首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Sambucus nigra agglutinins I and II, further referred to as SNA-I and SNA-II, are two ricin-related lectins from elderberry. SNA-I is a chimeric lectin composed of an A-chain with enzymatic activity and a B-chain with carbohydrate-binding activity, and therefore belongs to the group of type 2 ribosome-inactivating proteins. In contrast, SNA-II consists only of carbohydrate-binding B-chains. The physiological effect of SNA-I was tested on different insect cell lines (midgut, ovary, fat body, embryo). In sensitive midgut CF-203 cells, SNA-I induced cell death with typical characteristics such as cell shrinkage, plasma membrane blebbing, nuclear condensation and DNA fragmentation. The effect was dose-dependent with 50% death of 4-day-exposed cells at 3 nM. SNA-I exposure induced caspase-3 like activities, suggesting that SNA-I can induce the apoptotic pathway. Interestingly, the hololectin SNA-II also induced apoptosis in CF-203 cells at similar doses with the same physiological events. SNA-I and SNA-II both induced caspase-dependent apoptosis at low concentrations (nM order), leading to typical symptoms of cell death in sensitive cells. This effect seems independent from the catalytic activity of the A-chain, but depends on the carbohydrate-binding B-chain.  相似文献   

2.
In this project, the toxicity and mechanism of action of the ricin‐B‐related lectin SNA‐I from elderberry (Sambucus nigra) in the pea aphid (Acyrthosiphon pisum) and the beet armyworm (Spodoptera exigua), two important pest insects in agriculture, were studied. SNA‐I is a chimeric lectin belonging to the class of ribosome‐inactivating proteins and consists of an A‐chain with N‐glycosidase activity and a carbohydrate‐binding B‐chain. Incorporation of 2 mg/ml of SNA‐I in the diet of neonates and adults of A. pisum caused 40–46% mortality within 2 days, while in third instars of S. exigua, the larval biomass was significantly reduced by 12% after feeding for 3 days on a diet containing 5 mg/g of SNA‐I. Interestingly, extracts of the (mid)gut of treated A. pisum and S. exigua demonstrated DNA fragmentation and this was accompanied with an increase in caspase‐3‐like activity. The involvement of cell death or apoptosis in the entomotoxicity of SNA‐I through induction of caspase‐3‐like activity was also confirmed by addition of the permeable caspase‐3 inhibitor III in the diet, leading to a rescue of the treated aphid neonates. Finally, similar to the chimeric lectin SNA‐I, the hololectin SNA‐II, consisting of two carbohydrate‐binding B‐chains caused high mortality to neonate A. pisum aphids with an LC50 of 1.59 mg/ml, suggesting that the entomotoxic action of the lectins under study mainly relies on their carbohydrate‐binding activity. © 2010 Wiley Periodicals, Inc.  相似文献   

3.
4.
Type II ribosome inactivating proteins (RIP II) are generally known to induce apoptosis in human cells by the inhibition of protein biosynthesis. Recent data from mistletoe RIP II proteins (eg. mistletoe lectin I; ML1) suggest an additional mode of apoptosis induction through the binding of their lectin part to certain cell surface receptors as is known for some human galectins. In order to clarify this possibility, we used highly sensitive flow cytometric apoptosis assays and mistletoe hololectin subunits of proven purity to show that neither human lymphocytes nor Molt-4 cells undergo apoptosis after treatment with isolated lectin-type B-chains. In contrast to earlier investigations, only the hololectin was able to induce apoptosis in these assays. We conclude that direct apoptosis induction by mistletoe lectins occurs only after uptake of the molecules into the cell due to the action of the ribosome inactivating A-chain.  相似文献   

