首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The protein islet amyloid polypeptide (IAPP) is a glucose metabolism associated hormone cosecreted with insulin by the beta-cells of the pancreas. In humans with type 2 diabetes, IAPP deposits as amyloid fibers. The assembly intermediates of this process are associated with beta-cell death. Here, we examine the rat IAPP sequence variant under physiological solution conditions. Rat IAPP is mechanistically informative for fibrillogenesis, as it samples intermediate-like states but does not progress to form amyloid. A central challenge was the development of a bacterial expression system to generate isotopically labeled IAPP without terminal tags, but which does include a eukaryotic post-translational modification. While optical spectroscopy shows IAPP to be natively unfolded, NMR chemical shifts of backbone and beta-carbon resonances reveal the sampling of alpha-helical states across a continuous stretch comprising approximately 40% of the protein. In addition, the manifestation of nonrandom coil chemical shifts is confirmed by the relative insensitivity of the amide proton chemical shifts to alterations in temperature. Intriguingly, the residues displaying helical propensity are conserved with the human sequence, suggesting a functional role for this conformational bias. The inability of rat IAPP to self assemble can be ascribed, in part, to several slowly exchanging conformations evident as multiple chemical shift assignments in the immediate vicinity of three proline residues residing outside of this helical region.  相似文献   

2.
Human islet amyloid polypeptide (hIAPP) misfolding is thought to play an important role in the pathogenesis of type II diabetes mellitus. It has recently been shown that membranes can catalyze the misfolding of hIAPP via an alpha-helical intermediate of unknown structure. To better understand the mechanism of membrane-mediated misfolding, we used site-directed spin labeling and EPR spectroscopy to generate a three-dimensional structural model of this membrane-bound form. We find that hIAPP forms a single alpha-helix encompassing residues 9-22. The helix is flanked by N- and C-terminal regions that do not take up a clearly detectable secondary structure and are less ordered. Residues 21 and 22 are located in a transitional region between the alpha-helical structure and C terminus and exhibit significant mobility. The alpha-helical structure presented here has important implications for membrane-mediated aggregation. Anchoring hIAPP to the membrane not only increases the local concentration but also reduces the encounter between peptides to essentially a two-dimensional process. It is significant to note that the alpha-helical membrane-bound form leaves much of an important amyloidogenic region of hIAPP (residues 20-29) exposed for misfolding. Misfolding of this and other regions is likely further aided by the low dielectric environment near the membrane that is known to promote secondary structure formation. Based upon these considerations, a structural model for membrane-mediated aggregation is discussed.  相似文献   

3.
Islet amyloid polypeptide (IAPP, also known as amylin) is the major protein component of pancreatic amyloid fibers in type II diabetes and is normally cosecreted with insulin from the beta-cells of the pancreas. IAPP forms amyloid fibrils rapidly at concentrations well below those found in vivo, yet progression of type II diabetes occurs over many years. Insulin, a known inhibitor of IAPP fibrillogenesis, exists as a dense crystalline or near-crystalline core in the secretory vesicle, while IAPP localizes to the region between the crystal and the secretory vesicle membrane. In vitro, IAPP fibrillogenesis is both accelerated by lipid membranes and inhibited by monomeric insulin. In this work, we investigate insulin-IAPP-lipid interactions in vitro under conditions chosen to approximate native secretory vesicle physiology and the amyloid disease state. The effect of insulin on IAPP fibrillogenesis is investigated using fluorescence spectrometry. Additionally, interactions of IAPP and lipids with crystalline insulin are studied using fluorescence microscopy. We find that, while soluble states of insulin and IAPP do not interact significantly, large assemblies of either insulin (crystals) or IAPP (fibers) can lead to stable IAPP-insulin interactions. The results raise the possibility of multiple physiological interactions between these two beta-cell hormones.  相似文献   

