首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The importance of BCL-2 family proteins in the control of cell death has been clearly established. One of the key members of this family, BAX, has soluble, membrane-bound, and membrane-integrated forms that are central to the regulation of apoptosis. Using purified monomeric human BAX, defined liposomes, and isolated human mitochondria, we have characterized the soluble to membrane transition and pore formation by this protein. For the purified protein, activation, but not oligomerization, is required for membrane binding. The transition to the membrane environment includes a binding step that is reversible and distinct from the membrane integration step. Oligomerization and pore activation occur after the membrane integration. In cells, BAX targets several intracellular membranes but notably does not target the plasma membrane while initiating apoptosis. When cholesterol was added to either the liposome bilayer or mitochondrial membranes, we observed increased binding but markedly reduced integration of BAX into both membranes. This cholesterol inhibition of membrane integration accounts for the reduction of BAX pore activation in liposomes and mitochondrial membranes. Our results indicate that the presence of cholesterol in membranes inhibits the pore-forming activity of BAX by reducing the ability of BAX to transition from a membrane-associated protein to a membrane-integral protein.  相似文献   

2.
Human ABCG2 is a plasma membrane glycoprotein causing multidrug resistance in cancer. Membrane cholesterol and bile acids are efficient regulators of ABCG2 function, while the molecular nature of the sterol-sensing sites has not been elucidated. The cholesterol recognition amino acid consensus (CRAC, L/V-(X)(1–5)-Y-(X)(1–5)-R/K) sequence is one of the conserved motifs involved in cholesterol binding in several proteins. We have identified five potential CRAC motifs in the transmembrane domain of the human ABCG2 protein. In order to define their roles in sterol-sensing, the central tyrosines of these CRACs (Y413, 459, 469, 570 and 645) were mutated to S or F and the mutants were expressed both in insect and mammalian cells. We found that mutation in Y459 prevented protein expression; the Y469S and Y645S mutants lost their activity; while the Y570S, Y469F, and Y645F mutants retained function as well as cholesterol and bile acid sensitivity. We found that in the case of the Y413S mutant, drug transport was efficient, while modulation of the ATPase activity by cholesterol and bile acids was significantly altered. We suggest that the Y413 residue within a putative CRAC motif has a role in sterol-sensing and the ATPase/drug transport coupling in the ABCG2 multidrug transporter.  相似文献   

3.
The protein BAX of the Bcl-2-family is felt to be one of the two Bcl-2-family proteins that directly participate in the mitochondrial cytochrome c-translocating pore. We have studied the kinetics, stoichiometry and size of the pore formed by BAX in planar lipid bilayers and synthetic liposomes. Our data indicate that a cytochrome c-competent pore can be formed by in-membrane association of BAX monomers.  相似文献   

4.
Acr2p detoxifies arsenate by reduction to arsenite in Saccharomyces cerevisiae. This reductase has been shown to require glutathione and glutaredoxin, suggesting that thiol chemistry might be involved in the reaction mechanism. Acr2p has a HC(X)(5)R motif, the signature sequence of the phosphate binding loop of the dual-specific and protein-tyrosine phosphatase family. In Acr2p these are residues His-75, Cys-76, and Arg-82, respectively. Acr2p has another sequence, (118)HCR, that is absent in phosphatases. Acr2p also has a third cysteine residue at position 106. Each of these cysteine residues was changed individually to serine residues, whereas the histidine and arginine residues were altered to alanines. Cells of Escherichia coli heterologously expressing the majority of the mutant ACR2 genes retained wild type resistance to arsenate, and the purified altered Acr2p proteins exhibited normal enzymatic properties. In contrast, cells expressing either the C76S or R82A mutations lost resistance to arsenate, and the purified proteins were inactive. These results suggest that Acr2p utilizes a phosphatase-like Cys(X)(5)Arg motif as the catalytic center to reduce arsenate to arsenite.  相似文献   

