首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Treatment of malignant diseases with radiation therapy, chemotherapy, and immunodepressants requires subsequent restoration of bone marrow by the use of transplantation of donor bone marrow or separated adult stem cells to the body. During the next 1–15 years, in these patients, the risk of malignant neoplasia substantially increases as compared to healthy persons. This was previously considered as the effect of treatment. However, it has been found that part of cells and the stroma of a secondary tumor consist of progenies of transplanted stem cells. This demonstrates an important role of stem cells in tumorigenesis. Numerous studies also show that adult mouse or human stem cells cultured in vitro can form foci of sarcoma, cancer or other types of malignant growth. Malignant growth is more intense when chronic inflammation is present in the body. A lot of experimental data including studies in humans demonstrated that, after transplantation, stem cells actively occupy the tumor stroma, stimulate tumorigenesis and its metastasis. An important condition of human life is the presence of strong homeostatic mechanisms that control the number of stem cells in the body and limit their division even in regeneration foci. After transplantation of stem cells, their number in the blood and, correspndingly, in a pathological regeneration location increases by the dozens. This level of cells in the body cannot be reached spontaneously. This significantly enhances the rate of tissue regeneration, which creates conditions for malignant growth.  相似文献   

2.
Tracking adult stem cells   总被引:1,自引:0,他引:1  
The maintenance of stem-cell-driven tissue homeostasis requires a balance between the generation and loss of cell mass. Adult stem cells have a close relationship with the surrounding tissue--known as their niche--and thus, stem-cell studies should preferably be performed in a physiological context, rather than outside their natural environment. The mouse is an attractive model in which to study adult mammalian stem cells, as numerous experimental systems and genetic tools are available. In this review, we describe strategies commonly used to identify and functionally characterize adult stem cells in mice and discuss their potential, limitations and interpretations, as well as how they have informed our understanding of adult stem-cell biology. An accurate interpretation of physiologically relevant stem-cell assays is crucial to identify adult stem cells and elucidate how they self-renew and give rise to differentiated progeny.  相似文献   

3.
Plasticity of adult stem cells   总被引:66,自引:0,他引:66  
Wagers AJ  Weissman IL 《Cell》2004,116(5):639-648
Recent years have seen much excitement over the possibility that adult mammalian stem cells may be capable of differentiating across tissue lineage boundaries, and as such may represent novel, accessible, and very versatile effectors of therapeutic tissue regeneration. Yet studies proposing such "plasticity" of adult somatic stem cells remain controversial, and in general, existing evidence suggests that in vivo such unexpected transformations are exceedingly rare and in some cases can be accounted for by equally unexpected alternative explanations.  相似文献   

4.
5.
Niwa O 《Radiation research》2010,174(6):833-839
Radiation research has its foundation on the target and hit theories, which assume that the initial stochastic deposition of energy on a sensitive target in a cell determines the final biological outcome. This assumption is rather static in nature but forms the foundation of the linear no-threshold (LNT) model of radiation carcinogenesis. The stochastic treatment of radiation carcinogenesis by the LNT model enables easy calculation of radiation risk, and this has made the LNT model an indispensable tool for radiation protection. However, the LNT model sometimes fails to explain some of the biological and epidemiological data, and this suggests the need for insight into the mechanisms of radiation carcinogenesis. Recent studies have identified unique characteristics of the tissue stem cells and their roles in tissue turnover. In the present report, some important issues of radiation protection such as the risk of low-dose-rate exposures and in utero exposures are discussed in light of the recent advances of stem cell biology.  相似文献   