4.
Increasing evidence suggests that the misfolding and deposition of IAPP plays an important role in the pathogenesis of type II, or non-insulin-dependent diabetes mellitus (T2DM). Membranes have been implicated in IAPP-dependent toxicity in several ways: Lipid membranes have been shown to promote the misfolding and aggregation of IAPP. Thus, potentially toxic forms of IAPP can be generated when IAPP interacts with cellular membranes. In addition, membranes have been implicated as the target of IAPP toxicity. IAPP has been shown to disrupt membrane integrity and to permeabilize membranes. Since disruption of cellular membranes is highly toxic, such a mechanism has been suggested to explain the observed IAPP toxicity. Here, we review IAPP-membrane interaction in the context of (1) catalyzing IAPP misfolding and (2) being a potential origin of IAPP toxicity.  相似文献   

5.
Increasing evidence suggests that the misfolding and deposition of IAPP plays an important role in the pathogenesis of type II, or non-insulin-dependent diabetes mellitus (T2DM). Membranes have been implicated in IAPP-dependent toxicity in several ways: Lipid membranes have been shown to promote the misfolding and aggregation of IAPP. Thus, potentially toxic forms of IAPP can be generated when IAPP interacts with cellular membranes. In addition, membranes have been implicated as the target of IAPP toxicity. IAPP has been shown to disrupt membrane integrity and to permeabilize membranes. Since disruption of cellular membranes is highly toxic, such a mechanism has been suggested to explain the observed IAPP toxicity. Here, we review IAPP-membrane interaction in the context of (1) catalyzing IAPP misfolding and (2) being a potential origin of IAPP toxicity.  相似文献   

6.
张鑫  程彪  黄昆 《生命科学》2010,(6):567-574
由蛋白错误折叠后聚集所产生的淀粉样蛋白沉积是导致老年痴呆症、疯牛病、2型糖尿病等多种疾病的重要因素。由胰岛淀粉样多肽(islet amyloid polypeptide,IAPP)所形成的淀粉样蛋白沉积,具有破坏胰岛β细胞膜结构、诱导β细胞凋亡和损伤β细胞功能的作用,被认为是2型糖尿病的重要致病原因之一。对IAPP的聚集性、聚集体的结构,以及其对β细胞的毒性作用研究,不但有助于明确2型糖尿病的发病机制,而且最新研究也表明抑制IAPP的聚集可有效减少β细胞的凋亡,提高胰岛移植的成功率。因此,IAPP已成为2型糖尿病治疗中一个具有良好前景的靶点。该文对IAPP研究的最新进展进行了简要介绍。  相似文献   

7.
Kapurniotu A 《Biopolymers》2001,60(6):438-459
Insoluble amyloid formation by islet amyloid polypeptide (IAPP) in the islets of Langerhans of the pancreas is a major pathophysiological feature of noninsulin dependent diabetes mellitus (NIDDM) or type II diabetes. Because in vivo formed amyloid colocalizes with areas of cell degeneration and IAPP amyloid aggregates are cytotoxic per se, the process of IAPP amyloid formation has been strongly associated with the progressive pancreatic cell degeneration and thus much of the pathology of type II diabetes. IAPP is a pancreatic polypeptide of 37 residues that, in its soluble form, is believed to play a role as a regulator of glucose homeostasis. The molecular cause and mechanism of the conversion of soluble IAPP into insoluble amyloid aggregates in vivo and its role in disease progress still remain to be clarified. Nevertheless, in the past few years significant progress has been made in understanding the amyloidogenesis pathway of IAPP in vitro and gaining insight into the structural and conformational "requirements" of IAPP amyloidogenesis and related cytotoxic effects. Importantly, several of the studies have revealed significant similarities of the above features of IAPP to other amyloidogenic polypeptides such as the beta-amyloid polypeptide Abeta. This suggests that, at the molecular level, amyloidogenesis, and possibly related cell degeneration and disease pathogenesis by completely different polypeptide sequences, may obey to common structural and conformational "rules" and follow similar molecular pathways. This review describes studies on the structural and conformational features of IAPP amyloid formation and cytotoxicity, and the application of the obtained knowledge for the understanding of the molecular mechanism of the IAPP amyloidogenesis pathway and the related cytotoxicity.  相似文献   