5.
BackgroundTopoisomerase is a well known target to develop effective antibacterial agents. In pursuance of searching novel antibacterial agents, we have established a novel bisbenzimidazole (PPEF) as potent E. coli topoisomerase IA poison inhibitor.MethodsIn order to gain insights into the mechanism of action of PPEF and understanding protein-ligand interactions, we have produced wild type EcTopo 67 N-terminal domain (catalytic domain) and its six mutant proteins at acidic triad (D111, D113, E115). The DDE motif is replaced by alanine (A) to create three single mutants: D111A, D113A, E115A and three double mutants: D111A-D113A, D113A-E115A and D111A-E115A.ResultsCalorimetric study of PPEF with single mutants showed 10 fold lower affinity than that of wild type EcTopo 67 (7.32 × 106 M−1for wild type, 0.89 × 106 M−1for D111A) and 100 fold lower binding with double mutant D113A-E115A (0.02 × 106 M−1) was observed. The mutated proteins showed different CD signature as compared to wild type protein. CD and fluorescence titrations were done to study the interaction between EcTopo 67 and ligands. Molecular docking study validated that PPEF has decreased binding affinity towards mutated enzymes as compared to wild type.ConclusionThe overall study reveals that PPEF binds to D113 and E115 of acidic triad of EcTopo 67. Point mutations decrease binding affinity of PPEF towards DDE motif of topoisomerase.General significanceThis study concludes PPEF as poison inhibitor of E. coli Topoisomerase IA, which binds to acidic triad of topoisomerase IA, responsible for its function. PPEF can be considered as therapeutic agent against bacteria.  相似文献   

6.
In eukaryotes, the specific cotranslational insertion of selenocysteine at UGA codons requires the presence of a secondary structural motif in the 3' untranslated region of the selenoprotein mRNA. This selenocysteine insertion sequence (SECIS) element is predicted to form a hairpin and contains three regions of sequence invariance that are thought to interact with a specific protein or proteins. Specificity of RNA-binding protein recognition of cognate RNAs is usually characterized by the ability of the protein to recognize and distinguish between a consensus binding site and sequences containing mutations to highly conserved positions in the consensus sequence. Using a functional assay for the ability of wild-type and mutant SECIS elements to direct cotranslational selenocysteine incorporation, we have investigated the relative contributions of individual invariant nucleotides to SECIS element function. We report the novel finding that, for this consensus RNA motif, mutations at the invariant nucleotides are tolerated to different degrees in different elements, depending on the identity of a single nonconserved nucleotide. Further, we demonstrate that the sequences adjacent to the minimal element, although not required for function, can affect function through their propensity to base pair. These findings shed light on the specific structure these conserved sequences may form within the element. This information is crucial to the design of strategies for the identification of SECIS-binding proteins, and hence the elucidation of the mechanism of selenocysteine incorporation in eukaryotes.  相似文献   

7.
8.
Diacylglycerol kinase (DGK) ? plays an important role in the resynthesis of phosphatidylinositol by mediating the phosphorylation of diacylglycerol to phosphatidic acid. DGK? is unique among mammalian DGK isoforms in that it is the only one that shows acyl-chain selectivity, preferring diacylglycerols with an sn-2 arachidonoyl group. The region responsible for this arachidonoyl specificity is the lipoxygenase (LOX)-like motif found in the accessory domain, adjacent to DGK?'s catalytic site. Many mutations within the LOX-like motif result in a loss of enzyme activity. However, the few mutants that retain significant activity exhibit some decrease in selectivity for the arachidonoyl chain. In the present work, we have explored mutations in a region adjacent to the LOX-like motif, which is also contained within the same hydrophobic segment of the protein. This adjacent region also contains a cholesterol recognition/interaction amino acid consensus motif. Being outside of the LOX-like motif, this region likely has less direct contact with the substrate, and more activity is retained with mutations. This has allowed us to probe in more detail the relationship between this region of the protein and substrate specificity. We demonstrate that this cholesterol recognition/interaction amino acid consensus domain also plays a role in acyl-chain selectivity. Despite the high degree of conservation of the amino acid sequence in this region of the protein, certain mutations result in proteins with higher activity than the wild-type protein. These mutations also result in a selective gain of acyl-chain preferences for diacylglycerols with different acyl-chain profiles. In addition to the LOX-like motif, adjacent residues also contribute to selectivity for diacylglycerols with specific acyl-chain compositions, such as those found in the phosphatidylinositol cycle.  相似文献   

