首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Touch has been shown to affect plant growth and development and ethylene has been shown to have similar effects. However, the mechanisms responsible for touch-induced responses remain unclear. Differential display PCR was used to identify touch-regulated genes from 3-week-light-grown ethylene-insensitive etr1-3 Arabidopsis (Columbia ecotype) mutant plants. The differential display PCR screening process yielded 32 cDNA fragments. Subsequent screening of the 32 fragments using northern analysis yielded three touch-inducible clones (A8A, G5A and G7F). These three cDNA were then used to screen a cDNA library. A 1.2 kb fragment for OPR3 was obtained from A8A screenings. This cDNA fragment encodes 12-oxophytodienoate-10, 11-reductase (OPR), an enzyme in the jasmonic acid biosynthetic pathway. OPR3 was found to be induced by touch, wounding, methyl jasmonate (MeJA), NaCl and CaCl2 while ethylene and darkness had no effect. A 2 kb cDNA encoding a calcium-dependent protein kinase (CDPK32) was obtained with G5A screenings. CDPK32 was shown to be induced by touch, wounding, NaCl and darkness while ethylene and MeJA had little or no effect. A 1.4 kb cDNA encoding a novel protein was recovered from the cDNA library screenings with a G7F fragment. This cDNA had some sequence similarity to GDA1 and was designated GDL for GDA1-like cDNA. GDL was activated by touch, wounding, MeJA, NaCl and CaCl2 while there was no induction with ethylene and darkness. Using differential display PCR we have successfully been able to identify three clones that are inducible by touch and not by ethylene.  相似文献   

2.
3.
We have previously shown that endoreduplication levels in hypocotyls of Arabidopsis thaliana (L.) Heynh. are under negative control of phytochromes. In this study, the hormonal regulation of this process was analysed using a collection of A. thaliana mutants. The results show that two hormones in particular, gibberellin (GA) and ethylene, play distinct roles. Hypocotyl cells of the GA-deficient mutant ga1-11 grown in the dark did not elongate and showed a greatly reduced endoreduplication. Normal endoreduplication could be restored by supplying 10−9 M of the gibberellin GA4+7, whereas the restoration of normal cell growth required 100-fold higher concentrations. The GA-insensitive mutant gai showed reduced cell elongation but normal ploidy levels. We conclude that (i) GA4+7 has a global positive effect on endoreduplication and (ii) that endoreduplication is more sensitive to GA4+7 than cell elongation. Ethylene had a completely different effect. It induced an extra round of endoreduplication both in light- and dark-grown seedlings and acted mainly on discrete steps rather than having a global effect on endoreduplication. The genes EIN2 and CTR1, components of the ethylene signal transduction pathway were both involved in this process. Received: 27 February 1999 / Accepted: 21 May 1999  相似文献   

4.
《FEBS letters》2014,588(9):1652-1658
Arabidopsis GDSL lipase 1 (GLIP1) has been shown to modulate systemic immunity through the regulation of ethylene signaling components. Here we demonstrate that the constitutive triple response mutant ctr1-1 requires GLIP1 for the ethylene response, gene expression, and pathogen resistance. The glip1-1 mutant was defective in induced resistance following primary inoculation of necrotrophic pathogens, whereas GLIP1-overexpressing plants showed resistance to multiple pathogens. Necrotrophic infection triggered the downregulation of EIN3 and the activation of ERF1 and SID2 in a GLIP1-dependent manner. These results suggest that GLIP1 positively and negatively regulates ethylene signaling, resulting in an ethylene-associated, necrotroph-induced immune response.  相似文献   

5.
6.
7.
Oligogalacturonides (OGs) are elicitors of plant defence responses released from the homogalacturonan of the plant cell wall during the attack by pathogenic micro-organisms. The signalling pathway mediated by OGs remains poorly understood, and no proteins involved in their signal perception and transduction have yet been identified. In order to shed light into the molecular pathways regulated by OGs, a differential proteomic analysis has been carried out in Arabidopsis. Proteins from the apoplastic compartment were isolated and their expression compared between control and OG-treated seedlings. 2-D gels and difference in gel electrophoresis (DIGE) techniques were used to compare control and treated proteomes in the same gel. The analysis of subcellular proteomes from seedlings allowed the identification of novel and low abundance proteins that otherwise remain masked when total cellular extracts are investigated. The DIGE technique showed to be a powerful tool to overcome the high interexperiment variation of 2-D gels. Differentially expressed apoplastic proteins were identified by MS and included proteins putatively involved in recognition as well as proteins whose PTMs are regulated by OGs. Our findings underscore the importance of cell wall as a source of molecules playing a role in the perception of pathogens and provide candidate proteins involved in the response to OGs.  相似文献   

