首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
This paper analyzes the problems of and achievements in rapeseed (Brassica napus L. var. oleifera) breeding directed at the change of the fatty acid composition in seed oil using the approaches of traditional selection and genetic engineering. It is noted that the combination of biotechnological developments and methods of classical breeding is optimal for the further improvement of the composition of rapeseed oil.  相似文献   

2.
油酸(C18∶1)是双低菜籽油的主要脂肪酸之一,合理的高油酸菜籽油脂肪酸组分更有利于人体健康,因此提高油酸含量是双低油菜品质育种的一个重要方向。当前我国高油酸油菜品种选育相关研究进展缓慢,高油酸菜籽油产业化进程急需提速。围绕高油酸油菜主要从四个方面开展论述:国内外利用理化方法成功创建的油菜高油酸种质资源及其高油酸性状遗传模式;油菜高油酸性状的控制基因及其突变位点;世界上高油酸品种的培育以及我国高油酸品种的发展趋势;当前高油酸品种的不足及今后高油酸油菜品种的改良途径。为油菜育种工作者较全面地展示了国际上高油酸油菜在遗传育种方面的研究成果,也为今后我国高油酸油菜的进一步发展提供了参考。  相似文献   

3.

Background

Rapeseed (Brassica napus L.) is an important oil crop in the world, and increasing its oil content is a major breeding goal. The studies on seed structure and characteristics of different oil content rapeseed could help us to understand the biological mechanism of lipid accumulation, and be helpful for rapeseed breeding.

Methodology/Principal Findings

Here we report on the seed ultrastructure of an ultrahigh oil content rapeseed line YN171, whose oil content is 64.8%, and compared with other high and low oil content rapeseed lines. The results indicated that the cytoplasms of cotyledon, radicle, and aleuronic cells were completely filled with oil and protein bodies, and YN171 had a high oil body organelle to cell area ratio for all cell types. In the cotyledon cells, oil body organelles comprised 81% of the total cell area in YN171, but only 53 to 58% in three high oil content lines and 33 to 38% in three low oil content lines. The high oil body organelle to cotyledon cell area ratio and the cotyledon ratio in seed were the main reasons for the ultrahigh oil content of YN171. The correlation analysis indicated that oil content is significantly negatively correlated with protein content, but is not correlated with fatty acid composition.

Conclusions/Significance

Our results indicate that the oil content of YN171 could be enhanced by increasing the oil body organelle to cell ratio for some cell types. The oil body organelle to seed ratio significantly highly positively correlates with oil content, and could be used to predict seed oil content. Based on the structural analysis of different oil content rapeseed lines, we estimate the maximum of rapeseed oil content could reach 75%. Our results will help us to screen and identify high oil content lines in rapeseed breeding.  相似文献   

4.
Oilseed rape (Brassica napus L.) is a major oil crop that also supplies proteins for the feed industry. In order to reduce total cost production, the objective is to increase oil yield while reducing crop inputs (especially nitrogen and pesticides). Concomitantly, it is necessary to anticipate specific uses (e.g., fatty acid composition) and to ensure the valorisation of the by-products (rapeseed meal). By the past, improvement of seed quality focused on fatty acid balance and low seed glucosinolate content. Current goals include the breeding of yellow-seeded rapeseed lines with high content of seed oil. The use of molecular tools and the exploitation of Arabidopsis knowledge will be presented and discussed.  相似文献   

5.
油菜油脂研究进展   总被引:12,自引:0,他引:12  
油菜(Brassica napus)是世界范围内重要的油料作物,是植物油脂的第三大来源,其种植面积和总产量在油料作物中占有相当大的比例。我国油菜品种油脂含量普遍较国外低2—5个百分点,而油脂含量每增加1个百分点对产油量提高的贡献,相当于菜籽产量提高2.5个百分点。因此提高油菜油脂含量是解决油菜生产效益低的重要途径之一。本文综述了油菜油脂研究的状况,包括油脂积累的遗传学基础、油脂合成途径和调控、油脂含量的QTL定位及油脂含量与品质性状的遗传相关性,同时展望了油菜油脂研究前景,以期为油菜油脂含量的品种改良提供科学指导。  相似文献   