9.
10.
The structure and membrane topology of the antimicrobial peptide temporin L (FVQWFSKFLGRIL- NH(2)) were studied using liposomes as model bilayers. Circular dichroic spectra revealed temporin L to adopt an alpha-helical conformation when bound to liposomes. Binding of temporin L to liposomes induced significant blue shifts of the emission spectra of the single Trp residue (Trp(4)) and also changed its quantum yield. The observed changes in the characteristics of the Trp(4) fluorescence are in keeping with the insertion of this residue into the hydrophobic region of the liposomal bilayers. Access of the aqueous quencher acrylamide to Trp(4) decreased in the sequence 1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine (SOPC)/cholesterol (X(chol) = 0.1) > SOPC > SOPC/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG, X(POPG) = 0.1) > SOPC/POPG (X(POPG) = 0.2) approximately SOPC/POPG (X(POPG) = 0.4), where X represents molar fraction of the indicated lipid. Whereas quenching of Trp(4) by brominated phospholipids was significant in SOPC liposomes, the quenching efficiency was enhanced when the vesicles contained POPG. The depth of insertion of Trp(4) into lipid bilayers was calculated by both the parallax method and distribution analysis and revealed this residue to reside at an average distance of d approximately 8.0 +/- 0.5 A from the center of both SOPC and SOPC/POPG bilayers. However, in the presence of cholesterol, d was increased to 9.5 +/- 0.5 A, thus revealing Trp(4) to become accommodated more superficially in the bilayer. The above data suggest the presence of two populations of temporin L in SOPC- and POPG-containing membranes with parallel and perpendicular orientation with respect to the plane of the membrane surface.  相似文献   

11.
Recent evidence suggests the existence of lipid microdomains in mitochondria, apparently coexisting as structural elements with some of the mitochondrial permeability transition pore-forming proteins and members of the Bcl-2 family. The aim of this study was to investigate the relevance of the main components of membrane microdomains (e.g. cholesterol and sphingolipids) in activation of the mitochondrial permeability transition pore (mPTP) by recombinant BAX (rBAX). For this purpose, we used chemically modified renal cortex mitochondria and renal cortex mitochondria from hypothyroid rats that show a modified mitochondrial lipid composition in vivo. Oligomeric rBAX induced an enhanced permeability conformation in the mPTP of control mitochondria. rBAX failed to induce mPTP opening when the cholesterol and ganglioside content of mitochondria were modified with the chelator methyl-beta-cyclodextrin. Accordingly, hypothyroid mitochondria, with endogenously lower cholesterol and ganglioside content, showed resistance to mPTP opening induced by rBAX. These observations suggest that enriched cholesterol and ganglioside domains in the mitochondrial membranes may determine BAX interaction with the mPTP. An intriguing observation was that chemical extraction of cholesterol and ganglioside in control mitochondria did not have an effect on rBAX insertion. Conversely, in hypothyroid mitochondria, rBAX insertion was diminished dramatically compared with control mitochondria. The membrane and protein changes associated with thyroid status and their possible role in rBAX docking into the membranes are discussed.  相似文献   

12.
Alphavirus budding is driven by interactions between spike and nucleocapsid proteins at the plasma membrane. The binding motif, Y-X-L, on the spike protein E2 and the corresponding hydrophobic cavity on the capsid protein were described earlier. The spike-binding cavity has also been suggested to bind an internal hydrophobic motif, M113-X-I115, of the capsid protein. In this study we found that replacement of amino acids M113 and I115 with alanines, as single or double mutations, abolished formation of intracellular nucleocapsids. The mutants could still bud efficiently, but the NCs in the released virions were not stable after removal of the membrane and spike protein layer. In addition to wild-type spherical particles, elongated multicored particles were found at the plasma membrane and released from the host cell. We conclude that the internal capsid motif has a biological function in the viral life cycle, especially in assembly of nucleocapsids. We also provide further evidence that alphaviruses may assemble and bud from the plasma membrane in the absence of preformed nucleocapsids.  相似文献   

