首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background  

One of the big remaining challenges in evolutionary biology is to understand the evolution and maintenance of meiotic recombination. As recombination breaks down successful genotypes, it should be selected for only under very limited conditions. Yet, recombination is very common and phylogenetically widespread. The Red Queen Hypothesis is one of the most prominent hypotheses for the adaptive value of recombination and sexual reproduction. The Red Queen Hypothesis predicts an advantage of recombination for hosts that are coevolving with their parasites. We tested predictions of the hypothesis with experimental coevolution using the red flour beetle, Tribolium castaneum, and its microsporidian parasite, Nosema whitei.  相似文献   

2.
Genetic variation in natural populations is a prime prerequisite allowing populations to respond to selection, but is under constant threat from forces that tend to reduce it, such as genetic drift and many types of selection. Haldane emphasized the potential importance of parasites as a driving force of genetic diversity. His theory has been taken for granted ever since, but despite numerous studies showing correlations between genetic diversity and parasitism, Haldane''s hypothesis has rarely been tested experimentally for unambiguous support. We experimentally staged antagonistic coevolution between the host Tribolium castaneum and its natural microsporidian parasite, Nosema whitei, to test for the relative importance of two separate evolutionary forces (drift and parasite-induced selection) on the maintenance of genetic variation. Our results demonstrate that coevolution with parasites indeed counteracts drift as coevolving populations had significantly higher levels of heterozygosity and allelic diversity. Genetic drift remained a strong force, strongly reducing genetic variation and increasing genetic differentiation in small populations. To our surprise, differentiation between the evolving populations was smaller when they coevolved with parasites, suggesting parallel balancing selection. Hence, our results experimentally vindicate Haldane''s original hypothesis 60 years after its conception.  相似文献   

3.
4.
Abstract. Here I present a deterministic model of the coevolution of parasites with the acquired immunity of their hosts, a system in which coevolutionary oscillations can be maintained. These dynamics can confer an advantage to sexual reproduction within the parasite population, but the effect is not strong enough to outweigh the twofold cost of sex. The advantage arises primarily because sexual reproduction impedes the response to fluctuating epistasis and not because it facilitates the response to directional selection—in fact, sexual reproduction often slows the response to directional selection. Where the cost of sexual reproduction is small, a polymorphism can be maintained between the sexuals and the asexuals. A polymorphism is maintained in which the advantage gained due to recombination is balanced by the cost of sex. At much higher costs of sex, a polymorphism between the asexual and sexual populations can still be maintained if the asexuals do not have a full complement of genotypes available to them, because the asexuals only outcompete those sexuals with which they share the same selected alleles. However, over time we might expect the asexuals to amass the full array of genotypes, thus permanently eliminating sexuals from the population. The sexuals may avoid this fate if the parasite population is finite. Although the model presented here describes the coevolution of parasites with the acquired immune responses of their hosts, it can be compared with other host-parasite models that have more traditionally been used to investigate Red Queen theories of the evolution of sex.  相似文献   

5.
The extent of molecular differentiation between domesticated animals or plants and their wild relatives is postulated to be small. The availability of the complete genome sequences of two subspecies of the Asian rice, Oryza sativa (indica and japonica) and their wild relatives have provided an unprecedented opportunity to study divergence following domestication. We observed significantly more amino acid substitutions during rice domestication than can be expected from a comparison among wild species. This excess is disproportionately larger for the more radical kinds of amino acid changes (e.g. Cys<-->Tyr). We estimate that approximately a quarter of the amino acid differences between rice cultivars are deleterious, not accountable by the relaxation of selective constraints. This excess is negatively correlated with the rate of recombination, suggesting that 'hitchhiking' has occurred. We hypothesize that during domestication artificial selection increased the frequency of many deleterious mutations.  相似文献   

6.
Potatoes(Solanum tuberosum L.) represent an important tuber crop, worldwide. During its prolonged clonal propagation, numerous deleterious mutations have accumulated in the potato genome,leading to severe inbreeding depression; however,the shaping of this mutation burden during polyploidization and improvement is largely unknown.Here, we sequenced 20 diploid landraces of the Stenotomum group, eight tetraploid landraces, and 20 tetraploid modern cultivars, to analyze variations in their deleterious mutations. We show that deleterious mutations accumulated rapidly during the polyploidization of tetraploid potatoes. This study provides a foundation for future potato improvement.  相似文献   

