首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The potential of lactic acid bacteria as live vehicles for the production and delivery of therapeutic molecules is being actively investigated today. For future applications it is essential to be able to establish dose-response curves for the targeted biological effect and thus to control the production of a heterologous biopeptide by a live lactobacillus. We therefore implemented in Lactobacillus plantarum NCIMB8826 the powerful nisin-controlled expression (NICE) system based on the autoregulatory properties of the bacteriocin nisin, which is produced by Lactococcus lactis. The original two-plasmid NICE system turned out to be poorly suited to L. plantarum. In order to obtain a stable and reproducible nisin dose-dependent synthesis of a reporter protein (β-glucuronidase) or a model antigen (the C subunit of the tetanus toxin, TTFC), the lactococcal nisRK regulatory genes were integrated into the chromosome of L. plantarum NCIMB8826. Moreover, recombinant L. plantarum producing increasing amounts of TTFC was used to establish a dose-response curve after subcutaneous administration to mice. The induced serum immunoglobulin G response was correlated with the dose of antigen delivered by the live lactobacilli.  相似文献   

2.
The non-pathogenic, non-colonising Gram-positive organismLactobacillus lactis is beeing developed as an antigen delivery system for mucosal vaccination. A high level expression system has been developed which allows loading of the bacterium with high levels of a heterologous antigen (TTFC) prior to inoculaton. Mucosal inoculaton of one such recombinant strain results in a protective serum antibody response and production of TTFC-specific IgA at mucosal sites.  相似文献   

3.
The capacity of recombinant strains of Lactococcus lactis to secrete a heterologous protein was investigated by constructing two expression-secretion vectors (pLET2 and pLET3) for use with a lactococcal gene expression system driven by the highly active T7 RNA polymerase. The vectors incorporated different lactococcal secretion leaders and translation initiation sequences. When tetanus toxin fragment C (TTFC) was used as a test protein, the quantities of TTFC produced by the pLET2-TTFC strain exceeded the rate of secretion of TTFC into the growth medium. However, nearly all of the soluble TTFC associated with the cell (3.4%) was translocated through the cell membrane. The pLET3-TTFC strain did not accumulate TTFC intracellularly and exhibited growth characteristics and viability identical to the growth characteristics and viability of the control strain. This strain secreted approximately 2.9 mg of TTFC per liter into the growth medium after 6 h of growth under test tube conditions. Our results indicate that L. lactis is capable of secreting substantial amounts of heterologous protein and also confirm the findings of other workers that the cell wall may serve as a functional barrier to the diffusion of some secreted proteins into the growth medium.  相似文献   

4.
The potential of lactic acid bacteria as live vehicles for the production and delivery of therapeutic molecules is being actively investigated today. For future applications it is essential to be able to establish dose-response curves for the targeted biological effect and thus to control the production of a heterologous biopeptide by a live lactobacillus. We therefore implemented in Lactobacillus plantarum NCIMB8826 the powerful nisin-controlled expression (NICE) system based on the autoregulatory properties of the bacteriocin nisin, which is produced by Lactococcus lactis. The original two-plasmid NICE system turned out to be poorly suited to L. plantarum. In order to obtain a stable and reproducible nisin dose-dependent synthesis of a reporter protein (beta-glucuronidase) or a model antigen (the C subunit of the tetanus toxin, TTFC), the lactococcal nisRK regulatory genes were integrated into the chromosome of L. plantarum NCIMB8826. Moreover, recombinant L. plantarum producing increasing amounts of TTFC was used to establish a dose-response curve after subcutaneous administration to mice. The induced serum immunoglobulin G response was correlated with the dose of antigen delivered by the live lactobacilli.  相似文献   

