共查询到20条相似文献,搜索用时 15 毫秒
1.
Increasing evidence suggests that the misfolding and deposition of IAPP plays an important role in the pathogenesis of type II, or non-insulin-dependent diabetes mellitus (T2DM). Membranes have been implicated in IAPP-dependent toxicity in several ways: Lipid membranes have been shown to promote the misfolding and aggregation of IAPP. Thus, potentially toxic forms of IAPP can be generated when IAPP interacts with cellular membranes. In addition, membranes have been implicated as the target of IAPP toxicity. IAPP has been shown to disrupt membrane integrity and to permeabilize membranes. Since disruption of cellular membranes is highly toxic, such a mechanism has been suggested to explain the observed IAPP toxicity. Here, we review IAPP-membrane interaction in the context of (1) catalyzing IAPP misfolding and (2) being a potential origin of IAPP toxicity. 相似文献
2.
Sajith A. Jayasinghe 《生物化学与生物物理学报:生物膜》2007,1768(8):2002-2009
Increasing evidence suggests that the misfolding and deposition of IAPP plays an important role in the pathogenesis of type II, or non-insulin-dependent diabetes mellitus (T2DM). Membranes have been implicated in IAPP-dependent toxicity in several ways: Lipid membranes have been shown to promote the misfolding and aggregation of IAPP. Thus, potentially toxic forms of IAPP can be generated when IAPP interacts with cellular membranes. In addition, membranes have been implicated as the target of IAPP toxicity. IAPP has been shown to disrupt membrane integrity and to permeabilize membranes. Since disruption of cellular membranes is highly toxic, such a mechanism has been suggested to explain the observed IAPP toxicity. Here, we review IAPP-membrane interaction in the context of (1) catalyzing IAPP misfolding and (2) being a potential origin of IAPP toxicity. 相似文献
3.
由蛋白错误折叠后聚集所产生的淀粉样蛋白沉积是导致老年痴呆症、疯牛病、2型糖尿病等多种疾病的重要因素。由胰岛淀粉样多肽(islet amyloid polypeptide,IAPP)所形成的淀粉样蛋白沉积,具有破坏胰岛β细胞膜结构、诱导β细胞凋亡和损伤β细胞功能的作用,被认为是2型糖尿病的重要致病原因之一。对IAPP的聚集性、聚集体的结构,以及其对β细胞的毒性作用研究,不但有助于明确2型糖尿病的发病机制,而且最新研究也表明抑制IAPP的聚集可有效减少β细胞的凋亡,提高胰岛移植的成功率。因此,IAPP已成为2型糖尿病治疗中一个具有良好前景的靶点。该文对IAPP研究的最新进展进行了简要介绍。 相似文献
4.
Kapurniotu A 《Biopolymers》2001,60(6):438-459
Insoluble amyloid formation by islet amyloid polypeptide (IAPP) in the islets of Langerhans of the pancreas is a major pathophysiological feature of noninsulin dependent diabetes mellitus (NIDDM) or type II diabetes. Because in vivo formed amyloid colocalizes with areas of cell degeneration and IAPP amyloid aggregates are cytotoxic per se, the process of IAPP amyloid formation has been strongly associated with the progressive pancreatic cell degeneration and thus much of the pathology of type II diabetes. IAPP is a pancreatic polypeptide of 37 residues that, in its soluble form, is believed to play a role as a regulator of glucose homeostasis. The molecular cause and mechanism of the conversion of soluble IAPP into insoluble amyloid aggregates in vivo and its role in disease progress still remain to be clarified. Nevertheless, in the past few years significant progress has been made in understanding the amyloidogenesis pathway of IAPP in vitro and gaining insight into the structural and conformational "requirements" of IAPP amyloidogenesis and related cytotoxic effects. Importantly, several of the studies have revealed significant similarities of the above features of IAPP to other amyloidogenic polypeptides such as the beta-amyloid polypeptide Abeta. This suggests that, at the molecular level, amyloidogenesis, and possibly related cell degeneration and disease pathogenesis by completely different polypeptide sequences, may obey to common structural and conformational "rules" and follow similar molecular pathways. This review describes studies on the structural and conformational features of IAPP amyloid formation and cytotoxicity, and the application of the obtained knowledge for the understanding of the molecular mechanism of the IAPP amyloidogenesis pathway and the related cytotoxicity. 相似文献
5.