5.
Many plant lectins have high anti‐insect potential. Although the effects of most lectins are only moderately influencing development or population growth of the insect, some lectins have strong insecticidal properties. In addition, some studies report a deterrent activity towards feeding and oviposition behavior. Transmission of plant lectins to the next trophic level has been investigated for several tritrophic interactions. Effects of lectins with different sugar specificities can vary substantially with the insect species under investigation and with the experimental setup. Lectin binding in the insect is an essential step in exerting a toxic effect. Attempts have been made to study the interactions of lectins in several insect tissues and to identify lectin‐binding receptors. Ingested lectins generally bind to parts of the insect gut. Furthermore, some lectins such as the Galanthus nivalus agglutinin (GNA) cross the gut epithelium into the hemolymph and other tissues. Recently, several candidate lectin‐binding receptors have been isolated from midgut extracts. To date little is known about the exact mechanism for insecticidal activity of plant lectins. However, insect glycobiology is an emerging research field and the recent technological advances in the analysis of lectin carbohydrate specificities and insect glycobiology will certainly lead to new insights in the interactions between plant lectins and insects, and to a better understanding of the molecular mechanisms involved. © 2010 Wiley Periodicals, Inc.  相似文献   

6.
The bark of some young woody stems contains storage proteins which are subject to an annual rhythm: they accumulate in the autumn and are mobilized in the spring. We show here that the bark phoem-parenchyma cells of Sambucus nigra L. contain numerous protein bodies, and that the bark lectin (S. nigra agglutinin) which undergoes an annual rhythm is localized in these protein bodies. The protein bodies in the cotyledons of legume seeds also contain lectin, indicating that lectins may be storage compounds themselves or may have a function in storage and-or mobilization processes.Abbreviations PBS phosphate-buffered saline - IgG immunoglobulin - SNA Sambucus nigra agglutinin  相似文献   

7.
The olfactory epithelium and the vomeronasal organ of the Japanese striped snake were examined by lectin histochemistry. Of the 21 lectins used in the study, all lectins except succinylated‐wheat germ agglutinin (s‐WGA) showed similar binding patterns in the vomeronasal receptor cells and the olfactory receptor cells with varying intensities. The binding patterns of s‐WGA varied among individuals in the vomeronasal and olfactory receptor cells, respectively. Four lectins, Bandeiraea simplicifolia lectin‐II (BSL‐II), Dolichos biflorus agglutinin (DBA), Sophora japonica agglutinin (SJA), and Erythrina cristagalli lectin (ECL) stained secretory granules and the organelles in the olfactory supporting cells and did not stain them in the vomeronasal supporting cells. These results suggest that the glycoconjugate moieties are similar in the vomeronasal and olfactory receptor cells of the Japanese striped snake. J. Morphol., 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

8.
The fungal lectin purified from Sclerotinia sclerotiorum, further referred to as Sclerotinia sclerotiorum agglutinin or SSA, possesses insecticidal activity against important pest insects such as pea aphids (Acyrthosiphon pisum). This paper aims at a better understanding of its activity at cellular level. Therefore, different insect cell lines were treated with SSA. These cell lines were derived from different tissues and represent the three major orders of insects important in agriculture: CF-203 (midgut Choristoneura fumiferana, Lepidoptera), GUTAW1 (midgut, Helicoverpa zea, Lepidoptera), High5 cells (ovary, Trichoplusia ni, Lepidoptera), Sf9 (ovary cells from Spodoptera frugiperda, Lepidoptera), S2 (hemocyte, Drosophila melanogaster, Diptera), and TcA (whole body, Tribolium castaneum, Coleoptera). Although the sensitivity to SSA differs between the cell lines, SSA clearly showed toxicity in all six cell lines with median effect concentrations (EC50) ranging between 9 and 42 μg/ml. An in-depth analysis of the mechanism of uptake in the cells revealed superior amounts of FITC-SSA at the membrane of CF-203 cells compared to Sf9 cells, while a similar small amount of SSA was internalized in both cell lines. Pre-incubation with the clathrin-mediated endocytosis inhibitor phenylarsine oxide inhibited the internalization of SSA into the CF-203 and Sf9 cells with a respective reduction of 6- and 1.7-fold. The data are discussed in relation to the importance of cellular uptake mechanism for SSA binding and cytotoxicity.  相似文献   