5.
Surface display of recombinant proteins on Bacillus subtilis spores   总被引:5,自引:0,他引:5       下载免费PDF全文
We developed a novel surface display system based on the use of bacterial spores. A protein of the Bacillus subtilis spore coat, CotB, was found to be located on the spore surface and used as fusion partner to express the 459-amino-acid C-terminal fragment of the tetanus toxin (TTFC). Western, dot blot and fluorescent-activated cell sorting analyses were used to monitor TTFC surface expression on purified spores. We estimated that more than 1.5 x 10(3) TTFC molecules were exposed on the surface of each spore and recognized by TTFC-specific antibodies. The efficient surface presentation of the heterologous protein, together with the simple purification procedure and the high stability and safety record of B. subtilis spores, makes this spore-based display system a potentially powerful approach for surface expression of bioactive molecules.  相似文献   

6.
Live attenuated bacteria can be used as a carrier for the delivery of foreign antigens to a host's immune system. The N-terminal domain of SipB, a translocon protein of the type III secretion system of Salmonella enterica serovar Typhimurium, is required for secretion and outer membrane localization. In the present study, vaccine plasmids for antigen delivery in which the non-toxic tetanus toxin fragment C (TTFC), which contains a T cell epitope, is fused to the N-terminal 160 amino acids of SipB were developed. It was found that the recombinant proteins are secreted into the culture media and localized to the bacterial surface. TTFC-specific antibody responses are significantly increased in mice orally immunized with attenuated S. Typhimurium BRD509 strains carrying TTFC delivery plasmids. When the TTFC delivery cassettes were introduced into a low copy vector, the plasmid was stably maintained in the BRD509 strain and induced an immune response to the TTFC antigen in mice. These results suggest that expression and delivery of heterologous antigens fused to the N-terminus of SipB enhance the induction of antigen-specific immune responses, and that the N-terminal domain of SipB can be used as a versatile delivery system for foreign antigens.  相似文献   

7.
乳酸乳球菌作为黏膜免疫活载体疫苗传递抗原的研究进展   总被引:7,自引:2,他引:7  
乳酸菌是人和动物肠道内的常见细菌,被公认为安全级(generally recognized as safe,GRAS)微生物。近年来,对于乳酸菌作为宿主菌表达外源蛋白或抗原的研究取得了一定进展。乳酸乳球菌(Lactococcus lactis)是乳酸菌的代表菌种,以其生长迅速、易于操作等优点成为表达外源抗原,作为黏膜免疫活载体疫苗的理想菌株。随着对乳酸乳球菌基因工程的研究逐渐深入,已发展了一系列组成型和诱导型乳酸乳球菌表达系统以及蛋白定位系统。破伤风毒素片段C、布氏杆菌L7/L12蛋白等多种病原微生物抗原已成功在乳酸乳球菌中表达,并已证明部分重组乳酸乳球菌作为黏膜免疫疫苗可以同时刺激局部黏膜免疫应答和系统免疫应答。目前,如何使活载体乳酸乳球菌以最佳方式向黏膜免疫系统提呈抗原继而诱导有效免疫反应是该领域的研究热点,也是巨大挑战。实现外源抗原在乳酸乳球菌中的准确定位及与细胞因子的共表达是未来研究的重要方向之一。乳酸乳球菌作为黏膜免疫活载体疫苗传递外源抗原具有广阔的应用前景。  相似文献   

8.
The use of Lactococcus lactis (the most extensively characterized lactic acid bacterium) as a delivery organism for heterologous proteins is, in some cases, limited by low production levels and poor-quality products due to surface proteolysis. In this study, we combined in one L. lactis strain use of the nisin-inducible promoter PnisA and inactivation of the extracellular housekeeping protease HtrA. The ability of the mutant strain, designated htrA-NZ9000, to produce high levels of stable proteins was confirmed by using the staphylococcal nuclease (Nuc) and the following four heterologous proteins fused or not fused to Nuc that were initially unstable in wild-type L. lactis strains: (i) Staphylococcus hyicus lipase, (ii) the bovine rotavirus antigen nonstructural protein 4, (iii) human papillomavirus antigen E7, and (iv) Brucella abortus antigen L7/L12. In all cases, protein degradation was significantly lower in strain htrA-NZ9000, demonstrating the usefulness of this strain for stable heterologous protein production.  相似文献   