8.
Misfolding and amyloid fibril formation by human islet amyloid polypeptide (hIAPP) are thought to be important in the pathogenesis of type 2 diabetes, but the structures of the misfolded forms remain poorly understood. Here we developed an approach that combines site-directed spin labeling with continuous wave and pulsed EPR to investigate local secondary structure and to determine the relative orientation of the secondary structure elements with respect to each other. These data indicated that individual hIAPP molecules take up a hairpin fold within the fibril. This fold contains two β-strands that are much farther apart than expected from previous models. Atomistic structural models were obtained using computational refinement with EPR data as constraints. The resulting family of structures exhibited a left-handed helical twist, in agreement with the twisted morphology observed by electron microscopy. The fibril protofilaments contain stacked hIAPP monomers that form opposing β-sheets that twist around each other. The two β-strands of the monomer adopt out-of-plane positions and are staggered by about three peptide layers (∼15 Å). These results provide a mechanism for hIAPP fibril formation and could explain the remarkable stability of the fibrils. Thus, the structural model serves as a starting point for understanding and preventing hIAPP misfolding.  相似文献   

9.
Structural characterisation of islet amyloid polypeptide fibrils   总被引:3,自引:0,他引:3  
Islet amyloid is found in many patients suffering from type 2 diabetes. Amyloid fibrils found deposited in the pancreatic islets are composed of a 37-residue peptide, known as islet amyloid polypeptide (IAPP) (also known as amylin) and are similar to those found in other amyloid diseases. Synthetic IAPP peptide readily forms amyloid fibrils in vitro and this has allowed fibril formation kinetics and the overall morphology of IAPP amyloid to be studied. Here, we use X-ray fibre diffraction, electron microscopy and cryo-electron microscopy to examine the molecular structure of IAPP amyloid fibrils. X-ray diffraction from aligned synthetic amyloid fibrils gave a highly oriented diffraction pattern with layer-lines spaced 4.7 A apart. Electron diffraction also revealed the characteristic 4.7 A meridional signal and the position of the reflection could be compared directly to the image of the diffracting unit. Cryo-electron microscopy revealed the strong signal at 4.7 A that has been previously visualised from a single Abeta fibre. Together, these data build up a picture of how the IAPP fibril is held together by hydrogen bonded beta-sheet structure and contribute to the understanding of the generic structure of amyloid fibrils.  相似文献   

10.
The polypeptide hormone Islet Amyloid Polypeptide (IAPP, amylin) is responsible for islet amyloid formation in type-2 diabetes and in islet cell transplants, where it may contribute to graft failure. Human IAPP is extremely amyloidogenic and fewer inhibitors of IAPP amyloid formation have been reported than for the Alzheimer's Aβ peptide or for α-synuclein. The ability of a set of hydroxyflavones to inhibit IAPP amyloid formation was tested. Fluorescence detected thioflavin-T-binding assays are the most popular methods for measuring the kinetics of amyloid formation and for screening potential inhibitors; however, we show that they can lead to false positives with hydroxyflavones. Several of the compounds inhibit thioflavin-T fluorescence, but not amyloid formation; a result which highlights the hazards of relying solely on thioflavin-T assays to screen potential inhibitors. Transmission electron microscopy (TEM) and right-angle light scattering show that Morin hydrate (2',3,4',5,7-Pentahydroxyflavone) inhibits amyloid formation by human IAPP and disaggregates preformed IAPP amyloid fibers. In contrast, Myricetin, Kaempferol, and Quercetin, which differ only in hydroxyl groups on the B-ring, are not effective inhibitors. Morin hydrate represents a new type of IAPP amyloid inhibitor and the results with the other compounds highlight the importance of the substitution pattern on the B-ring.  相似文献   