7.
The process of coevolution between host and enemy has traditionally been viewed as an evolutionary arms race between resistance and counterresistance. The arms-race metaphor of coevolution is widely accepted because it explains the evolution of many characters in species involved in host–enemy interactions. However, molecular work in plant–pathogen systems suggests a coevolutionary interplay between plant recognition of an attacking pathogen and pathogen evasion from recognition. We refer to this process as information coevolution, and contrast this with arms race coevolution to show that these two processes result in very different patterns of host resistance and enemy virulence at the population level. First, information coevolution results in a lower proportion of hosts that are susceptible to enemy attack within a population. Second, information coevolution produces a pattern of local maladaptation of enemy on host, a naturally occurring phenomenon that is difficult to explain under arms race coevolution. We then conduct a literature review to survey the empirical support for either mode of coevolution using the predicted patterns of host resistance and enemy virulence. Evidence supports both modes of coevolution in plant–enemy interactions, whereas no support is found for information coevolution in vertebrate–parasite and invertebrate–parasite systems.  相似文献   

8.
A major problem in evolutionary theory is to explain the widespread occurrence of sexual recombination. This is particularly difficult in anisogamous species where the familiar ‘two-fold cost of sex’ is encountered. Another cost has recently been identified: that fusion of gametes allows intracellular parasites or deleterious ‘selfish’ genomes to invade a population. These costs of anisogamy and the ability of cytoplasmic agents to invade a sexual population are quantified, allowing the costs and consequences of different modes of reproduction to be compared. It is found that the costs of selfish elements are likely to be very high and, in particular, that isogamous sexual reproduction (the putative ‘primitive’ form) is not cost-free, but incurs a fitness reduction of the order of 90%; thus a large selective disadvantage occurs in the initial evolution of sex which is ignored in standard analysis. Even once anisogamy has evolved, the low levels of ‘paternal leakage’ observed in many extant organisms may allow selfish cytoplasmic elements to spread, resulting in moderate to large decreases in host population fitness. However, much of the cost of selfish elements is avoided in sexual lifecycles with a large number of asexual cellular divisions between sexual reproduction: this greatly impedes the spread of selfish agents and reduces the fitness loss attributable to selfish elements.  相似文献   

9.
Mechanisms of stabilization and compensation, that occur in biochemical systems with enzymes modified by harmful mutations are considered. The compensation of such mutations can result in their evolutionary neutralism. The stabilization is considered due to kinetic signals of metabolites which form the direct and feedback connections with enzymes (temporal stabilization), and also the compensation in enzymatic aggregates determined by the changes of conformation (spatial stabilization). Examples of the stabilization in one or several steady states of enzymatic systems are presented. The neutralism of the distortion of inhibitory and catalytic properties of enzymes is shown in the region of stabilization of these properties.  相似文献   

10.
The shift in Ab repertoire, from Abs dominating certain primary B cell responses to genetically unrelated Abs dominating subsequent "memory" responses, challenges the accepted paradigm of affinity maturation. We used mathematical modeling and computer simulations of the dynamics of B cell responses, hypermutation, selection, and memory cell formation to test hypotheses attempting to explain repertoire shift. We show that repertoire shift can be explained within the framework of the affinity maturation paradigm, only when we recognize the destructive nature of hypermutation: B cells with a high initial affinity for the Ag are less likely to improve through random mutations.  相似文献   