9.
This project studied in detail the insecticidal activity of a fungal lectin from the sclerotes of Sclerotinia sclerotiorum, referred to as S. sclerotiorum agglutinin or SSA. Feeding assays with the pea aphid (Acyrthosiphon pisum) on an artificial diet containing different concentrations of SSA demonstrated a high mortality caused by this fungal lectin with a median insect toxicity value (LC50) of 66 (49–88) μg/ml. In an attempt to unravel the mode of action of SSA the binding and interaction of the lectin with insect tissues and cells were investigated. Histofluorescence studies on sections from aphids fed on an artificial liquid diet containing FITC-labeled SSA, indicated the insect midgut with its brush border zone as the primary target for SSA. In addition, exposure of insect midgut CF-203 cells to 25 μg/ml SSA resulted in a total loss of cell viability, the median cell toxicity value (EC50) being 4.0 (2.4–6.7) μg/ml. Interestingly, cell death was accompanied with DNA fragmentation, but the effect was caspase-3 independent. Analyses using fluorescence confocal microscopy demonstrated that FITC-labeled SSA was not internalized in the insect midgut cells, but bound to the cell surface. Prior incubation of the cells with saponin to achieve a higher cell membrane permeation resulted in an increased internalization of SSA in the insect midgut cells, but no increase in cell toxicity. Furthermore, since the toxicity of SSA for CF-203 cells was significantly reduced when SSA was incubated with GalNAc and asialomucin prior to treatment of the cells, the data of this project provide strong evidence that SSA binds with specific carbohydrate moieties on the cell membrane proteins to start a signaling transduction cascade leading to death of the midgut epithelial cells, which in turn results in insect mortality. The potential use of SSA in insect control is discussed.  相似文献   

10.
Plant lectins have insecticidal activity that is probably mediated through their ability to bind carbohydrates. To examine the influence of sugars on the insecticidal activity of a lectin from Talisia esculenta seeds (TEL), the lectin was mixed with mannose, glucose, or mannose plus glucose. Mannose abolished the insecticidal activity. Affinity chromatography showed that TEL bound to midgut proteins of the insect Callosobruchus maculatus. Immunoblotting showed that TEL recognized some proteins, probably glycoproteins, present in the midgut membrane of this insect. The principal proteases responsible for digestive proteolysis in fourth instar larvae of C. maculatus were purified by chromatography on activated thiol-Sepharose. These purified proteases were unable to digest TEL after a 15-h incubation. These results suggest that the insecticidal activity of TEL involves a specific carbohydrate-lectin interaction with glycoconjugates on the surface of digestive tract epithelial cells, as well as binding to assimilatory glycoproteins present in midgut extracts and resistance to enzymatic digestion by cysteine proteinases.  相似文献   

11.
Human haptoglobin (Hp), prepared from 10 normal sera and 10 ovarian cancer sera as well as from 11 ovarian cancer ascitic fluids, was characterized with regard to its reactivities with different lectins. Digoxigenin-labelled lectins [peanut agglutinin (PNA),Arachis hypogaea; SNA,Sambucus nigra; MAA,Maackia amurensis; DSA,Datura stramonium; and Con A, concanavalin A] with different carbohydrate specific moieties were used to identify sugar structures in Hp by blotting and by a quantitative assay in multiwell plates [lectin/enzyme-linked immunosorbent assay (ELISA)]. It was found that the lectin blotting was only useful for preliminary investigations, but that the lectin/ELISA gave interesting results that indicated the presence ofN-linked complex chains. Despite the fact that PNA interacted weakly with desialylated Hp in lectin blotting, no other evidence was obtained to suggest the presence ofO-linked glycans. Quantitative differences between normal and cancer Hp were observed for Con A, SNA and MAA, but no difference was found in the reaction with DSA. The binding of cancer Hp to Con A and SNA was twice that of normal Hp. Normal serum and ascitic fluid Hp bound similar amounts of MAA, but three times that observed for cancer serum Hp. Our results suggest that normal and ovarian cancer Hp differ in the content of carbohydrate structures containing sialic acid linked (2–6) or (2–3) to galactose and the type of oligosaccharide branching.  相似文献   