11.
Zhang X  Cheng B  Gong H  Li C  Chen H  Zheng L  Huang K 《FEBS letters》2011,585(1):1634-77
Of 10 variation sites between sequences of amyloid-resistant porcine islet amyloid polypeptide (pIAPP) and amyloid-prone human IAPP (hIAPP), seven locate within residues 17–29, the most amyloidogenic fragment within hIAPP. To investigate how these variations affect amyloidogenicity, 26 IAPP(17–29) or IAPP(20–29) variants were synthesized and their secondary structures, amyloidogenicity, oligomerization and cytotoxicity were studied. Our results indicated that pIAPP fragments are refractory to amyloid formation and significantly less cytotoxic compared with hIAPP fragments. A novel stable dimer was observed in pIAPP(20–29) solution, whereas hIAPP(20–29) exists mostly as monomers and trimers. Among all human to porcine substitutions, S20R caused the most prolonged lag time and significantly attenuated cytotoxicity. The different oligomerization and amyloidogenic properties of hIAPP and pIAPP fragments are discussed.

Structured summary

pIAPP and pIAPPbind: shown by molecular sieving (view interactions 1, 2)hIAPP and hIAPPbind: shown by molecular sieving (view interactions 1, 2)  相似文献   

12.
Isolation and sequence determination of rat islet amyloid polypeptide   总被引:2,自引:0,他引:2  
Rat islet amyloid polypeptide (IAPP) was isolated from the pancreata of normal rats by utilizing cross-reactivity of a radioimmunoassay system for human IAPP with rat IAPP. Rat IAPP was a 37-amino acid polypeptide with tyrosine amide at the C-terminus, as was the case with human IAPP. Amino acid sequences of rat and human IAPPs were 84% identical, and the most highly conserved sequences were found in the N- and C-terminal regions. Rat IAPP sequence was also 51% identical to those of alpha and beta rat calcitonin gene-related peptide sequences.  相似文献   

13.
The islet amyloid polypeptide (IAPP) immunoreactivity of the adult rat pancreas is located in insulin-containing B cells as well as in somatostatin-containing D cells. In both cell types, the IAPP immunoreactivity is identical to rat synthetic IAPP in terms of its elution position after reversed phase HPLC and its binding to IAPP antibodies. The IAPP content per 10(6) B-cells is more than 100 fold lower than the corresponding insulin content, but comparable to the IAPP content of D cells. After induction of diabetes by streptozotocin, pancreatic IAPP seems predominantly located in somatostatin-containing cells. In normal rats, pancreatic insulin and IAPP content increase 20 fold from birth to 12 weeks of age; beyond week 12, the further rise in pancreatic insulin was not paralleled by an increase in IAPP content.  相似文献   

14.
Primary sensory neurons serve a dual role as afferent neurons, conveying sensory information from the periphery to the central nervous system, and as efferent effectors mediating, e.g., neurogenic inflammation. Neuropeptides are crucial for both these mechanisms in primary sensory neurons. In afferent functions, they act as messengers and modulators in addition to a principal transmitter; by release from peripheral terminals, they induce an efferent response, “neurogenic inflammation,” which comprises vasodilatation, plasma extravasation, and recruitment of immune cells. In this article, we introduce two novel members of the sensory neuropeptide family: pituitary adenylate cyclase-activating polypeptide (PACAP) and islet amyloid polypeptide (IAPP). Whereas PACAP, a vasoactive intestinal polypeptide-resembling peptide, predominantly occurs in neuronal elements, IAPP, which is structurally related to calcitonin gene-related peptide, is most widely known as a pancreatic β-cell peptide; as such, it has been recognized as a constituent of amyloid deposits in type 2 diabetes. In primary sensory neurons, under normal conditions, both peptides are predominantly expressed in small-sized nerve cell bodies, suggesting a role in nociception. On axotomy, the expression of PACAP is rapidly induced, whereas that of IAPP is reduced. Such a regulation of PACAP suggests that it serves a protective role during nerve injury, but that of IAPP may indicate that it is an excitatory messenger under normal conditions. In contrast, in localized adjuvant-induced inflammation, expression of both peptides is rapidly induced. For IAPP, studies in IAPP-deficient mice support the notion that IAPP is a pronociceptive peptide, because these mutant mice display a reduced nociceptive response when challenged with formalin.  相似文献   