8.
9.
The shape of Arabidopsis thaliana dry seed is described here as a prolate spheroid. The accuracy of this approximation is discussed. Considering its limitations, it allows a geometric approximation to the analysis of changes occurring in seed shape during imbibition prior to seed germination as well as the differences in shape between genotypes and their changes during imbibition. The triple mutant ein2-1, ers1-2, etr1-7 presents notable alterations in seed shape. In addition, seeds of this and other mutants in the ethylene signaling pathway (ctr1-1, eto1-1, etr1-1, ein2-1) show different response to imbibition than the wild type. Imbibed seeds of the wild type increase their asymmetry compared with the dry seeds. This is detected by the relative changes in the curvature values in both poles. Thus, during imbibition of the wild-type seeds, the reduction in curvature values observed in the basal pole gives them an ovoid shape. In contrast, in the seeds of the ethylene mutants, reduction in curvature values occurs in both basal and apical poles, and its shape remains as a prolate spheroid. Our data indicate that the ethylene signaling pathway is involved, in general, in the complex regulation of seed shape and, in particular, in the establishment of polarity in seeds, controlling curvature values in the seed poles.  相似文献   

10.
Roots in the soil are illuminated by far‐red (FR) light passed through plant tissues in the daytime, and are in complete darkness at night. To evaluate whether gene expression of roots is affected by a dark‐FR light cycle, gene expression profiles were analysed for dark‐adapted versus light‐grown plants and for FR light‐illuminated versus dark‐adapted plants using the RIKEN Arabidopsis full‐length cDNA microarray (containing approximately 7000 independent, full‐length cDNA groups). Among candidate dark‐ and FR‐regulated genes, several were further analysed. Eleven dark‐inducible and five dark‐repressed genes were characterized. Almost all the dark‐inducible and –repressed genes were oppositely regulated by FR light illumination. The functions of dark‐ and FR‐responsive genes and the significance of FR light‐regulated gene expression in roots under ground are discussed.  相似文献   

11.
12.
The chemical 2,4-dichlorophenoxyacetic acid (2,4-D) regulates plant growth and development and mimics auxins in exhibiting a biphasic mode of action. Although gene regulation in response to the natural auxin indole acetic acid (IAA) has been examined, the molecular mode of action of 2,4-D is poorly understood. Data from biochemical studies, (Grossmann (2000) Mode of action of auxin herbicides: a new ending to a long, drawn out story. Trends Plant Sci 5:506–508) proposed that at high concentrations, auxins and auxinic herbicides induced the plant hormones ethylene and abscisic acid (ABA), leading to inhibited plant growth and senescence. Further, in a recent gene expression study (Raghavan et al. (2005) Effect of herbicidal application of 2,4-dichlorophenoxyacetic acid in Arabidopsis. Funct Integr Genomics 5:4–17), we have confirmed that at high concentrations, 2,4-D induced the expression of the gene NCED1, which encodes 9-cis-epoxycarotenoid dioxygenase, a key regulatory enzyme of ABA biosynthesis. To understand the concentration-dependent mode of action of 2,4-D, we further examined the regulation of whole genome of Arabidopsis in response to a range of 2,4-D concentrations from 0.001 to 1.0 mM, using the ATH1-121501 Arabidopsis whole genome microarray developed by Affymetrix. Results of this study indicated that 2,4-D induced the expression of auxin-response genes (IAA1, IAA13, IAA19) at both auxinic and herbicidal levels of application, whereas the TIR1 and ASK1 genes, which are associated with ubiquitin-mediated auxin signalling, were down-regulated in response to low concentrations of 2,4-D application. It was also observed that in response to low concentrations of 2,4-D, ethylene biosynthesis was induced, as suggested by the up-regulation of genes encoding 1-aminocyclopropane-1-carboxylic acid (ACC) synthase and ACC oxidase. Although genes involved in ethylene biosynthesis were not regulated in response to 0.1 and 1.0 mM 2,4-D, ethylene signalling was induced as indicated by the down-regulation of CTR1 and ERS, both of which play a key role in the ethylene signalling pathway. In response to 1.0 mM 2,4-D, both ABA biosynthesis and signalling were induced, in contrast to the response to lower concentrations of 2,4-D where ABA biosynthesis was suppressed. We present a comprehensive model indicating a molecular mode of action for 2,4-D in Arabidopsis and the effects of this growth regulator on the auxin, ethylene and abscisic acid pathways. Experiment station: Plant Biotechnology Centre, Primary Industries Research Victoria, Department of Primary Industries, La Trobe University, Bundoora, Victoria 3086, and the Victorian Microarray Technology Consortium (VMTC).  相似文献   