12.
This review focuses on the cytotoxic properties of Viscum album L. (VAL). Apart from well-established results of protein synthesis inhibition by the mistletoe lectins (MLs), namely their catalytic A chain, there is now convincing evidence that the VAL-mediated cytotoxicity is mainly due to an induction of apoptosis. Among the more than 1,000 proteins detected in VAL, the MLs and the viscotoxins (VTs) are the predominant toxic proteins. Using purified components, such as the D-galactose-specific ML I, the N-acetyl-D-galactosamine-specific ML II and ML III, crude VTs and oligosaccharides, only the MLs induced apoptosis. The in vitro studies suggest that interaction of lectin B chains with appropriate receptors on the cell surface activates distinct signalling pathways that ultimately leads to apoptosis in a large fraction of cells, while others survive, however, with a conservation of their DNA. Inhibition of protein synthesis by the A chain of the hololectin probably accelerates the B chain-induced course of events.  相似文献   

13.
We used post-embedding cytochemical techniques to investigate the lectin binding profiles of rat lung alveolar epithelial cells. Sections from rat lung embedded in the hydrophilic resin Lowicryl K4M were incubated either directly with a lectin-gold complex or with an unlabeled lectin followed by a specific glycoprotein-gold complex. The binding patterns of the five lectins used could be divided into three categories according to their reactivity with alveolar epithelial cells: (a) the Limax flavus lectin and Ricinus communis I lectin bound to both type I and type II cell plasma membranes; (b) the Helix pomatia lectin and Sambucus nigra L. lectin bound to type II but not type I cells; and (c) the Erythrina cristagalli lectin reacted with type I cells but was unreactive with type II cells. The specificity of staining was assessed by control experiments, including pre-absorption of the lectins with various oligosaccharides and enzymatic pre-treatment of sections with highly purified glycosidases to remove specific sugar residues. The results demonstrate that these lectins can be used to distinguish between type I and type II cells and would therefore be useful probes for investigating cell dynamics during lung development and remodeling.  相似文献   

14.
Bloodstream trypomastigote and culture procyclic (insect midgut) forms of a cloned T. rhodesiense variant (WRATat 1) were tested for agglutination with the lectins concanavalin A (Con A), phytohemagglutinin P (PP), soybean agglutinin (SBA), fucose binding protein (FBP), wheat germ agglutinin (WGA), and castor bean lectin (RCA). Fluorescence-microscopic localization of lectin binding to both formalin-fixed trypomastigotes and red cells was determined with fluorescein isothiocyanate (FITC)-conjugated Con A, SBA, FBP, WGA, RCA, PNA (peanut agglutinin), DBA (Dolichos bifloris), and UEA (Ulex europaeus) lectins. Electron microscopic localization of lectin binding sites on bloodstream trypomastigotes was accomplished by the Con A-horseradish peroxidase-diaminobenzidine (HRP-DAB) technique, and by a Con A-biotin/avidin-ferritin method. Trypomastigotes, isolated by centrifugation or filtration through DEAE-cellulose or thawed after cryopreservation, were agglutinated by the lectins Con A and PP with agglutination strength scored as Con A < PP. No agglutination was observed in control preparations or with the lectins WGA, FBA or SBA. Red cells were agglutinated by all the lectins tested. Formalin-fixed bloodstream trypomastigotes bound FITC-Con A and FITC-RCA but not FITC-WGA, -SBA, -PNA, -UEA or -DBA lectins. All FITC-labeled lectins bound to red cells. Con A receptors, visualized by Con A-HRP-DAB and Con A-biotin/avidin-ferritin techniques, were distributed uniformly on T. rhodesiense bloodstream forms. No lectin receptors were visualized on control preparations. Culture procyclics lacked a cell surface coat and were agglutinated by Con A and WGA but not RCA, SBA, PP and FBP. Procyclics were not agglutinated by lectins in the presence of competing sugar at 0.25 M. The expression of lectin binding cell surface saccharides of T. rhodesiense WRATat 1 is related to the parasite stage. Sugars resembling α-D-mannose are on the surface of bloodstream trypomastigotes and culture procyclics; n-acetyl-D-galactosamine and D-galactose residues are on bloodstream forms; and n-acetyl-D-glucosamine-like sugars are on procyclic stages.  相似文献   