Bedrood S Li Y Isas JM Hegde BG Baxa U Haworth IS Langen R 《The Journal of biological chemistry》2012,287(8):5235-5241
Misfolding and amyloid fibril formation by human islet amyloid polypeptide (hIAPP) are thought to be important in the pathogenesis of type 2 diabetes, but the structures of the misfolded forms remain poorly understood. Here we developed an approach that combines site-directed spin labeling with continuous wave and pulsed EPR to investigate local secondary structure and to determine the relative orientation of the secondary structure elements with respect to each other. These data indicated that individual hIAPP molecules take up a hairpin fold within the fibril. This fold contains two β-strands that are much farther apart than expected from previous models. Atomistic structural models were obtained using computational refinement with EPR data as constraints. The resulting family of structures exhibited a left-handed helical twist, in agreement with the twisted morphology observed by electron microscopy. The fibril protofilaments contain stacked hIAPP monomers that form opposing β-sheets that twist around each other. The two β-strands of the monomer adopt out-of-plane positions and are staggered by about three peptide layers (∼15 Å). These results provide a mechanism for hIAPP fibril formation and could explain the remarkable stability of the fibrils. Thus, the structural model serves as a starting point for understanding and preventing hIAPP misfolding. 相似文献
6.
Structural characterisation of islet amyloid polypeptide fibrils 总被引:3,自引:0,他引:3
Islet amyloid is found in many patients suffering from type 2 diabetes. Amyloid fibrils found deposited in the pancreatic islets are composed of a 37-residue peptide, known as islet amyloid polypeptide (IAPP) (also known as amylin) and are similar to those found in other amyloid diseases. Synthetic IAPP peptide readily forms amyloid fibrils in vitro and this has allowed fibril formation kinetics and the overall morphology of IAPP amyloid to be studied. Here, we use X-ray fibre diffraction, electron microscopy and cryo-electron microscopy to examine the molecular structure of IAPP amyloid fibrils. X-ray diffraction from aligned synthetic amyloid fibrils gave a highly oriented diffraction pattern with layer-lines spaced 4.7 A apart. Electron diffraction also revealed the characteristic 4.7 A meridional signal and the position of the reflection could be compared directly to the image of the diffracting unit. Cryo-electron microscopy revealed the strong signal at 4.7 A that has been previously visualised from a single Abeta fibre. Together, these data build up a picture of how the IAPP fibril is held together by hydrogen bonded beta-sheet structure and contribute to the understanding of the generic structure of amyloid fibrils. 相似文献
7.
Of 10 variation sites between sequences of amyloid-resistant porcine islet amyloid polypeptide (pIAPP) and amyloid-prone human IAPP (hIAPP), seven locate within residues 17–29, the most amyloidogenic fragment within hIAPP. To investigate how these variations affect amyloidogenicity, 26 IAPP(17–29) or IAPP(20–29) variants were synthesized and their secondary structures, amyloidogenicity, oligomerization and cytotoxicity were studied. Our results indicated that pIAPP fragments are refractory to amyloid formation and significantly less cytotoxic compared with hIAPP fragments. A novel stable dimer was observed in pIAPP(20–29) solution, whereas hIAPP(20–29) exists mostly as monomers and trimers. Among all human to porcine substitutions, S20R caused the most prolonged lag time and significantly attenuated cytotoxicity. The different oligomerization and amyloidogenic properties of hIAPP and pIAPP fragments are discussed.
Structured summary
pIAPP and pIAPPbind: shown by molecular sieving (view interactions 1, 2)hIAPP and hIAPPbind: shown by molecular sieving (view interactions 1, 2) 相似文献8.
J Asai M Nakazato K Kangawa S Matsukura H Matsuo 《Biochemical and biophysical research communications》1989,164(1):400-405
Rat islet amyloid polypeptide (IAPP) was isolated from the pancreata of normal rats by utilizing cross-reactivity of a radioimmunoassay system for human IAPP with rat IAPP. Rat IAPP was a 37-amino acid polypeptide with tyrosine amide at the C-terminus, as was the case with human IAPP. Amino acid sequences of rat and human IAPPs were 84% identical, and the most highly conserved sequences were found in the N- and C-terminal regions. Rat IAPP sequence was also 51% identical to those of alpha and beta rat calcitonin gene-related peptide sequences. 相似文献
9.