11.
Plough LV 《Molecular ecology》2012,21(16):3974-3987
The deleterious effects of inbreeding are well documented and of major concern in conservation biology. Stressful environments have generally been shown to increase inbreeding depression; however, little is known about the underlying genetic mechanisms of the inbreeding-by-stress interaction and to what extent the fitness of individual deleterious mutations is altered under stress. Using microsatellite marker segregation data and quantitative trait locus (QTL) mapping methods, I performed a genome scan for deleterious mutations affecting viability (viability or vQTL) in two inbred families of the Pacific oyster Crassostrea gigas, reared in a stressful, nutrient-poor diet and a favourable, nutrient-rich diet, which had significant effects on growth and survival. Twice as many vQTL were detected in the stressful diet compared with the favourable diet, resulting primarily from substantially greater mortality of homozygous genotypes. At vQTL, estimates of selection (s) and dominance (h) were greater in the stressful environment (= 0.86 vs. 0.54 and = 0.35 vs. 0.18, in stressful and nonstressful diets, respectively). There was no evidence of interaction between vQTL. Individual vQTL differed across diets in selection only, or in both selection and dominance, and some vQTL were not affected by diet. These results suggest that stress-associated increases in selection against individual deleterious alleles underlie greater inbreeding depression with stress. Furthermore, the finding that inbreeding-by-environment interaction appears, to some extent, to be locus specific, helps to explain previous observations of lineage-specific expression of inbreeding depression and environment-specific purging, which have important implications for conservation and evolutionary biology.  相似文献   

12.
The theory of discrete time models of genetically conditioned coevolution is considered as an extension of classical population genetics theory. Strengths and weaknesses of the underlying assumptions are critically discussed in the context of host-pathogen interactions. Convenient formulae are provided to analyze the stability of equilibria. Some conclusions are drawn, which depend only on fairly general assumptions about the nature of host-pathogen coevolution.  相似文献   

13.
Summary The model of very slightly deleterious mutations was examined from the standpoint of population genetics in relation to the molecular evolutionary clock. The distribution of selection coefficients of mutants (in terms of amino acid changes) with small effect is thought to be continuous around zero, with an average negative value. The variance of selection coefficients depends upon environmental diversity and hence on total population size of a species. By considering various examples of amino acid substitutions, the average and standard error of selection coefficients and the reciprocal of population size are assumed to have similar values. The model predicts negative correlation between evolutionary rate and population size. This effect is expected to be partially cancelled with the generation time effect of intrinsic mutation rate. Implications of this prediction on the molecular evolutionary clock are discussed.  相似文献   

14.
We investigate the effect of spatial range expansions on the evolution of fitness when beneficial and deleterious mutations cosegregate. We perform individual‐based simulations of 1D and 2D range expansions and complement them with analytical approximations for the evolution of mean fitness at the edge of the expansion. We find that deleterious mutations accumulate steadily on the wave front during range expansions, thus creating an expansion load. Reduced fitness due to the expansion load is not restricted to the wave front, but occurs over a large proportion of newly colonized habitats. The expansion load can persist and represent a major fraction of the total mutation load for thousands of generations after the expansion. The phenomenon of expansion load may explain growing evidence that populations that have recently expanded, including humans, show an excess of deleterious mutations. To test the predictions of our model, we analyse functional genetic diversity in humans and find patterns that are consistent with our model.  相似文献   

15.
16.
Accumulation of deleterious mutations in the domestic yak genome   总被引:1,自引:0,他引:1       下载免费PDF全文
X. Xie  Y. Yang  Q. Ren  X. Ding  P. Bao  B. Yan  X. Yan  J. Han  P. Yan  Q. Qiu 《Animal genetics》2018,49(5):384-392
Deleterious mutations play an important functional role, affecting trait phenotypes in ways that decrease the fitness of organisms. Estimating the frequency of occurrence and abundance has been a topic of much interest, especially in crops and livestock. The processes of domestication and breeding allow deleterious mutations to persist at high frequency, and identifying such deleterious mutations is particularly important for breed improvement. Here, we assessed genome‐wide patterns of deleterious variation in 59 domestic and 13 wild yaks using genome resequencing data. Based on the intersection of results given by three methods (provean , polyphen 2 and sift 4g ), we identified 3187 putative deleterious mutation sites affecting 2586 genes in domestic yaks and 2067 affecting 1701 genes in wild yaks. Multiple lines of evidence indicate a significant increase in the load of deleterious mutations in domesticated yaks compared to wild yaks. Private deleterious genes were found to be associated with the perception of smell and detection of chemical stimulus. We also identified 36 genes related to Mendelian genetic diseases involved in sensory perception, skeletal development and the nervous and immune systems. This study not only adds to the understanding of the genetic basis of yak domestication but also provides a rich catalog of variants that will facilitate future breeding‐related research on the yak genome and on other bovid species.  相似文献   

