietic compartments in tumor stroma and tumor-bearing mice. Different lineages of differentiated hematopoietic cells existed in tumor stroma with the percentage of myeloid cells increasing and the percentage of lymphoid and erythroid cells decreasing over time. Using bone marrow reconstitution analysis, we showed that the tumor stroma also contained functional hematopoietic stem cells. All hematopoietic cells in the tumor stroma originated from bone marrow. In the bone marrow and peripheral blood of tumor-bearing mice, myeloid populations increased and lymphoid and erythroid populations decreased and numbers of hematopoietic stem cells markedly increased with time. To investigate the function of hematopoietic cells in tumor stroma, we co-implanted various types of hematopoietic cells with cancer cells. We found that total hematopoietic cells in the tumor stroma promoted tumor development. Furthermore, the growth of the primary implanted Lewis lung carcinomas and their metastasis were significantly decreased in mice reconstituted with IGF type I receptor-deficient hematopoietic stem cells, indicating that IGF signaling in the hematopoietic tumor stroma supports tumor outgrowth. These results reveal that hematopoietic cells in the tumor stroma regulate tumor development and that tumor progression significantly alters the host hematopoietic compartment.  相似文献   

5.
The adult bone marrow retains two populations of stem cells with emerging importance for the treatment of diverse liver diseases: hematopoietic stem cells (HSCs) and mesenchymal stem cells (MSCs). However, the mechanisms that control liver regeneration after bone marrow cell transplantation are still controversial. Liver regeneration after partial hepatectomy is a complex process that requires the proliferation of all hepatic cells. Growth factors, cytokines and extracellular matrix molecules are key elements in this process. Laminins are a family of extracellular matrix proteins with adhesive and chemotactic functions, expressed in the portal and centrolobular veins of the normal liver. The aim of this study was to investigate laminin expression during liver regeneration induced by partial hepatectomy followed by bone marrow mononuclear cell (BMMNC) transplantation. Rat BMMNCs were isolated by Ficoll-gradient centrifugation, stained with DAPI and injected into recently hepatectomyzed rats via the portal vein. Liver sections obtained 15 min, 1 day and 3 days after the surgery were immunolabeled with anti-rat CD34 and/or laminin primary antibodies and observed under a laser scanning confocal microscope. Results showed that 15 min after partial hepatectomy, a transplanted CD34+ HSC was found in contact with laminin, which was localized in the portal and centrolobular veins of rat livers. Furthermore, 1 and 3 days after hepatectomy, transplanted BMMNCs were found in the hepatic sinusoids expressing laminin. These results strongly suggest that laminin might be an important extracellular matrix component for bone marrow cell attachment and migration in the injured liver.  相似文献   

6.
Mammalian aging is associated with reduced tissue regeneration and loss of physiological integrity. With age, stem cells diminish in their ability to regenerate adult tissues, likely contributing to age‐related morbidity. Thus, we replaced aged hematopoietic stem cells (HSCs) with young‐donor HSCs using a novel mobilization‐enabled hematopoietic stem cell transplantation (HSCT) technology as an alternative to the highly toxic conditioning regimens used in conventional HSCT. Using this approach, we are the first to report an increase in median lifespan (12%) and a decrease in overall mortality hazard (HR: 0.42, CI: 0.273–0.638) in aged mice following transplantation of young‐donor HSCs. The increase in longevity was accompanied by reductions of frailty measures and increases in food intake and body weight of aged recipients. Young‐donor HSCs not only preserved youthful function within the aged bone marrow stroma, but also at least partially ameliorated dysfunctional hematopoietic phenotypes of aged recipients. This compelling evidence that mammalian health and lifespan can be extended through stem cell therapy adds a new category to the very limited list of successful anti‐aging/life‐extending interventions. Our findings have implications for further development of stem cell therapies for increasing health and lifespan.  相似文献   