15.
We investigated the effects of five allyl esters, two aromatic (allyl cinnamate and allyl 2‐furoate) and three aliphatic (allyl hexanoate, allyl heptanoate, and allyl octanoate) in established insect cell lines derived from different species and tissues. We studied embryonic cells of the fruit fly Drosophila melanogaster (S2) (Diptera) and the beet armyworm Spodoptera exigua (Se4) (Lepidoptera), fat body cells of the Colorado potato beetle Leptinotarsa decemlineata (CPB) (Coleoptera), ovarian cells of the silkmoth Bombyx mori (Bm5), and midgut cells of the spruce budworm Choristoneura fumiferana (CF203) (Lepidoptera). Cytotoxicity was determined with use of MTT [3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyl tetrazolium bromide] and trypan blue. In addition, we tested the entomotoxic action of allyl cinnamate against the cotton leafworm Spodoptera littoralis .The median (50%) cytotoxic concentrations (EC50s) of the five allyl esters in the MTT bioassays ranged between 0.25 and 27 mM with significant differences among allyl esters (P = 0.0012), cell lines (P < 0.0001), and the allyl ester–cell line interaction (P < 0.0001). Allyl cinnamate was the most active product, and CF203 the most sensitive cell line. In the trypan blue bioassays, cytotoxicity was produced rapidly and followed the same trend observed in the MTT bioassay. In first instars of S. littoralis, allyl cinnamate killed all larvae at 0.25% in the diet after 1 day, while this happened in third instars after 5 days. The LC50 in first instars was 0.08%. In addition, larval weight gain was reduced (P < 0.05) after 1 day of feeding on diet with 0.05%. In conclusion, the data provide evidence of the significant but differential cytotoxicity among allyl esters in insect cells of different species and tissues. Midgut cells show high sensitivity, indicating the insect midgut as a primary target tissue. Allyl cinnamate caused rapid toxic effects in S. littoralis larvae at low concentrations, suggesting further potential for use in pest control.  相似文献   

16.
Complementary treatment possibilities for the therapy of cancer are increasing in demand due to the severe side effects of the standard cytostatics used in the first-line therapy. A common approach as a complementary treatment is the use of aqueous extracts of Viscum album L. (Santalaceace). The therapeutic activity of these extracts is attributed to Mistletoe lectins which are Ribosome-inactivating proteins type II. Besides these main constituents the extract of Viscum album L. comprises also a mixture of lipophilic ingredients like triterpene acids of the oleanane, lupane and ursane type. However, these constituents are not contained in commercially available aqueous extracts due to their high lipophilicity and insolubility in aqueous extraction media. To understand the impact of the extract ingredients in cancer therapy, the intracellular uptake of the mistletoe lectin I (ML) by cultured tumor cells was investigated in relation to the mistletoe triterpene acids, mainly oleanolic acid. Firstly, these hydrophobic triterpene acids were solubilized using cyclodextrins (“TT” extract). Afterwards, the uptake of either single compounds (isolated ML and the aqueous “viscum” extract) or in combination with the TT extract (ML+TT, viscumTT), was analyzed. The uptake of ML was studied inTHP-1-, HL-60-, 143B- and Ewing TC-71-cells and determined after 30, 60 and 120 minutes by an enzyme linked immunosorbent assay which quantifies the A-chain of the hololectin. It could be shown that the intracellular uptake after 120 minutes amounted to 20% in all cell lines after incubation with viscumTT. The studies further revealed that the uptake in THP-1-, HL-60- and Ewing TC-71-cells was independent of the addition of TT extract. Interestingly, the uptake of ML by 143B-cells could only be measured after addition of triterpenes pointing to resistance to mistletoe lectin.  相似文献   