13.
Identification of anti-TNFalpha peptides with consensus sequence   总被引:1,自引:0,他引:1  
Phage displayed peptide library was used to select tumor necrosis factor alpha (TNFalpha) binding peptides. After three sequential rounds of biopanning, some linear TNFalpha-binding peptides were identified from a 12-mer peptide library. A consensus sequence (L/M)HEL(Y/F)(L/M)X(W/Y/F), where X might be variable residue, was deduced from sequences of these peptides. The phages bearing these peptides showed specific binding to immobilized TNFalpha, with over 80% of phages bound being competitively eluted by free TNFalpha. To confirm the binding activity and to explore further functional properties, three peptides with typical structure were selected and expressed as GST-fused protein. These recombinant peptides effectively competed for [125I]TNFalpha binding to TNFR1 in a dose-dependent manner, with IC(50) from 10 to 160 microM. Furthermore, the GST-fused derivatives showed inhibitory effects on TNFalpha-induced cytotoxicity. Taken together, these data demonstrate that the TNFalpha-binding peptides are effective antagonists of TNFalpha and the deduced motif might be useful in development of novel low molecular weight anti-TNFalpha drugs.  相似文献   

14.
A chenopod extensin lacks repetitive tetrahydroxyproline blocks   总被引:8,自引:5,他引:3       下载免费PDF全文
An extensin isolated from sugar beet (Beta vulgaris) cell suspension cultures fulfills all criteria for membership of the extensin family save one, notably, lack of the `diagnostic' pentamer Ser-Hyp-Hyp-Hyp-Hyp. However, sequence analysis of the major tryptic peptides shows that sugar beet extensin shares a motif in common with tomato extensin P1 but differs by the position of an insertion sequence [X] or [Y] which, in sugar beet, splits the tetrahydroxyproline block: Ser-Hyp-Hyp-[X]-Hyp-Hyp-Thr-Hyp-Val-Tyr-Lys, where [X] is [Val-His-Glu/Lys-Tyr-Pro], while in tomato the insertion sequence [Y] = [Val-Lys-Pro-Tyr-His-Pro] and, when it occurs, immediately follows the tetrahydroxyproline block: Ser-Hyp-Hyp-Hyp-Hyp-[Y]-Thr-Hyp-Val-Tyr-Lys. Based on these data we reinterpret three highly repetitive cDNA sequences, including nodulin N75 from soybean and wound-induced P33 of carrot, as extensins with split tetra(hydroxy)proline blocks.  相似文献   

15.
Coiled coil is a ubiquitous structural motif in proteins, with two to seven alpha helices coiled together like the strands of a rope, and coiled coil folding and assembly is not completely understood. A GCN4 leucine zipper mutant with four mutations of K3A, D7A, Y17W, and H18N has been designed, and the crystal structure has been determined at 1.6 Å resolution. The peptide monomer shows a helix trunk with short curved N‐ and C‐termini. In the crystal, two monomers cross in 35° and form an X‐shaped dimer, and each X‐shaped dimer is welded into the next one through sticky hydrophobic ends, thus forming an extended two‐stranded, parallel, super long coiled coil rather than a discrete, two‐helix coiled coil of the wild‐type GCN4 leucine zipper. Leucine residues appear at every seventh position in the super long coiled coil, suggesting that it is an extended super leucine zipper. Compared to the wild‐type leucine zipper, the N‐terminus of the mutant has a dramatic conformational change and the C‐terminus has one more residue Glu 32 determined. The mutant X‐shaped dimer has a large crossing angle of 35° instead of 18° in the wild‐type dimer. The results show a novel assembly mode and oligomeric state of coiled coil, and demonstrate that mutations may affect folding and assembly of the overall coiled coil. Analysis of the formation mechanism of the super long coiled coil may help understand and design self‐assembling protein fibers.  相似文献   