7.
Adult stem cells were once thought to produce only the cell lineages characteristic of the tissues in which they reside. Recent studies suggest that cells derived from one adult tissue can be reprogrammed to change into cellular phenotypes not normally found in that tissue. Bone marrow (BM) derived cells have been demonstrated to differentiate into multiple lineages, including glial cells and neurons, both in vivo and in vitro. This unexpected plasticity of BM cells occurs not only under experimental conditions, but also in humans following BM transplantation. As a result, BM transplantation has emerged as a novel approach to enhance neural regeneration and restore injured brain tissue. Several research teams have reported that transplanted BM cells can differentiate into neural derivatives; indeed, some of these cells were capable of integration into the host brain, where they promoted functional recovery after brain injury. Other researchers conducting similar studies were unable to find any evidence of neural differentiation, concluding that differentiation 'from marrow to brain' is not a common phenomenon. More recently, two papers in Nature also cast doubt on the plasticity of adult stem cells, suggesting that the acquisition of different identities by grafted BM cells may merely reflect their fusion with host cells. Reasons for the wide discrepancies among findings in current BM stem cell research are unclear, making it difficult to understand the mechanisms by which transplanted marrow stem cells provide therapeutic benefit. Here, we summarize recent findings on this subject, and address some of the major controversies that have marked the evolution of adult stem cell research.  相似文献   

8.
目的研究制备人鼠肝组织嵌合小鼠模型。方法将人骨髓干细胞直接注射到一定日龄胎鼠肝组织,每只注射移植约1×109人骨髓干细胞。用免疫组化对出生一定日龄移植小鼠肝脏进行甲胎蛋白免疫组织化学检测,检定分析人肝细胞在小鼠体内嵌合生长情况。结果移植人骨髓干细胞胎鼠出生2月龄、12月龄可检测到甲胎蛋白。结论将人骨髓干细胞移植小鼠肝脏内能够存活并分化成人肝细胞并能够长期存活。  相似文献   

9.
Mesenchymal stem cells (MSC) are resident pluripotent cells of bone marrow stroma. MSC are able to differentiate into chondroblasts, adipocytes, neurons, glia, cardiomyocytes, or osteoblasts. The problem of MSC usage in cell therapy of bone defects is widely discussed at present. The experiments were carried out using rats of inbred line Wistar-Kyoto. MSC were isolated from bone marrow and cultivated in vitro. Demineralized bone matrices (DBM) were obtained from parietal bones of rats and hens. Part of DBM was loaded with MSC. Bone defects were made in cranium parietal regions. DBM with or without MSC or metal plates were transplanted in these regions. It was shown that the application of MSC increased angiogenesis and osteogenesis in the damaged bone. The implantation of rat's DBM with MSC led to the formation of a full value bone. MSC suppressed inflammation, when transplantation of hen's DBM was carried out. The application of MSC always improved bone tissue regeneration.  相似文献   

10.
Endothelial progenitor cells for postnatal vasculogenesis   总被引:26,自引:0,他引:26  
In the past decade, researchers have defined committed stem or progenitor cells from various tissues, including bone marrow, peripheral blood, brain, liver, and reproductive organs, in both adult animals and humans. Whereas most cells in adult organs are composed of differentiated cells, which express a variety of specific phenotypic genes adapted to each organ's environment, quiescent stem or progenitor cells are maintained locally or in the systemic circulation and are activated by environmental stimuli for physiological and pathological tissue regeneration. Recently, endothelial progenitor cells (EPCs) were isolated from peripheral blood CD34, Flk-1, or AC133 antigen-positive cells, which are considered to include a hematopoietic stem cell population, and were shown to be incorporated into foci of neovascularization. This finding, that circulating EPCs may home to sites of neovascularization and differentiate into endothelial cells in situ, is consistent with "vasculogenesis," a critical paradigm for embryonic neovascularization, and suggests that vasculogenesis and angiogenesis may constitute complementary mechanisms for postnatal neovascularization. Previous reports demonstrating therapeutic potential of EPC transplantation in animal models of hindlimb and myocardial ischemia opened the way to the clinical application of cell therapy: the replacement of diseased or degenerating cell populations, tissues, and organs. In this review, we summarize biological features of EPCs and speculate on the utility of EPCs for vascular and general medicine. cell transplantation; ischemia; neovascularization; stem cell  相似文献   