15.
Masaki Wakabayashi 《FEBS letters》2009,583(17):2854-36097
Human islet amyloid polypeptide (hIAPP) is the primary component of the amyloid deposits found in the pancreatic islets of patients with type 2 diabetes mellitus. However, it is unknown how amyloid fibrils are formed in vivo. In this study, we demonstrate that gangliosides play an essential role in the formation of amyloid deposits by hIAPP on plasma membranes. Amyloid fibrils accumulated in ganglioside- and cholesterol-rich microscopic domains (‘lipid rafts’). The depletion of gangliosides or cholesterol significantly reduced the amount of amyloid deposited. These results clearly showed that the formation of amyloid fibrils was mediated by gangliosides in lipid rafts.  相似文献   

16.
Genetic background is important in determining susceptibility to metabolic abnormalities such as insulin resistance and beta-cell dysfunction. Islet amyloid is associated with reduced beta-cell mass and function and develops in the majority of our C57BL/6J x DBA/2J (F(1)) male human islet amyloid polypeptide (hIAPP) transgenic mice after 1 yr of increased fat feeding. To determine the relative contribution of each parental strain, C57BL/6J (BL6) and DBA/2J (DBA2), to islet amyloid formation, we studied male hIAPP mice on each background strain (BL6, n = 13; and DBA2 n = 11) and C57BL/6J x DBA/2J F(1) mice (n = 17) on a 9% (wt/wt) fat diet for 1 yr. At the end of 12 mo, islet amyloid deposition was quantified from thioflavin S-stained pancreas sections. The majority of mice in all groups developed islet amyloid (BL6: 91%, F(1): 76%, DBA2: 100%). However, the prevalence (%amyloid-positive islets; BL6: 14 +/- 3%, F(1): 44 +/- 8%, DBA2: 49 +/- 9%, P < 0.05) and severity (%islet area occupied by amyloid; BL6: 0.03 +/- 0.01%, F(1): 9.2 +/- 2.9%, DBA2: 5.7 +/- 2.3%, p < or = 0.01) were significantly lower in BL6 than F(1) and DBA2 mice. Increased islet amyloid severity was negatively correlated with insulin-positive area per islet, in F(1) (r(2) = 0.75, P < 0.001) and DBA2 (r(2) = 0.87, P < 0.001) mice but not BL6 mice (r(2) = 0.07). In summary, the extent of islet amyloid formation in hIAPP transgenic mice is determined by background strain, with mice expressing DBA/2J genes (F(1) and DBA2 mice) being more susceptible to amyloid deposition that replaces beta-cell mass. These findings underscore the importance of genetic and environmental factors in studying metabolic disease.  相似文献   

17.
Regional distribution and molecular forms of rat islet amyloid polypeptide   总被引:1,自引:0,他引:1  
Using a highly sensitive and specific radioimmunoassay (RIA) for rat islet amyloid polypeptide (IAPP), we clarified regional distribution and molecular forms of rat IAPP. IAPP[1-37] and IAPP[19-37] were identified in normal rat pancreas by sequence analyses IAPP[19-37], accounting for 57% of IAPP-immunoreactivity in rat pancreas, is a major molecular form of rat IAPP moiety. In human, however, IAPP[1-37] is the major component, with IAPP[17-37] composing as little as 2-6% of IAPP-immunoreactivity in pancreas. This indicates that processing of IAPP in pancreas differs in species. A large amount of IAPP (328.5 +/- 25.0 pmol/g wet weight) was found in rat pancreas and the peptide was also detected in pyloric antrum of the stomach, duodenum, jejunum, ileum, and colon at 0.1-0.8% of the level of pancreas. It was not detected in central nervous system. The content of rat IAPP in pancreas fell to 54% of control after 4 day fasting. The distribution of IAPP suggests its possible endocrine or paracrine function in pancreas and gastrointestinal tract.  相似文献   