17.
Epistasis and the evolution of recombination are closely intertwined: epistasis generates linkage disequilibria (i.e. statistical associations between alleles), whereas recombination breaks them up. The mutational deterministic hypothesis (MDH) states that high recombination rates are maintained because the breaking up of linkage disequilibria generated by negative epistasis enables more efficient purging of deleterious mutations. However, recent theoretical and experimental work challenges the MDH. Experimental evidence suggests that negative epistasis, required by the MDH, is relatively uncommon. On the theoretical side, population genetic models suggest that, compared with the combined effects of drift and selection, epistasis generates a negligible amount of linkage disequilibria. Here, we assess these criticisms and discuss to what extent they invalidate the MDH as an explanation for the evolution of recombination.  相似文献   

18.
Parasite strategies of host exploitation may be affected by host defence strategies and multiple infections. In particular, within‐host competition between multiple parasite strains has been shown to select for higher virulence. However, little is known on how multiple infections could affect the coevolution between host recovery and parasite virulence. Here, we extend a coevolutionary model introduced by van Baalen (Proc. R. Soc. B, 265, 1998, 317) to account for superinfection. When the susceptibility to superinfection is low, we recover van Baalen's results and show that there are two potential evolutionary endpoints: one with avirulent parasites and poorly defended hosts, and another one with high virulence and high recovery. However, when the susceptibility to superinfection is above a threshold, the only possible evolutionary outcome is one with high virulence and high investment into defence. We also show that within‐host competition may select for lower host recovery, as a consequence of selection for more virulent strains. We discuss how different parasite and host strategies (superinfection facilitation, competitive exclusion) as well as demographic and environmental parameters, such as host fecundity or various costs of defence, may affect the interplay between multiple infections and host–parasite coevolution. Our model shows the interplay between coevolutionary dynamics and multiple infections may be affected by crucial mechanistic or ecological details.  相似文献   

19.
Haccou P  Schneider MV 《Genetics》2004,166(2):1093-1104
Mutational load depends not only on the number and nature of mutations but also on the reproductive mode. Traditionally, only a few specific reproductive modes are considered in the search of explanations for the maintenance of sex. There are, however, many alternatives. Including these may give radically different conclusions. The theory on deterministic deleterious mutations states that in large populations segregation and recombination may lead to a lower load of deleterious mutations, provided that there are synergistic interactions. Empirical research suggests that effects of deleterious mutations are often multiplicative. Such situations have largely been ignored in the literature, since recombination and segregation have no effect on mutation load in the absence of epistasis. However, this is true only when clonal reproduction and sexual reproduction with equal male and female ploidy are considered. We consider several alternative reproductive modes that are all known to occur in insects: arrhenotoky, paternal genome elimination, apomictic thelytoky, and automictic thelytoky with different cytological mechanisms to restore diploidy. We give a method that is based on probability-generating functions, which provides analytical and numerical results on the distributions of deleterious mutations. Using this, we show that segregation and recombination do make a difference. Furthermore, we prove that a modified form of Haldane's principle holds more generally for thelytokous reproduction. We discuss the implications of our results for evolutionary transitions between different reproductive modes in insects. Since the strength of Muller's ratchet is reduced considerably for several forms of automictic thelytoky, many of our results are expected to be also valid for initially small populations.  相似文献   

20.
Coevolution commonly occurs in spatially heterogeneous environments, resulting in variable selection pressures acting on coevolving species. Dispersal across such environments is predicted to have a major impact on local coevolutionary dynamics. Here, we address how co‐dispersal of coevolving populations of host and parasite across an environmental productivity gradient affected coevolution in experimental populations of bacteria and their parasitic viruses (phages). The rate of coevolution between bacteria and phages was greater in high‐productivity environments. High‐productivity immigrants (~2% of the recipient population) caused coevolutionary dynamics (rates of coevolution and degree of generalist evolution) in low‐productivity environments to be largely indistinguishable from high‐productivity environments, whereas immigration from low‐productivity environments (~0.5% of the population) had no discernable impact. These results could not be explained by demography alone, but rather high‐productivity immigrants had a selective advantage in low‐productivity environments, but not vice versa. Coevolutionary interactions in high‐productivity environments are therefore likely to have a disproportionate impact on coevolution across the landscape as a whole.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号