6.
油菜(Brassica napus)是世界范围内重要的油料作物, 是植物油脂的第三大来源, 其种植面积和总产量在油料作物中占有相当大的比例。我国油菜品种油脂含量普遍较国外低2-5个百分点, 而油脂含量每增加1个百分点对产油量提高的贡献, 相当于菜籽产量提高2.5个百分点。因此提高油菜油脂含量是解决油菜生产效益低的重要途径之一。本文综述了油菜油脂研究的状况, 包括油脂积累的遗传学基础、油脂合成途径和调控、油脂含量的QTL定位及油脂含量与品质性状的遗传相关性, 同时展望了油菜油脂研究前景, 以期为油菜油脂含量的品种改良提供科学指导。  相似文献   

7.
目前,利用传统育种方法改良油料作物脂肪酸组分已取得巨大成功,通过有性杂交、X-射线或EMS处理等方法都可用来修饰存在于油菜中脂肪酸的性质。国外已培育出高棕榈酸、高或低亚油酸、高油酸和无芥酸的油菜品种。但由于油料作物基因池(Gene Pool)的局限性使得育种学家不得不寻找其他种质资源。随着基因克隆和遗传转化技术的进步,通过基因工程改良油料作物品质已成可能。本文主要介绍了植物脂肪酸的代谢途径以及通过操纵TAG的生物合成来改变油的成分等研究,其中主要包括脂肪酸链长度的改良、饱和度改良、增加脂肪酸含量以及新的不饱和脂肪酸的改良等方面。不久的将来,转基因油料作物中将会产生更有价值的脂肪酸造福于人类。  相似文献   

8.
油菜是食用油、优质饲料蛋白的重要来源,杂种优势利用是油菜培育优势性状最重要的手段,且提高亲本的选育效率对优质品种的培育具有积极的推动作用。现有油菜育种技术存在效率低、周期长、盲目性大、应用范围有限等诸多问题,不适于油菜产业快速发展的需求。双单倍体诱导育种技术是近年来新兴的一种快速选育油菜新品种的技术方法。该技术以操作简便、应用范围广、效率高等优势被广泛应用于油菜新品种的选育过程中。从油菜双单倍体诱导技术创新研究的发现、作用表现、诱导机制、作用价值等方面系统地综述了油菜双单倍体诱导技术的研究进展,展望了油菜双单倍体诱导技术的应用前景,以期为未来油菜双单倍体诱导技术以及其他作物诱导系的研究和利用提供参考。  相似文献   

9.
油菜品质育种现状及展望   总被引:1,自引:0,他引:1  
国际油菜品质改良始于20世纪60年代,以降低油菜籽中芥酸和硫代葡萄糖苷为主要目标.随着历史的不断发展,油菜的品质改良已不再局限于这两个指标.在食用油方面,已将提高油酸、亚油酸含量,降低饱和脂肪酸和亚麻酸含量作为今后的主攻方向,使之成为最健康的食用油;在工业用油方面,高芥酸和中等长度的脂肪酸改良已逐渐展开.今后常规育种、杂种优势利用和生物技术的有机结合,将使油菜品种的改良进入到一个新的阶段.  相似文献   

10.
随机挑选148份羽衣甘蓝种质资源和高世代材料,分析了成熟种子的含油量、蛋白质、硫苷和7种主要脂肪酸成分的表现特征及其相关性。结果表明:羽衣甘蓝成熟种子平均含油量为29.48%,平均蛋白质含量为45.13%,含油量和蛋白质总量为74.61%。硫苷含量的变幅最大,变异系数为31.72%。7种主要脂肪酸成分中,油酸和芥酸的含量较高,其次为亚油酸,棕榈酸和硬脂酸的含量较低。除硫苷含量和硬脂酸含量外,其余9个性状的表现均呈单峰正态分布。相关性分析表明,大多数性状间都具有显著或极显著的相关性,这与对甘蓝型、白菜型和芥菜型3种类型油菜的研究结果相一致。在羽衣甘蓝中存在一些优异的种质资源,通过筛选可以在油菜优质育种中加以利用。  相似文献   