16.
The role of the two ends of the pro-apoptotic protein BAX in its interaction with mitochondria was challenged by assaying substituted mutants in yeast cells for the ability to bind and insert into the mitochondrial membrane and to promote the release of cytochrome c. Mutations at the N-terminal end confirmed the inhibitory function of this zone, known as apoptotic regulation of targeting (ART). On the other hand, mutations at the C-terminal end of the protein support the hypothesis that the hydrophobic helix alpha9 is not required for the insertion of BAX. In addition, three mutations (a T174D single substitution in the helix alpha9, a K189E/K190E double substitution at the end of the protein, and a P168A mutation in the loop before alpha9) exhibited a strong binding capacity, a strong insertion, as well as high ability to induce cytochrome c release. Considering the positions of these mutations and their potential effect on the movement of helix alpha9, we propose that the C-terminal end of the protein behaves like a second ART. Also, opposite to a mutation that changes the conformation of the N-terminal ART, the mutations in the C-terminal part of the protein impaired the inhibitory effect of anti-apoptotic BCL-xL over BAX insertion, suggesting that the conformation of the alpha9-helix plays a significant role in BAX/BCL-xL interaction.  相似文献   

17.
The hGSTM3 subunit, which is preferentially expressed in germ-line cells, has the greatest sequence divergence among the human mu class glutathione S-transferases. To determine a structural basis for the catalytic differences between hGSTM3-3 and other mu class enzymes, chimeric proteins were designed by modular interchange of the divergent C-terminal domains of hGSTM3 and hGSTM5 subunits. Replacement of 24 residues of the C-terminal segment of either subunit produced chimeric enzymes with catalytic properties that reflected those of the wild-type enzyme from which the C-terminus had been derived. Deletion of the tripeptide C-terminal extension found only in the hGSTM3 subunit had no effect on catalysis. The crystal structure determined for a ligand-free hGSTM3 subunit indicates that an Asn212 residue of the C-terminal domain is near a hydrophobic cluster of side chains formed in part by Ile13, Leu16, Leu114, Ile115, Tyr119, Ile211, and Trp218. Accordingly, a series of point mutations were introduced into the hGSTM3 subunit, and it was indeed determined that a Y119F mutation considerably enhanced the turnover rate of the enzyme for nucleophilic aromatic substitution reactions. A more striking effect was observed for a double mutant (Y119F/N212F) which had a k(cat)/K(m)(CDNB) value of 7.6 x 10(5) s(-)(1) M(-)(1) as compared to 4.9 x 10(3) s(-)(1) M(-)(1) for the wild-type hGSTM3-3 enzyme. The presence of a polar Asn212 in place of a Phe residue found in the cognate position of other mu class glutathione S-transferases, therefore, has a marked influence on catalysis by hGSTM3-3.  相似文献   

18.
2,4-dichlorophenoxyacetic acid (2,4-D)/alpha-ketoglutarate (alpha-KG) dioxygenase (TfdA) is an Fe(II)-dependent enzyme that catalyzes the first step in degradation of the herbicide 2,4-D. The active site structures of a small number of enzymes within the alpha-KG-dependent dioxygenase superfamily have been characterized and shown to have a similar HXDX(50-70)HX(10)RXS arrangement of residues that make up the binding sites for Fe(II) and alpha-KG. TfdA does not have obvious homology to the dioxygenases containing the above motif but is related in sequence to eight other enzymes in the superfamily that form a distinct consensus sequence (HX(D/E)X(138-207) HX(10)R/K). Variants of TfdA were created to examine the roles of putative metal-binding residues and the functions of the other seven histidines in this protein. The H167A, H200A, H213A, H245A, and H262A forms of TfdA formed inclusion bodies when overproduced in Escherichia coli DH5alpha; however, these proteins were soluble when fused to the maltose-binding protein (MBP). MBP-TfdA exhibited kinetic parameters similar to the native enzyme. The H8A and H235A variants were catalytically similar to wild-type TfdA. MBP-H213A and H216A TfdA have elevated K(m) values for 2,4-D, and the former showed a decreased k(cat), suggesting these residues may affect substrate binding or catalysis. The H113A, D115A, MBP-H167A, MBP-H200A, MBP-H245A and MBP-H262A variants of TfdA were inactive. Gel filtration analysis revealed that the latter two proteins were highly aggregated. The remaining four inactive variants were examined in their Cu(II)-substituted forms by EPR and electron spin-echo envelope modulation (ESEEM) spectroscopic methods. Changes in EPR spectra upon addition of substrates indicated that copper was present at the active site in the H113A and D115A variants. ESEEM analysis revealed that two histidines are bound equatorially to the copper in the D115A and MBP-H167A TfdA variants. The experimental data and sequence analysis lead us to conclude that His-113, Asp-115, and His-262 are likely metal ligands in TfdA and that His-213 may aid in catalysis or binding of 2,4-D.  相似文献   