11.
Recent results suggest that bone marrow (BM)-derived hematopoietic cells are major components of tumor stroma and play crucial roles in tumor growth and angiogenesis. An E-type prostaglandin is known to regulate angiogenesis. We examined the role of BM-derived cells expressing an E-type prostaglandin receptor subtype (EP3) in tumor-induced angiogenesis and tumor growth. The replacement of wild-type (WT) BM with BM cells (BMCs) from green fluorescent protein (GFP) transgenic mice revealed that the stroma developed via the recruitment of BMCs. Selective knockdown of EP3 by recruitment of genetically modified BMCs lacking EP3 receptors was performed by transplantation of BMCs from EP3 knockout (EP3−/−) mice. Tumor growth and tumor-associated angiogenesis were suppressed in WT mice transplanted with BMCs from EP3−/− mice, but not in mice transplanted with BMCs from either EP1−/−, EP2−/−, or EP4−/− mice. Immunohistochemical analysis revealed that vascular endothelial growth factor (VEGF) expression was suppressed in the stroma of mice transplanted with BMCs from EP3−/− mice. EP3 signaling played a significant role in the recruitment of VEGFR-1- and VEGFR-2-positive cells from the BM to the stroma. These results indicate that the EP3 signaling expressed in bone marrow-derived cells has a crucial role in tumor-associated angiogenesis and tumor growth with upregulation of the expression of the host stromal VEGF together with the recruitment of VEGFR-1/VEGFR-2-positive. The present study suggests that the blockade of EP3 signaling and the recruitment of EP3-expressing stromal cells may become a novel strategy to treat solid tumors.  相似文献   

12.
Bone marrow-derived stem cells initiate pancreatic regeneration   总被引:42,自引:0,他引:42  
We show that transplantation of adult bone marrow-derived cells expressing c-kit reduces hyperglycemia in mice with streptozotocin-induced pancreatic damage. Although quantitative analysis of the pancreas revealed a low frequency of donor insulin-positive cells, these cells were not present at the onset of blood glucose reduction. Instead, the majority of transplanted cells were localized to ductal and islet structures, and their presence was accompanied by a proliferation of recipient pancreatic cells that resulted in insulin production. The capacity of transplanted bone marrow-derived stem cells to initiate endogenous pancreatic tissue regeneration represents a previously unrecognized means by which these cells can contribute to the restoration of organ function.  相似文献   

13.
Participation of bone marrow derived cells in cutaneous wound healing   总被引:30,自引:0,他引:30  
Bone marrow has long been known to be a source of stem cells capable of regeneration of the hematopoeitic system. Recent reports, however, have indicated that bone marrow might also contain early stem cells that can differentiate into other organ tissues such as skin. While these studies have illustrated that bone marrow stem cells could find their way to the skin, they have not addressed the dynamics of how bone marrow stem cells might participate in the homeostatis and regeneration of skin. In this report we followed green fluorescent protein (GFP) labeled bone marrow transplanted into non-GFP mice in order to determine the participation of bone marrow stem cells in cutaneous wounds. Our results indicate that there are a significant number of bone marrow cells that traffic through both wounded and non-wounded skin. Wounding stimulated the engraftment of bone marrow cells to the skin and induced bone marrow derived cells to incorporate into and differentiate into non-hematopoietic skin structures. This report thus illustrates that bone marrow might be a valuable source of stem cells for the skin and possibly other organs. Wounding could be a stimulus for bone marrow derived stem cells to travel to organs and aid in the regeneration of damaged tissue.  相似文献   

14.
Mesenchymal stem cells (MSCs) are found in virtually all organs and tissues. These cells can presumably be transformed into tumor stem cells by genotoxic factors and, subsequently, initiate tumor growth. The aim of the present work consisted in analysis of the possibility of malignant transformation of cultured MSCs from the bone marrow (BM) of mice after in vitro exposure to γ-radiation and in the characterization of biochemical and histological features of tumors that developed after the transplantation of BM MSCs to syngenic mice. Two of five mice developed tumors 3 to 4 months after the subcutaneous injection of BM MSCs irradiated at a dose of 1 Gy, five of five animals developed tumors after the administration of BM MSCs irradiated at a dose of 6 Gy, and only one of five mice injected with nonirradiated BM MSCs developed a tumor 6 months after cell transplantation. Telomerase activity in a tumor that developed from BM MSCs irradiated at a dose of 6 Gy was twice as high as that in the tumor that developed from BM MSCs irradiated at a dose of 1 Gy. The histological structure of the neoplasms corresponded to that of multicomponent mesenchymoma, a malignant tumor also termed “a mix of sarcomas.” The tumors consisted of tissue fragments of different histological types. Thus, BM MSCs exposed to 1 or 6 Gy of radiation can be transformed into tumor cells and give rise to multicomponent mesenchymomas, whereas malignant transformation of control BM MSCs occurs much less often.  相似文献   