11.
A novel longitudinal feeding design was used to investigate the controlling influence of dietary fatty acids on the dynamic incorporation of fatty-acyl chains into phosphatidylcholine, phosphatidylethanolamine and cardiolipin in inner membrane of cardiac mitochondria. Rats were fed a polyunsaturated-fatty-acid-rich oil (soya-bean oil) for 12 days, crossed-over to a monounsaturated-fatty-acid-rich oil (rapeseed oil) for the next 11 days, then returned to soya-bean oil for 11 more days. Additional rats were fed either soya-bean oil or rapeseed oil only throughout. Rats were killed serially. Regression analysis was used to represent longitudinal flux in membrane lipid fatty-acid composition occurring with change in dietary fat. The fatty-acid composition of phosphatidylcholine, phosphatidylethanolamine and cardiolipin was influenced by dietary oil in a reversible way. Maximal diet influence was achieved in the 11-day cross-over period. Soya-bean oil to rapeseed oil cross-over caused the fatty-acid composition of phosphatidylcholine, phosphatidylethanolamine and cardiolipin to resemble that of rats fed rapeseed oil only. These changes were reversed by crossing back to soya-bean oil, indicating the dynamic state and short half-life of membrane phospholipid fatty-acyl chains. This report demonstrates for the first time in the whole animal fed diets adequate in all nutrients that subcellular membrane lipids rapidly respond to change in dietary fatty-acid balance. The system may be used to assess in vivo the significance of dietary fat in determining membrane physicochemical properties and biochemical functions.  相似文献   

12.
Oilseed rape (Brassica napus) is the third largest source of vegetable oil globally. In addition to food uses, there are industrial applications that exploit the ability of the species to accumulate the very‐long‐chain fatty acid (VLCFA) erucic acid in its seed oil, controlled by orthologues of FATTY ACID ELONGASE 1 (Bna.FAE1.A8 and Bna.FAE1.C3). The proportion of polyunsaturated fatty acids (PUFAs) in rapeseed oil is predicted to affect its thermal stability and is controlled by orthologues of FATTY ACID DESATURASE 2, particularly Bna.FAD2.C5. Our aim was to develop rapeseed lines combining high erucic and low PUFA characters and to assess the impact on thermal stability of the oil they produce. The new type of rapeseed oil (high erucic low polyunsaturate; HELP) contained a substantially greater proportion of erucic acid (54%) compared with high erucic rapeseed oil (46%). Although the total VLCFA content was greater in oil from HELP lines (64%) than from high erucic rapeseed (57%), analysis of triacylglycerol composition showed negligible incorporation of VLCFAs into the sn‐2 position. Rancimat analysis showed that the thermal stability of rapeseed oil was improved greatly as a consequence of reduction of PUFA content, from 3.8 and 4.2 h in conventional low erucic and high erucic rapeseed oils, respectively, to 11.3 and 16.4 h in high oleic low PUFA (HOLP) and HELP oils, respectively. Our results demonstrate that engineering of the lipid biosynthetic pathway of rapeseed, using traditional approaches, enables the production of renewable industrial oils with novel composition and properties.  相似文献   

13.
Increasing oil content and improving the fatty acid composition in the seed oil are important breeding goals for rapeseed (Brassica napus L.). The objective of the study was to investigate a possible relationship between fatty acid composition and oil content in an oilseed rape doubled haploid (DH) population. The DH population was derived from a cross between the German cultivar Sollux and the Chinese cultivar Gaoyou, both having a high erucic acid and a very high oil content. In total, 282 DH lines were evaluated in replicated field experiments in four environments, two each in Germany and in China. Fatty acid composition of the seed oil was analyzed by gas liquid chromatography and oil content was determined by NIRS. Quantitative trait loci (QTL) for fatty acid contents were mapped and their additive main effects were determined by a mixed model approach using the program QTLMapper. For all fatty acids large and highly significant genetic variations among the genotypes were observed. High heritabilities were determined for oil content and for all fatty acids (h 2 = 0.82 to 0.94), except for stearic acid content (h 2= 0.38). Significant correlations were found between the contents of all individual fatty acids and oil content. Closest genetic correlations were found between oil content and the sum of polyunsaturated fatty acids (18:2 + 18:3; r G = −0.46), the sum of monounsaturated fatty acids (18:1 + 20:1 + 22:1; r G = 0.46) and palmitic acid (16:0; r G = −0.34), respectively. Between one and eight QTL for the contents of the different fatty acids were detected. Together, their additive main effects explained between 28% and 65% of the genetic variance for the individual fatty acids. Ten QTL for fatty acid contents mapped within a distance of 0 to 10 cM to QTL for oil content, which were previously identified in this DH population. QTL mapped within this distance to each other are likely to be identical. The results indicate a close interrelationship between fatty acid composition and oil content, which should be considered when breeding for increased oil content or improved oil composition in rapeseed.  相似文献   