13.
Piotrowska A  Bajguz A 《Phytochemistry》2011,72(17):2097-2112
Phytohormones, including auxins, abscisic acid, brassinosteroids, cytokinins, ethylene, gibberellins, and jasmonates, are involved in all aspects of plant growth, and developmental processes as well as environmental responses. However, our understanding of hormonal homeostasis is far from complete. Phytohormone conjugation is considered as a part of the mechanism to control cellular levels of these compounds. Active phytohormones are changed into multiple forms by acylation, esterification or glycosylation, for example. It seems that conjugated compounds could serve as pool of inactive phytohormones that can be converted to active forms by de-conjugation reactions. Some conjugates are thought to be temporary storage forms, from which free active hormones can be released after hydrolysis. It is also believed that conjugation serves functions, such as irreversible inactivation, transport, compartmentalization, and protection against degradation. The nature of abscisic acid, brassinosteroid, ethylene, gibberellin, and jasmonate conjugates is discussed.  相似文献   

14.
In higher plants, cell-cell recognition reactions taking place following pollination allow the selective restriction of self-pollination and/or interspecific pollination. Many of these systems function by regulating the process of water transfer from the cells found at the stigmatic surface to the individual pollen grain. Interspecific pollination studies on the cruciferous weed Arabidopsis thaliana revealed only a broad specificity of pollen recognition such that pollen from all tested members of the crucifer family were recognized, whereas pollen from almost all other species failed to hydrate. Genetic analysis of A. thaliana has identified three genes that are essential for this recognition process. Recessive mutations in any of these genes result in male sterility due to the production of pollen grains that fail to hydrate when placed on the stigma, but that are capable of hydrating and growing a pollen tube in vitro. Results from mixed pollination experiments suggest that the mutant pollen grains specifically lack a functional pollen-stigma recognition system. All three mutations described also result in a defect in the wax layer normally found on stems and leaves, similar to previously described eceriferum (cer) mutations. Genetic complementation and mapping experiments demonstrated that the newly identified mutants are allelic to the previously identified genes cer1, cer3 and cer6. TEM analysis of the ultrastructure of the pollen coating revealed that all of the mutant pollen grains bear coatings of normal thickness and that tryphine lipid droplets are missing in cer1-147, are reduced in size in cer6-2654 and appear normal in cer3-2186. Temperature shift experiments revealed that the block in the recognition step of the mutant pollen grains can be suppressed by pollination at lower temperatures but not by reduced temperatures during pollen development. These results suggest that the lipids which are altered in the cer mutations may be important in regulating some biophysical property of the pollen coating.  相似文献   

15.
16.
Induction after prolonged darkness distinguishes the late-responsive genes din2 and din9 from the early-responsive gene din3 in Arabidopsis. The former genes were coincidently induced with the senescence marker gene YLS4 in rosette leaves of different ages and in the early-senescence mutant hys1. The calmodulin antagonists W-7, trifluoperazine, and fluphenazine accelerated the expression of the former genes in darkness but not in light, and had little effect on the latter gene. Our results suggest that Ca(2+)/calmodulin signalling conveys a negative signal that suppresses the responses of late-responsive din genes to prolonged darkness. The results are discussed in relation to natural senescence.  相似文献   