9.
The genetic improvement of Lactococcus lactis is a matter of biotechnological interest in the food industry and in the pharmaceutical and medical fields. However, to construct a food-grade delivery system, both the presence of antibiotic markers or plasmid sequences should be avoided and the maintenance and expression of the cloned gene should be guaranteed. The objective of this work was to produce crossover mutants of L. lactis with a reporter gene under the control of an inducible promoter in order to evaluate the level of gene expression. We utilized a nuclease gene of Staphylococcus aureus as a reporter gene, P nisA as the nisin-inducible promoter, a non-essential gene involved in histidine biosynthesis of L. lactis as the site for homologous recombination, and pRV300 as a suicide vector for the genomic integration in L. lactis NZ9000. Single- and double-crossover mutants were identified by genotype and phenotype. Relative to episomal transformants of L. lactis, the level of expression of the heterologous protein after nisin induction was similar in the crossover mutants, suggesting that a single copy of the heterologous gene can be used to produce the protein of interest.  相似文献   

10.

Background  

Natural allergen sources can supply large quantities of authentic allergen mixtures for use as immunotherapeutics. However, such extracts are complex, difficult to define, vary from batch to batch, which may lead to unpredictable efficacy and/or unacceptable levels of side effects. The use of recombinant expression systems for allergen production can alleviate some of these issues. Several allergens have been tested in high-level expression systems and in most cases show immunereactivity comparable to their natural counterparts. The gram positive lactic acid bacterium Lactococcus lactis is an attractive microorganism for use in the production of protein therapeutics. L. lactis is considered food grade, free of endotoxins, and is able to secrete the heterologous product together with few other native proteins. Hypersensitivity to peanut represents a serious allergic problem. Some of the major allergens in peanut have been described. However, for therapeutic usage more information about the individual allergenic components is needed. In this paper we report recombinant production of the Ara h 2 peanut allergen using L. lactis.  相似文献   

11.
12.
13.

The gram-positive bacterium Lactococcus lactis is a useful host for extracellular protein production. A main advantage of L. lactis over other bacterial expression systems is that lactococcal cells display low levels of autolysis and proteolysis. Previously, we developed a set of vectors for nisin-inducible extracellular production of N- or C-terminally hexa-histidine (His6)-tagged proteins. The present study was aimed at expanding our portfolio of L. lactis expression vectors for protein purification and site-specific labeling. Specifically, we present two new groups of vectors allowing N- or C-terminal provision of proteins with a Strep-tag II or AVI-tag. Vectors for AVI-tagging encode an additional His6-tag for protein purification. Another set of vectors allows removal of N-terminal Strep- or His6-tags from expressed proteins with the tobacco etch virus protease. Two possible applications of the developed vectors are presented. First, we show that Strep-tagged LytM of Staphylococcus aureus in the growth medium of L. lactis can be directly bound to microtiter plates coated with an affinity reagent and used for enzyme-linked immunosorbent assays. Second, we show that the AVI-tagged Sle1 protein from S. aureus produced in L. lactis can be directly biotinylated and fluorescently labeled. The fluorescently labeled Sle1 was successfully applied for S. aureus re-binding studies, allowing subcellular localization by fluorescence microscopy. In conclusion, we have developed a set of expression vectors that enhances the versatility of L. lactis as a system for production of proteins with tags that can be used for affinity purification and site-specific protein labeling.