14.
Summary Production values (PVs), defined as the weight of the end product/weight of the substrate required for carbon skeletons and energy production, were calculated for plant fatty acids. The PVs varied from 0.361 to 0.300 with linolenic acid having the lowest value. In general, the PVs of unsaturated fatty acids were lower than those of saturated fatty acids of similar chain lengths. Using this basic information, PVs of (A) oils from different oilseed crops, based on their standard fatty acid composition and (B) seed biomass with specified oil content and fatty acid composition were calculated. 1/PV gives the glucose required for the biosynthesis of 1 g end product and thus an estimate of the photosynthate requirement for the desired breeding goal can be estimated. Such calculations show that increasing oil percentage in seeds has a maximum energy cost when the increase in oil is associated with a decrease in the amount of carbohydrates where there is no change in protein concentration. Reduction of erucic acid content in the rapeseed oil did not alter its PV. It is inferred that there are no serious bioenergetic constraints in altering the fatty acid composition.  相似文献   

15.
Breeding of oilseeds focuses on 3 prime objectives: 1) Selection and breeding needed for the introduction of an established oilseed crop to a new area; 2) oil quantity and quality; and 3) meal quantity and quality. One obvious way of increasing the quantity of both oil and meal is to increase yielding ability of cultivars. Oil content has been increased by reducing the thickness of the ovary wall, where the latter is part of the harvest, and/or the seed coat. Usually, increases in oil content achieved in this way are accompanied by an increase in protein content. Oil quality is measured primarily by fatty acid composition, the ideal fatty acid composition depending on the use of the oil. In rapeseed and mustard species the quality of the oil for edible use has been greatly improved by removing the erucic and eicosenoic acids. In sajflower 2 types of oil are available commercially, one with high levels (75–80%) of linoleic acid and another with high levels (75-80%) of oleic acid, the 2 types having different uses. An added component of oil quality is stability of fatty acid composition over a range of environments. Oilseed meals have been improved by increasing protein content, by changing the amino acid profile of the protein, and by reducing levels of toxic compounds.  相似文献   

16.
A longitudinal cross-over feeding design was used to investigate the relationship of dietary lipid composition to the membrane lipid environment and activity of mitochondrial ATPase in vivo. Rats were fed a polyunsaturated fatty-acid-rich oil (soya-bean oil) for 12 days, crossed-over to a monounsaturated fatty-acid-rich oil (rapeseed oil) for the next 11 days, then returned to soya-bean oil for 11 more days. Additional rats were fed either soya-bean oil or rapeseed oil throughout. Rats fed rapeseed oil had lower rates of ATPase-catalysed ATP/[32P]Pi exchange than rats fed soya-bean oil. Arrhenius plots showed higher transition temperature (Tt) and activation energy (Ea) for rats fed rapeseed oil. Switching from soya-bean oil to rapeseed oil was dynamically followed by changes in the thermotropic and kinetic properties of the mitochondrial ATPase exchange reaction. Returning to soya-bean oil reversed these changes. The rapid and reversible modulation of Tt caused by a change of the type of fat ingested suggests that membrane physicochemical properties are not under rigid intrinsic control but are continually modified by the profile of exogenously derived fatty acids. The studies suggest that in vivo the activity of mitochondrial ATPase is in part determined by dietary lipid via its influence on the microenvironment of the enzyme. The rapidity and ready reversibility of changes observed for this subcellular-membrane-bound enzyme suggest that dietary fatty-acid balance may be an important determinant of other membrane functions in the body.  相似文献   