17.
The complete amino acid sequence of a lactose-bindingCytisus sessilifolius anti-H(O) lectin II (CSA-II) was determined using a protein sequencer. After digestion of CSA-II with endoproteinase Lys-C or Asp-N, the resulting peptides were purified by reversed-phase high performance liquid chromatography (HPLC) and then subjected to sequence analysis. Comparison of the complete amino acid sequence of CSA-II with the sequences of other leguminous seed lectins revealed regions of extensive homology. The amino acid sequence of a putative carbohydrate-binding domain of CSA-II was found to be similar to those of several anti-H(O) leguminous lectins, especially to that of thel-fucose-bindingUlex europaeus lectin I (UEA-I).Abbreviations BPA Bauhinia purpurea lectin - Con A concanavalin A - CMA-I Cytisus multiflorus lectin I - CMA-II Cytisus multiflorus lectin II - CSA-I Cytisus sessilifolius lectin I - CSA-II Cytisus sessilifolius lectin II - CSII Cytisus scoparius lectin II - ECorL Erythrina corallodendron lectin - GSIV Griffonia simplicifolia lectin IV - HPLC high performance liquid chromatography - LAA-I Laburnum alpinum lectin I - LAA-II Laburnum alpinum lectin II - LOL Lathyrus ochrus lectin - LTA Lotus tetragonolobus lectin - MAH Maackia amurensis haemagglutinin - PSA Pisum sativum lectin - SDS sodium dodecyl sulfate - TFA trifluoroacetic acid - UEA-I Ulex europaeus lectin I - UEA-II Ulex europaeus lectin II - VFA Vicia faba lectin  相似文献   

18.
Cytotoxicity of the mistletoe lectins I, II and III towards six human breast cancer cell lines was assessed using the Mossman assay. In addition, binding of the three mistletoe lectins to the separated membrane glycoproteins of these cell lines, the binding and uptake of these lectins into the cells in tissue culture and the binding of the lectins to histological preparations of these cell lines were analysed. The results indicate that there are quantitative differences concerning the toxicity of these three lectins towards the different cell lines. Furthermore, the lectin binding pattern in the cell lines differed. In Western blots, several membrane glycoproteins were labelled by the lectins. Our results indicate subtle differences between the three lectins with regard to the parameters mentioned above; however, the toxicity of all three lectins from mistletoe is so similar that they all seem suitable for the construction of immunotoxins.Dedication: This work is dedicated to one of the discoverers (amongst many other important contributions) ofHelix pomatia agglutinin, which plays an important role in metastasis research, Professor Dr G. Uhlenbruck on the occasion of his 65th birthday.  相似文献   

19.
Trypanosoma cruzi,the causative agent of Chagas disease, interacts with molecules in the midgut of its insect vector to multiply and reach the infective stage. Many studies suggest that the parasite binds to midgut-specific glycans. We identified several glycoproteins expressed in the intestine and perimicrovillar membrane (PMM) of Triatoma (Meccus) pallidipennis under different feeding conditions. In order to assess changes in protein-linked glycans, we performed lectin and immunoblot analyses on glycoprotein extracts from these intestinal tissues using well-characterized lectins, and an antibody, which collectively recognize a wide range of different glycans epitopes. We observed that the amount and composition of proteins and glycoproteins associated with different glycans structures changed over time in the intestines and PMM under different physiological conditions. PMM extracts contained a wide variety of glycoproteins with different sugar residues, including abundant high-mannose and complex sialylated glycans. We propose that these molecules could be involved in the process of parasite-vector interactions.  相似文献   

20.
The bark of Sambucus nigra contains a complex mixture of glycoproteins that are characterized as chimeric lectins known as type II ribosome inactivating proteins and holo lectins. These type II ribosome inactivating proteins possess RNA N-glycosidase activity in subunit A and lectin activity associated with subunit B exhibiting distinct sugar specificities to NeuAc(α2-6)-Gal/GalNAc and Gal/GalNAc. In the present study we have determined the N-glycosylation pattern of type II ribosome inactivating protein specific to NeuAc(α2-6)-Gal/GalNAc (Sambucus nigra agglutinin I) by subjecting it to digestion with multiple proteases. The resulting mixture of peptides and N-glycopeptides were analyzed on liquid chromatography coupled to electro spray ionization-iontrap mass spectrometry in MSn mode. MS2 of precursor ions was carried out using CID which provided information on glycan sequence. In subsequent MS3 of Y1/Y ions (peptide + HexNAc)+n of corresponding N-glycopeptides, resulted in the fragmentation of peptide backbone confirming the site of attachment. We observed microheterogeneity in each glycan occupied site with subunit A possessing four N-glycans out of six sites with complex and paucimannose types while subunit B comprises occupancy of two sites with a paucimannose and a high mannose type. The differential N-glycosylation of subunits in SNA is discussed in the context of other type II RIPs glycans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号