6.
Disguising adult neural stem cells   总被引:2,自引:0,他引:2  
  相似文献   

7.
Heterogeneity of embryonic and adult stem cells   总被引:1,自引:0,他引:1  
  相似文献   

8.
Located near the oropharynx, the tonsils are the primary mucosal immune organ. Tonsil tissue is a promising alternative source for the high-yield isolation of adult stem cells, and recent studies have reported the identification and isolation of tonsil-derived stem cells (T-SCs) from waste surgical tissue following tonsillectomies in relatively young donors (i.e., under 10 years old). As such, T-SCs offer several advantages, including superior proliferation and a shorter doubling time compared to bone marrow-derived mesenchymal stem cells (MSCs). T-SCs also exhibit multi-lineage differentiation, including mesodermal, endodermal (e.g., hepatocytes and parathyroid-like cells), and even ectodermal cells (e.g., Schwann cells). To this end, numbers of researchers have evaluated the practical use of T-SCs as an alternative source of autologous or allogenic MSCs. In this review, we summarize the details of T-SC isolation and identification and provide an overview of their application in cell therapy and regenerative medicine.  相似文献   

9.
干细胞是一类具有自我更新能力和多向分化潜能的细胞,其处于未定向分化状态并具有增殖能力.成体干细胞多向分化潜能,安全性好而在临床应用报道逐渐增多,本文总结了1998-2008年的成体干细胞临床应用的实例报道,以期为临床科研人员和患者提供信息支持.  相似文献   

10.
11.
Differentiation potential of adult stem cells   总被引:17,自引:0,他引:17  
In many different adult tissues, stem cells generate new cells either continuously or in response to injury. Such cells were thought to be limited to generating the types of cells normally present in the tissue where the stem cell resides. However, several different stem-cell populations in the adult have been found recently to be capable of generating additional cell types under certain conditions.  相似文献   

12.
The possibility of treating degenerative diseases by stem cell-based approaches is a promising therapeutical option. Among major concerns for the clinical application of stem cells, some derive from the possibility that stem cells may be rejected by the immune system as a consequence of histoincompatibility and that stem cells themselves may interfere with the normal functions of host immune response. Therefore, the immunogenicity and the immunomodulatory properties of stem cells must be carefully addressed. Although these properties are common features of different stem cell types, some peculiarities can be recognized and characterized for their proper clinical use.  相似文献   

13.
《Cell》2022,185(25):4756-4769.e13
  1. Download : Download high-res image (193KB)
  2. Download : Download full-size image
  相似文献   

14.
Three categories of precursor cells have been identified in postnatal mammals: tissue-committed progenitor cells, germ layer lineage-committed stem cells and lineage-uncommitted pluripotent stem cells. Progenitor cells are the immediate precursors of differentiated tissues. Germ layer lineage stem cells can be induced to form multiple cell types belonging to their respective ectodermal, mesodermal, and endodermal embryological lineages. Pluripotent stem cells will form somatic cell types from all three primary germ layer lineages. Progenitor cells demonstrate a finite life span before replicative senescence and cell death occur. Both germ layer lineage stem cells and pluripotent stem cells are telomerase positive and display extensive capabilities for self-renewal. Stem cells which undergo such extensive replication have the potential for undergoing mutations that may subsequently alter cellular functions. Gross mutations in the genome may be visualized as chromosomal aneuploidy and/or chromosomes that appear aberrant. This study was designed to determine whether any gross genomic mutations occurred within the adult pluripotent stem cells. Karyotypic analysis was performed using pluripotent stem cells purified from adult male rats using established procedures. Giemsa Banding was used in conjunction with light microscopy to visualize metaphase chromosome spreads. To date over 800 metaphase spreads have been analyzed. We found that the metaphase spreads averaged 42 chromosomes and concluded that these pluripotent stem cells isolated from adult rats have a normal karyotype.  相似文献   