19.
Constitutive expression of a cholesterol-7alpha-hydroxylase (CYP7A1) transgene in LDL receptor-deficient mice blocked the ability of a cholesterol-enriched diet to increase plasma levels of apolipoprotein B-containing lipoproteins. LDL receptor-deficient mice expressing the CYP7A1 transgene exhibited complete resistance to diet-induced hypercholesterolemia and to the accumulation of cholesterol in the liver. Hepatic mRNA expression of liver X receptor-inducible ABCG5 and ABCG8 was decreased in CYP7A1 transgenic, LDL receptor-deficient mice fed a cholesterol-enriched diet. Thus, increased biliary cholesterol excretion could not account for the maintenance of cholesterol homeostasis. CYP7A1 transgenic, LDL receptor-deficient mice fed the cholesterol-enriched diet exhibited decreased jejunal Niemann-Pick C1-Like 1 protein (NPC1L1) mRNA expression, an important mediator of intestinal cholesterol absorption. A taurocholate-enriched diet also decreased NPC1L1 mRNA expression in a farnesoid X receptor-independent manner. Reduced expression of NPC1L1 mRNA was associated with decreased cholesterol absorption ( approximately 20%; P < 0.05) exhibited by CYP7A1 transgenic LDL receptor-deficient mice fed the cholesterol-enriched diet. The combined data show that enhanced expression of CYP7A1 is an effective means to prevent the accumulation of cholesterol in the liver and of atherogenic apolipoprotein B-containing lipoproteins in plasma.  相似文献   

20.
The conserved sequence motif "RxY(T)(S)xx(S)(N)" coordinates flavin binding in NADH:cytochrome b(5) reductase (cb(5)r) and other members of the flavin transhydrogenase superfamily of oxidoreductases. To investigate the roles of Y93, the third and only aromatic residue of the "RxY(T)(S)xx(S)(N)" motif, that stacks against the si-face of the flavin isoalloxazine ring, and P92, the second residue in the motif that is also in close proximity to the FAD moiety, a series of rat cb(5)r variants were produced with substitutions at either P92 or Y93, respectively. The proline mutants P92A, G, and S together with the tyrosine mutants Y93A, D, F, H, S, and W were recombinantly expressed in E. coli and purified to homogeneity. Each mutant protein was found to bind FAD in a 1:1 cofactor:protein stoichiometry while UV CD spectra suggested similar secondary structure organization among all nine variants. The tyrosine variants Y93A, D, F, H, and S exhibited varying degrees of blue-shift in the flavin visible absorption maxima while visible CD spectra of the Y93A, D, H, S, and W mutants exhibited similar blue-shifted maxima together with changes in absorption intensity. Intrinsic flavin fluorescence was quenched in the wild type, P92S and A, and Y93H and W mutants while Y93A, D, F, and S mutants exhibited increased fluorescence when compared to free FAD. The tyrosine variants Y93A, D, F, and S also exhibited greater thermolability of FAD binding. The specificity constant (k(cat)/K(m)(NADH)) for NADH:FR activity decreased in the order wild type > P92S > P92A > P92G > Y93F > Y93S > Y93A > Y93D > Y93H > Y93W with the Y93W variant retaining only 0.5% of wild-type efficiency. Both K(s)(H4NAD) and K(s)(NAD+) values suggested that Y93A, F, and W mutants had compromised NADH and NAD(+) binding. Thermodynamic measurements of the midpoint potential (E degrees ', n = 2) of the FAD/FADH(2) redox couple revealed that the potentials of the Y93A and S variants were approximately 30 mV more positive than that of wild-type cb(5)r (E degrees ' = -268 mV) while that of Y93H was approximately 30 mV more negative. These results indicate that neither P92 nor Y93 are critical for flavin incorporation in cb(5)r and that an aromatic side chain is not essential at position 93, but they demonstrate that Y93 forms contacts with the FAD that effectively modulate the spectroscopic, catalytic, and thermodynamic properties of the bound cofactor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号