M De Vroede A Foriers M Van de Winkel O Madsen D Pipeleers 《Biochemical and biophysical research communications》1992,182(2):886-893
The islet amyloid polypeptide (IAPP) immunoreactivity of the adult rat pancreas is located in insulin-containing B cells as well as in somatostatin-containing D cells. In both cell types, the IAPP immunoreactivity is identical to rat synthetic IAPP in terms of its elution position after reversed phase HPLC and its binding to IAPP antibodies. The IAPP content per 10(6) B-cells is more than 100 fold lower than the corresponding insulin content, but comparable to the IAPP content of D cells. After induction of diabetes by streptozotocin, pancreatic IAPP seems predominantly located in somatostatin-containing cells. In normal rats, pancreatic insulin and IAPP content increase 20 fold from birth to 12 weeks of age; beyond week 12, the further rise in pancreatic insulin was not paralleled by an increase in IAPP content. 相似文献
10.
Hindrik Mulder Helen Jongsma Yanzhen Zhang Samuel Gebre-Medhin Frank Sundler Nils Danielsen 《Molecular neurobiology》1999,19(3):229-253
Primary sensory neurons serve a dual role as afferent neurons, conveying sensory information from the periphery to the central
nervous system, and as efferent effectors mediating, e.g., neurogenic inflammation. Neuropeptides are crucial for both these
mechanisms in primary sensory neurons. In afferent functions, they act as messengers and modulators in addition to a principal
transmitter; by release from peripheral terminals, they induce an efferent response, “neurogenic inflammation,” which comprises
vasodilatation, plasma extravasation, and recruitment of immune cells. In this article, we introduce two novel members of
the sensory neuropeptide family: pituitary adenylate cyclase-activating polypeptide (PACAP) and islet amyloid polypeptide
(IAPP). Whereas PACAP, a vasoactive intestinal polypeptide-resembling peptide, predominantly occurs in neuronal elements,
IAPP, which is structurally related to calcitonin gene-related peptide, is most widely known as a pancreatic β-cell peptide;
as such, it has been recognized as a constituent of amyloid deposits in type 2 diabetes. In primary sensory neurons, under
normal conditions, both peptides are predominantly expressed in small-sized nerve cell bodies, suggesting a role in nociception.
On axotomy, the expression of PACAP is rapidly induced, whereas that of IAPP is reduced. Such a regulation of PACAP suggests
that it serves a protective role during nerve injury, but that of IAPP may indicate that it is an excitatory messenger under
normal conditions. In contrast, in localized adjuvant-induced inflammation, expression of both peptides is rapidly induced.
For IAPP, studies in IAPP-deficient mice support the notion that IAPP is a pronociceptive peptide, because these mutant mice
display a reduced nociceptive response when challenged with formalin. 相似文献
11.
Masaki Wakabayashi 《FEBS letters》2009,583(17):2854-36097
Human islet amyloid polypeptide (hIAPP) is the primary component of the amyloid deposits found in the pancreatic islets of patients with type 2 diabetes mellitus. However, it is unknown how amyloid fibrils are formed in vivo. In this study, we demonstrate that gangliosides play an essential role in the formation of amyloid deposits by hIAPP on plasma membranes. Amyloid fibrils accumulated in ganglioside- and cholesterol-rich microscopic domains (‘lipid rafts’). The depletion of gangliosides or cholesterol significantly reduced the amount of amyloid deposited. These results clearly showed that the formation of amyloid fibrils was mediated by gangliosides in lipid rafts. 相似文献
12.
Hull RL Watts MR Kodama K Shen ZP Utzschneider KM Carr DB Vidal J Kahn SE 《American journal of physiology. Endocrinology and metabolism》2005,289(4):E703-E709
Genetic background is important in determining susceptibility to metabolic abnormalities such as insulin resistance and beta-cell dysfunction. Islet amyloid is associated with reduced beta-cell mass and function and develops in the majority of our C57BL/6J x DBA/2J (F(1)) male human islet amyloid polypeptide (hIAPP) transgenic mice after 1 yr of increased fat feeding. To determine the relative contribution of each parental strain, C57BL/6J (BL6) and DBA/2J (DBA2), to islet amyloid formation, we studied male hIAPP mice on each background strain (BL6, n = 13; and DBA2 n = 11) and C57BL/6J x DBA/2J F(1) mice (n = 17) on a 9% (wt/wt) fat diet for 1 yr. At the end of 12 mo, islet amyloid deposition was quantified from thioflavin S-stained pancreas sections. The majority of mice in all groups developed islet amyloid (BL6: 91%, F(1): 76%, DBA2: 100%). However, the prevalence (%amyloid-positive islets; BL6: 14 +/- 3%, F(1): 44 +/- 8%, DBA2: 49 +/- 9%, P < 0.05) and severity (%islet area occupied by amyloid; BL6: 0.03 +/- 0.01%, F(1): 9.2 +/- 2.9%, DBA2: 5.7 +/- 2.3%, p < or = 0.01) were significantly lower in BL6 than F(1) and DBA2 mice. Increased islet amyloid severity was negatively correlated with insulin-positive area per islet, in F(1) (r(2) = 0.75, P < 0.001) and DBA2 (r(2) = 0.87, P < 0.001) mice but not BL6 mice (r(2) = 0.07). In summary, the extent of islet amyloid formation in hIAPP transgenic mice is determined by background strain, with mice expressing DBA/2J genes (F(1) and DBA2 mice) being more susceptible to amyloid deposition that replaces beta-cell mass. These findings underscore the importance of genetic and environmental factors in studying metabolic disease. 相似文献
13.