  相似文献   

14.
Potential use of Lactococcus lactis (L. lactis) as a heterologous protein expression host as well as for delivery of multiple therapeutic proteins has been investigated extensively using Nisin Inducible Controlled Expression (NICE) system. Optimum inducible expression of heterologous protein by NICE system in L. lactis depends on multiple factors. To study the unexplored role of factors affecting heterologous protein expression in L. lactis using NICE, the present study outlines the optimization of various key parameters such as inducer concentration, host’s proteases and precipitating agent using Outer membrane protein A (OmpA). For efficient expression and secretion of OmpA, pSEC:OmpA vector was successfully constructed. To circumvent the troubles encountered during detection of expressed OmpA, the precipitating agent was switched from TCA to methanol. Nevertheless, detection was achieved accompanied by degraded protein products. Speculating the accountability of observed degradation at higher inducer concentration, different nisin concentrations were evaluated. Lower nisin concentrations were found desirable for optimum expression of OmpA. Consistently observed degradation was eliminated by incorporation of protease inhibitor cocktail which inhibits intracellular proteases and expression in VEL1153 (NZ9000 ΔhtrA) strain which inhibits extracellular protease leading to optimum expression of OmpA. Versatility and complexity of NICE system in L. lactis requires fine-tuning of target protein specific parameters for optimum expression.

Electronic supplementary material

The online version of this article (doi:10.1007/s12088-015-0556-2) contains supplementary material, which is available to authorized users.  相似文献   

15.
Lactococcus lactis is a Gram-positive lactic acid bacterium that, in addition to its traditional use in food fermentations, is increasingly used in modern biotechnological applications. In the last 25 years great progress has been made in the development of genetic engineering tools and the molecular characterization of this species. A new versatile and tightly controlled gene expression system, based on the auto-regulation mechanism of the bacteriocin nisin, was developed 10 years ago—the NIsin Controlled gene Expression system, called NICE. This system has become one of the most successful and widely used tools for regulated gene expression in Gram-positive bacteria. The review describes, after a brief introduction of the host bacterium L. lactis, the fundaments, components and function of the NICE system. Furthermore, an extensive overview is provided of the different applications in lactococci and other Gram-positive bacteria: (1) over-expression of homologous and heterologous genes for functional studies and to obtain large quantities of specific gene products, (2) metabolic engineering, (3) expression of prokaryotic and eukaryotic membrane proteins, (4) protein secretion and anchoring in the cell envelope, (5) expression of genes with toxic products and analysis of essential genes and (6) large-scale applications. Finally, an overview is given of growth and induction conditions for lab-scale and industrial-scale applications.  相似文献   

16.

Background

Despite their functional and biotechnological importance, the study of membrane proteins remains difficult due to their hydrophobicity and their low natural abundance in cells. Furthermore, into established heterologous systems, these proteins are frequently only produced at very low levels, toxic and mis- or unfolded. Lactococcus lactis, a Gram-positive lactic bacterium, has been traditionally used in food fermentations. This expression system is also widely used in biotechnology for large-scale production of heterologous proteins. Various expression vectors, based either on constitutive or inducible promoters, are available for this system. While previously used to produce bacterial and eukaryotic membrane proteins, the ability of this system to produce plant membrane proteins was until now not tested.

Methodology/Principal Findings

The aim of this work was to test the expression, in Lactococcus lactis, of either peripheral or intrinsic Arabidopsis membrane proteins that could not be produced, or in too low amount, using more classical heterologous expression systems. In an effort to easily transfer genes from Gateway-based Arabidopsis cDNA libraries to the L. lactis expression vector pNZ8148, we first established a cloning strategy compatible with Gateway entry vectors. Interestingly, the six tested Arabidopsis membrane proteins could be produced, in Lactococcus lactis, at levels compatible with further biochemical analyses. We then successfully developed solubilization and purification processes for three of these proteins. Finally, we questioned the functionality of a peripheral and an intrinsic membrane protein, and demonstrated that both proteins were active when produced in this system.