17.
Chinese semi-winter rapeseed is genetically diverse from Canadian and European spring rapeseed. This study was conducted to evaluate the potential of semi-winter rapeseed for spring rapeseed hybrid breeding, to assess the genetic effects involved, and to estimate the correlation of parental genetic distance (GD) with hybrid performance, heterosis, general combining ability (GCA) and specific combining ability (SCA) in crosses between spring and semi-winter rapeseed lines. Four spring male sterile lines from Germany and Canada as testers were crossed with 13 Chinese semi-winter rapeseed lines to develop 52 hybrids, which were evaluated together with their parents and commercial hybrids for seed yield and oil content in three sets of field trials with 8 environments in Canada and Europe. The Chinese parental lines were not adapted to local environmental conditions as demonstrated by poor seed yields per se. However, the hybrids between the Chinese parents and the adapted spring rapeseed lines exhibited high heterosis for seed yield. The average mid-parent heterosis was 15% and ca. 50% of the hybrids were superior to the respective hybrid control across three sets of field trials. Additive gene effects mainly contributed to hybrid performance since the mean squares of GCA were higher as compared to SCA. The correlation between parental GD and hybrid performance and heterosis was found to be low whereas the correlation between GCA(f + m) and hybrid performance was high and significant in each set of field trials, with an average of r = 0.87 for seed yield and r = 0.89 for oil content, indicating that hybrid performance can be predicted by GCA(f + m). These results demonstrate that Chinese semi-winter rapeseed germplasm has a great potential to increase seed yield in spring rapeseed hybrid breeding programs in Canada and Europe.  相似文献   

18.
We investigated the effect of olive oil, rapeseed oil, and sunflower oil on blood lipids and lipoproteins including number and lipid composition of lipoprotein subclasses. Eighteen young, healthy men participated in a double-blinded randomized cross-over study (3-week intervention period) with 50 g of oil per 10 MJ incorporated into a constant diet. Plasma cholesterol, triacylglycerol, apolipoprotein B, and very low density lipoprotein (VLDL), intermediate density lipoprotein (IDL), and low density lipoprotein (LDL) cholesterol concentrations were 10;-20% higher after consumption of the olive oil diet compared with the rapeseed oil and sunflower oil diets [analysis of variance (ANOVA), P < 0.05]. The size of IDL, VLDL, and LDL subfractions did not differ between the diets, whereas a significantly higher number (apolipoprotein B concentration) and lipid content of the larger and medium-sized LDL subfractions were observed after the olive oil diet compared with the rapeseed oil and sunflower oil diets (ANOVA, P < 0.05). Total HDL cholesterol concentration did not differ significantly, but HDL(2a) cholesterol was higher after olive oil and rapeseed oil compared with sunflower oil (ANOVA, P < 0.05).In conclusion, rapeseed oil and sunflower oil had more favorable effects on blood lipids and plasma apolipoproteins as well as on the number and lipid content of LDL subfractions compared with olive oil. Some of the differences may be attributed to differences in the squalene and phytosterol contents of the oils.  相似文献   

19.
盐碱地作为有效的耕地后备资源,其整治和利用尤为重要。油菜是世界上重要的油料作物,也是用于开发利用盐碱地的重要作物之一。从渗透调节物质、抗氧化酶活性、光合作用参数以及盐碱胁迫相关基因报道等方面分析了油菜响应盐碱胁迫的生理生化和分子机制,全面阐述了油菜苗期、营养生长期和成熟期耐盐碱种质的鉴定方法和优异资源筛选,概述了耐盐碱油菜品种选育和推广利用的最新状况,并对未来的研究方向进行了展望,为油菜耐盐碱新品种培育提供理论基础和育种思路。  相似文献   

20.
Five groups of lactating sows were fed diets containing 8% of either added rapeseed oil, fish oil or sunflower oil and 60 mg vitamin E/kg feed, or the diets with sunflower oil and fish oil, respectively, supplemented with 500 mg vitamin E/kg. Supplementation of vitamin E to the sows increased the concentration of alpha-tocopherol of the muscle, and addition of sunflower oil decreased the activity of glutathione peroxidase in liver cytosol compared to fish oil and rapeseed oil. The composition of fatty acids of alveolar macrophages (AM) of piglets was influenced by the dietary fat sources provided the sows, i.e., the ratio of n-6:n-3 fatty acids was highest in AM of piglets suckling sows of the sunflower oil treatments, and lowest in AM of piglets suckling sows fed fish oil with the rapeseed oil treatment in between. The ex vivo synthesis of prostaglandin E(2) and thromboxane B(2) in AM of piglets suckling sows fed sunflower oil was elevated compared to piglets suckling sows fed fish oil. Vitamin E supplementation to sows enhanced the synthesis of these eicosanoids, and also the concentration of alpha-tocopherol in the AM of the piglets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号