18.
Lipid membranes modulate the structure of islet amyloid polypeptide   总被引:1,自引:0,他引:1  
Jayasinghe SA  Langen R 《Biochemistry》2005,44(36):12113-12119
The 37-residue islet amyloid polypeptide (IAPP) is thought to play an important role in the pathogenesis of type II diabetes. Despite a growing body of evidence implicating membrane interaction in IAPP toxicity, the membrane-bound form has not yet been well characterized. Here we used circular dichroism (CD) and fluorescence spectroscopy to investigate the molecular details of the interaction of IAPP with lipid membranes of varying composition. In the presence of membranes containing negatively charged phosphatidylserine (PS), we observed significant acceleration in the formation of IAPP aggregates. This acceleration is strongly modulated by the PS concentration and ionic strength, and is also observed at physiologically relevant PS concentrations. CD spectra of IAPP obtained immediately after the addition of membranes containing PS revealed features characteristic of an alpha-helical conformation approximately approximately 15-19 residues in length. After a longer incubation with membranes, IAPP gave rise to CD spectra characteristic of a beta-sheet conformation. Taken together, our CD and fluorescence data indicate that conditions that promote weakly stable alpha-helical conformations may promote IAPP aggregation. The potential roles of IAPP-membrane interaction and the novel membrane-bound alpha-helical conformation in IAPP aggregation are discussed.  相似文献   

19.
Secretion of islet amyloid polypeptide in response to glucose   总被引:4,自引:0,他引:4  
The content of islet amyloid polypeptide (IAPP) in isolated rat pancreatic islets was determined by a radioimmunoassay. Reverse-phase high-performance liquid chromatography analysis revealed that a main peak of IAPP immunoreactivity in the extracts from the islets corresponded to a synthetic rat IAPP. Secretion of IAPP from the cells is regulated by the extracellular glucose concentration. Thus, IAPP may be a novel regulator for glucose homeostasis and changes in the secretion perhaps relate to insular amyloid deposits and impaired glucose tolerance in type 2 diabetes mellitus.  相似文献   

20.
Cao P  Raleigh DP 《Biochemistry》2012,51(13):2670-2683
Islet amyloid polypeptide (IAPP, amylin) is responsible for amyloid formation in type 2 diabetes and in transplanted islets. The flavanol (-)-epigallocatechin-3-gallate [EGCG; (2R,3R)-5,7-dihydroxy-2-(3,4,5-trihydroxyphenyl)-3,4-dihydro-2H-1-benzopyran-3-yl 3,4,5-trihydroxybenzoate] is an effective inhibitor of amyloid formation by IAPP; however, the interactions required for the inhibition of IAPP amyloid formation and for the remodeling of amyloid fibers are not known. A range of features have been proposed to be critical for EGCG protein interactions, including interactions with aromatic residues, interactions with amino groups, or sulfhydryls. Using a set of IAPP analogues, we show that none of these are required. Studies in which EGCG is added to the lag phase of amyloid formation shows that it interacts with intermediates as well as with monomers and amyloid. The features of EGCG required for effective inhibition were examined. The stereoisomer of EGCG, (-)-gallocatechin gallate (GCG), is an effective inhibitor, although less so than EGCG. Removing the gallate ester moiety leads to EGC which is a less effective inhibitor. Removing only the 3-hydroxyl group of the trihydroxyphenyl ring leads to a compound that has more pronounced effects on the lag phase than EGC but is less effective at reducing the amount of amyloid. Elimination of both the 3-hydroxy group and the gallate ester results in loss of activity. EGCG remodels IAPP amyloid fibers but does not fully resolubilize them to unstructured monomers, and the remodeling is not the reverse of amyloid assembly. The ability of the compounds to remodel IAPP amyloid closely follows their relative ability to inhibit amyloid formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号