Conclusions/Significance

Altogether, these data suggest that Lactococcus lactis might be an attractive system for the efficient and functional production of difficult plant membrane proteins.  相似文献   

17.
Gene expression systems based on the RNA polymerase of the bacteriophage T7 are often the ultimate choice for the high level production of recombinant proteins. During the last decade, the Gram-positive bacterium Bacillus megaterium was established as a useful host for the intra- and extracellular production of heterologous proteins. In this paper, we report on the development of a T7 RNA polymerase-dependent expression system for B. megaterium. The system was evaluated for cytosolic and secretory protein production with green fluorescent protein (GFP) from Aequoria victoria as intracellular and Lactobacillus reuteri levansucrase as extracellular model protein. GFP accumulated rapidly at high levels up to 50 mg/l shake flask culture intracellularly after induction of T7 RNA polymerase gene expression. The addition of rifampicin for the inhibition of B. megaterium RNA polymerase led to an increased stability of GFP. L. reuteri levansucrase was also successfully produced and secreted (up to 20 U/l) into the culture supernatant. However, parallel intracellular accumulation of the protein indicated limitations affiliated with the Sec-dependent protein translocation process.  相似文献   

18.

Background  

Brucella abortus is a facultative intracellular pathogen that mainly infects cattle and humans. Current vaccines rely on live attenuated strains of B. abortus, which can revert to their pathogenic status and thus are not totally safe for use in humans. Therefore, the development of mucosal live vaccines using the food-grade lactic acid bacterium, Lactococcus lactis, as an antigen delivery vector, is an attractive alternative and a safer vaccination strategy against B. abortus. Here, we report the construction of L. lactis strains genetically modified to produce B. abortus GroEL heat-shock protein, a candidate antigen, in two cellular locations, intracellular or secreted.  相似文献   

19.
Brucella abortus is a facultative intracellular gram-negative bacterial pathogen that infects humans and animals by entry mainly through the digestive tract. B. abortus causes abortion in pregnant cattle and undulant fever in humans. The immunogenic B. abortus ribosomal protein L7/L12 is a promising candidate antigen for the development of oral live vaccines against brucellosis, using food-grade lactic acid bacteria (LAB) as a carrier. The L7/L12 gene was expressed in Lactococcus lactis, the model LAB, under the nisin-inducible promoter. Using different signals, L7/L12 was produced in cytoplasmic, cell-wall-anchored, and secreted forms. Cytoplasmic production of L7/L12 gave a low yield, estimated at 0.5 mg/liter. Interestingly, a secretable form of this normally cytoplasmic protein via fusion with a signal peptide resulted in increased yield of L7/L12 to 3 mg/liter; secretion efficiency (SE) was 35%. A fusion between the mature moiety of the staphylococcal nuclease (Nuc) and L7/L12 further increased yield to 8 mg/liter. Fusion with a synthetic propeptide (LEISSTCDA) previously described as an enhancer for heterologous protein secretion in L. lactis (Y. Le Loir, A. Gruss, S. D. Ehrlich, and P. Langella, J. Bacteriol. 180:1895-1903, 1998) raised the yield to 8 mg/liter and SE to 50%. A surface-anchored L7/L12 form in L. lactis was obtained by fusing the cell wall anchor of Streptococcus pyogenes M6 protein to the C-terminal end of L7/L12. The fusions described allow the production and targeting of L7/L12 in three different locations in L. lactis. This is the first example of a B. abortus antigen produced in a food-grade bacterium and opens new perspectives for alternative vaccine strategies against brucellosis.  相似文献   

20.
Lactobacilli as live vaccine delivery vectors: progress and prospects   总被引:19,自引:0,他引:19  
Evidence is accumulating that lactobacilli influence the immune response in a strain-dependent manner. This immunomodulatory capacity is important for the development of the immune response, and also identifies Lactobacillus as a potent oral vaccine carrier. Most of our current knowledge of the use of lactobacilli for vaccination purposes has been obtained with tetanus toxin fragment C (TTFC) as the model antigen. This knowledge, together with our ever-increasing understanding of the immune system and recent developments in cloning and expression techniques, should enable the utilisation of antigens other than TTFC and has made the development of lactobacilli as live vaccines a realistic prospect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号