15.
This review will discuss the mechanisms of repair and regeneration in various tissue types and how dysregulation of these mechanisms may lead to cancer. Normal tissue homeostasis involves a careful balance between cell loss and cell renewal. Stem and progenitor cells perform these biologic processes as the functional units of regeneration during both tissue homeostasis and repair. The concept of tissue stem cells capable of giving rise to all differentiated cells within a given tissue led to the concept of a cellular hierarchy in tissues and in tumors. Thus, only a few cells may be necessary and sufficient for tissue repair or tumor regeneration. This is known as the hierarchical model of tumorigenesis. This report will compare this model with the stochastic model of tumorigenesis. Under normal circumstances, the processes of tissue regeneration or homeostasis are tightly regulated by several morphogen pathways to prevent excessive or inappropriate cell growth. This review presents the recent evidence that dysregulation of these processes may provide opportunities for carcinogenesis for the long-lived, highly proliferative tissue stem cell population. New findings of cancer initiating tissue stem cells identified in several solid and circulating cancers including breast, brain and hematopoietic tumors will also be reviewed. Finally, this report reviews the cellular biology of cancer and its relevance to the development of more effective cancer treatment protocols.  相似文献   

16.
17.
In search of adult renal stem cells   总被引:5,自引:0,他引:5  
The therapeutic potential of adult stem cells in the treatment of chronic degenerative diseases has becoming increasingly evident over the last few years. Significant attention is currently being paid to the development of novel treatments for acute and chronic kidney diseases too. To date, promising sources of stem cells for renal therapies include adult bone marrow stem cells and the kidney precursors present in the early embryo. Both cells have clearly demonstrated their ability to differentiate into the kidney's specialized structures. Adult renal stem cells have yet to be identified, but the papilla is where the stem cell niche is probably located. Now we need to isolate and characterize the fraction of papillary cells that constitute the putative renal stem cells. Our growing understanding of the cellular and molecular mechanisms behind kidney regeneration and repair processes - together with a knowledge of the embryonic origin of renal cells - should induce us, however, to bear in mind that in the kidney, as in other mesenchymal tissues, the need for a real stem cell compartment might be less important than the phenotypic flexibility of tubular cells. Thus, by displaying their plasticity during kidney maintenance and repair, terminally differentiated cells may well function as multipotent stem cells despite being at a later stage of maturation than adult stem cells. One of the major tasks of Regenerative Medicine will be to disclose the molecular mechanisms underlying renal tubular plasticity and to exploit its biological and therapeutic potential.  相似文献   

18.
Cardiomyocyte differentiation from embryonic and adult stem cells   总被引:3,自引:0,他引:3  
In recent years multiple reports indicating that embryonic as well as adult stem cells can differentiate to cardiomyocytes have ignited discussions on whether these stem cells could lead to new therapies for patients with heart disease. Recent developments have been made in the generation of cardiomyocytes from both embryonic and adult stem cells, and progress towards clinical applications in patients with heart failure has been made. Nevertheless, controversies surrounding safety and transdifferentiation issues will need to be overcome before these stem cell approaches can reach their full potential.  相似文献   

19.
Adult stem cells maintain tissue homeostasis by their ability to both self-renew and differentiate to distinct cell types. Multiple signaling pathways have been shown to play essential roles as extrinsic cues in maintaining adult stem cell identity and activity. Recent studies also show dynamic regulation by epigenetic mechanisms as intrinsic factors in multiple adult stem cell lineages. Emerging evidence demonstrates intimate crosstalk between these two mechanisms. Misregulation of adult stem cell activity could lead to tumorigenesis, and it has been proposed that cancer stem cells may be responsible for tumor growth and metastasis. However, it is unclear whether cancer stem cells share commonalities with normal adult stem cells. In this review, we will focus on recent discoveries of epigenetic regulation in multiple adult stem cell lineages. We will also discuss how epigenetic mechanisms regulate cancer stem cell activity and probe the common and different features between cancer stem cells and normal adult stem cells.  相似文献   

20.
Research in the field of adult neurogenesis has seen substantial progress over recent years. Here we discuss some of the major focus areas for future investigation: neural stem cell heterogeneity, the role of latent stem cells, and the extent of neurogenesis in the adult human brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号