17.
Inoculation of turnip crinkle virus (TCV) on the resistant Arabidopsis ecotype Dijon (Di-17) results in the development of a hypersensitive response (HR) on the inoculated leaves. To assess the role of the recently cloned HRT gene in conferring resistance, we monitored both HR and resistance (lack of viral spread to systemic tissues) in the progeny of a cross between resistant Di-17 and susceptible Columbia plants. As expected, HR development segregated as a dominant trait that corresponded with the presence of HRT. However, all of the F(1) plants and three-fourths of HR(+) F(2) plants were susceptible to the virus. These results suggest the presence of a second gene, termed RRT, that regulates resistance to TCV. The allele present in Di-17 appears to be recessive to the allele or alleles present in TCV-susceptible ecotypes. We also demonstrate that HR formation and TCV resistance are dependent on salicylic acid but not on ethylene or jasmonic acid. Furthermore, these phenomena are unaffected by mutations in NPR1. Thus, TCV resistance requires a yet undefined salicylic acid-dependent, NPR1-independent signaling pathway.  相似文献   

18.
MOTIVATION: The completion of the Arabidopsis genome offers the first opportunity to analyze all of the membrane protein sequences of a plant. The majority of integral membrane proteins including transporters, channels, and pumps contain hydrophobic alpha-helices and can be selected based on TransMembrane Spanning (TMS) domain prediction. By clustering the predicted membrane proteins based on sequence, it is possible to sort the membrane proteins into families of known function, based on experimental evidence or homology, or unknown function. This provides a way to identify target sequences for future functional analysis. RESULTS: An automated approach was used to select potential membrane protein sequences from the set of all predicted proteins and cluster the sequences into related families. The recently completed sequence of Arabidopsis thaliana, a model plant, was analyzed. Of the 25,470 predicted protein sequences 4589 (18%) were identified as containing two or more membrane spanning domains. The membrane protein sequences clustered into 628 distinct families containing 3208 sequences. Of these, 211 families (1764 sequences) either contained proteins of known function or showed homology to proteins of known function in other species. However, 417 families (1444 sequences) contained only sequences with no known function and no homology to proteins of known function. In addition, 1381 sequences did not cluster with any family and no function could be assigned to 1337 of these.  相似文献   

19.
We have previously isolated two closely related genes (ATCYP1 and ATCYP2) each encoding a cytosolic cyclophilin of Arabidopsis thaliana. Here we tested expression patterns of these two genes by Northern analysis and by histochemical analysis with transgenic plants carrying the promoter: beta-glucuronidase (GUS) fusion. The results showed that ATCYP1 is predominantly transcribed in vascular tissue and flowers, but ATCYP2 is at higher levels in younger leaves. The different expression patterns seemed to be conferred by the quite different promoter structures carrying various cis elements. Our finding suggests that the two cyclophilins have different roles in Arabidopsis thaliana cells.  相似文献   

20.
The xylem of higher plants offers support to aerial portions of the plant body and serves as conduit for the translocation of water and nutrients. Terminal differentiation of xylem cells typically involves deposition of thick secondary cell walls. This is a dynamic cellular process accompanied by enhanced rates of cellulose deposition and the induction of synthesis of specific secondary-wall matrix polysaccharides and lignin. The secondary cell wall is essential for the function of conductive and supportive xylem tissues. Recently, significant progress has been made in identifying the genes responsible for xylem secondary cell wall formation. However, our present knowledge is still insufficient to account for the molecular processes by which this complex system operates. To acquire further information about xylem secondary cell walls, we initially focused our research effort on a set of genes specifically implicated in secondary cell wall formation, as well as on loss-of-function mutants. Results from two microarray screens identified several key candidate genes responsible for secondary cell wall formation. Reverse genetic analyses led to the identification of a glycine-rich protein involved in maintaining the stable structure of protoxylem, which is essential for the transport of water and nutrients. A combination of expression analyses and reverse genetics allows us to systematically identify new genes required for the development of physical properties of the xylem secondary wall.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号