15.
Modelling of ex vivo expansion/maintenance of hematopoietic stem cells   总被引:1,自引:0,他引:1  
In this study, we described the modelling of the expansion/maintenance of human hematopoietic stem/progenitor cells from adult human bone marrow. CD 34(+)-enriched cell populations from bone marrow were cultured in the presence and absence of human stroma in serum-free media containing bFGF, SCF, LIF and Flt-3 ligand for several days. The cells in the culture were analysed for expansion and phenotype by flow cytometry. Although significant expansion of bone marrow cultures occurred in the presence and absence of human stroma, the results of expansion were effectively better in the presence of a stromal layer. In both situations the phenotypic analysis demonstrated a great expansion of CD 34(+)38(-) cells. The differentiative potential of bone marrow CD 34(+) cells co-cultured with human stroma was primarily shifted towards the myeloid lineage with the presence of CD 15 and CD 33.  相似文献   

16.
An immunofluorescent study of hemopoietic organs in xenogenic (mouse-rat) radiation chimaeras has been carried out by means of specific antiserum against hemopoietic cells of the rat bone marrow. The presence of donor cells was tested at different times after the transplantation in the bone marrow, spleen, lymph nodes, thymus and liver of radiochimaeras. The transplanted cells were shown to populate all hemopoietic organs of the recipient, first of all tissues of the bone marrow type and, then, lymphoid organs. The donor (bone marrow) origin of the extramedullar foci of hemopoiesis in the liver was established.  相似文献   

17.
With the desire to understand the contributions of multiple cellular elements to the development of a complex tissue; such as the numerous cell types that participate in regenerating tissue, tumor formation, or vasculogenesis, we devised a multi-colored cellular transplant model of tumor development in which cell populations originate from different fluorescently colored reporter gene mice and are transplanted, engrafted or injected in and around a developing tumor. These colored cells are then recruited and incorporated into the tumor stroma. In order to quantitatively assess bone marrow derived tumor stromal cells, we transplanted GFP expressing transgenic whole bone marrow into lethally irradiated RFP expressing mice as approved by IACUC. 0ovarian tumors that were orthotopically injected into the transplanted mice were excised 6-8 weeks post engraftment and analyzed for bone marrow marker of origin (GFP) as well as antibody markers to detect tumor associated stroma using multispectral imaging techniques. We then adapted a methodology we call MIMicc- Multispectral Interrogation of Multiplexed cellular compositions, using multispectral unmixing of fluoroprobes to quantitatively assess which labeled cell came from which starting populations (based on original reporter gene labels), and as our ability to unmix 4, 5, 6 or more spectra per slide increases, we''ve added additional immunohistochemistry associated with cell lineages or differentiation to increase precision. Utilizing software to detect co-localized multiplexed-fluorescent signals, tumor stromal populations can be traced, enumerated and characterized based on marker staining.1  相似文献   

18.
Embryonic stem cells (ESCs) are a potential source of generating transplantable hematopoietic stem and progenitor cells, which in turn can serve as "seed" cells for hematopoietic regeneration. In this study, we aimed to gauge the ability of mouse ESCs directly differentiating into hematopoietic cells in adult bone marrow (BM). To this end, we first derived a new mouse ESC line that constitutively expressed the green fluorescent protein (GFP) and then injected the ESCs into syngeneic BM via intra-tibia. The progeny of the transplanted ESCs were then analyzed at different time points after transplantation. Notably, however, most injected ESCs differentiated into non-hematopoietic cells in the BM whereas only a minority of the cells acquired hematopoietic cell surface markers. This study provides a strategy for evaluating the differentiation potential of ESCs in the BM micro-environment, thereby having important implications for the physiological maintenance and potential therapeutic applications of ESCs.  相似文献   

19.
Peripheral blood stem cell transplantation (PBSCT) offers an alternative to autologous bone marrow transplants (A-BMT), especially in malignant diseases with bone marrow contamination. The presence of hemopoietic precursors in peripheral blood has been documented in several animal models and in humans. While many of these precursors might be committed cells with finite renewal capacity, ample evidence suggests that true pluripotent stem cells are circulating in a number sufficient to enable sustained trilineage engraftment after transplantation. Stem cell mobilization is markedly increased in the early recovery phase after intensive chemotherapy and can be promoted by the administration of various cytokines or polyanionic substances. These effects are used to optimize stem cell harvesting by leukapheresis. Clinical trials of PBSCT have been performed in several hundred patients with various hematological and nonhematological malignancies. Recovery was generally more rapid than after A-BMT. However, the envisioned advantage concerning disease control has not been documented so far.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号