Secretion of islet amyloid polypeptide in response to glucose 总被引:4,自引:0,他引:4
A Kanatsuka H Makino H Ohsawa Y Tokuyama T Yamaguchi S Yoshida M Adachi 《FEBS letters》1989,259(1):199-201
The content of islet amyloid polypeptide (IAPP) in isolated rat pancreatic islets was determined by a radioimmunoassay. Reverse-phase high-performance liquid chromatography analysis revealed that a main peak of IAPP immunoreactivity in the extracts from the islets corresponded to a synthetic rat IAPP. Secretion of IAPP from the cells is regulated by the extracellular glucose concentration. Thus, IAPP may be a novel regulator for glucose homeostasis and changes in the secretion perhaps relate to insular amyloid deposits and impaired glucose tolerance in type 2 diabetes mellitus. 相似文献
14.
The 37-residue islet amyloid polypeptide (IAPP) is thought to play an important role in the pathogenesis of type II diabetes. Despite a growing body of evidence implicating membrane interaction in IAPP toxicity, the membrane-bound form has not yet been well characterized. Here we used circular dichroism (CD) and fluorescence spectroscopy to investigate the molecular details of the interaction of IAPP with lipid membranes of varying composition. In the presence of membranes containing negatively charged phosphatidylserine (PS), we observed significant acceleration in the formation of IAPP aggregates. This acceleration is strongly modulated by the PS concentration and ionic strength, and is also observed at physiologically relevant PS concentrations. CD spectra of IAPP obtained immediately after the addition of membranes containing PS revealed features characteristic of an alpha-helical conformation approximately approximately 15-19 residues in length. After a longer incubation with membranes, IAPP gave rise to CD spectra characteristic of a beta-sheet conformation. Taken together, our CD and fluorescence data indicate that conditions that promote weakly stable alpha-helical conformations may promote IAPP aggregation. The potential roles of IAPP-membrane interaction and the novel membrane-bound alpha-helical conformation in IAPP aggregation are discussed. 相似文献
15.
Islet amyloid polypeptide (IAPP, amylin) is responsible for amyloid formation in type 2 diabetes and in transplanted islets. The flavanol (-)-epigallocatechin-3-gallate [EGCG; (2R,3R)-5,7-dihydroxy-2-(3,4,5-trihydroxyphenyl)-3,4-dihydro-2H-1-benzopyran-3-yl 3,4,5-trihydroxybenzoate] is an effective inhibitor of amyloid formation by IAPP; however, the interactions required for the inhibition of IAPP amyloid formation and for the remodeling of amyloid fibers are not known. A range of features have been proposed to be critical for EGCG protein interactions, including interactions with aromatic residues, interactions with amino groups, or sulfhydryls. Using a set of IAPP analogues, we show that none of these are required. Studies in which EGCG is added to the lag phase of amyloid formation shows that it interacts with intermediates as well as with monomers and amyloid. The features of EGCG required for effective inhibition were examined. The stereoisomer of EGCG, (-)-gallocatechin gallate (GCG), is an effective inhibitor, although less so than EGCG. Removing the gallate ester moiety leads to EGC which is a less effective inhibitor. Removing only the 3-hydroxyl group of the trihydroxyphenyl ring leads to a compound that has more pronounced effects on the lag phase than EGC but is less effective at reducing the amount of amyloid. Elimination of both the 3-hydroxy group and the gallate ester results in loss of activity. EGCG remodels IAPP amyloid fibers but does not fully resolubilize them to unstructured monomers, and the remodeling is not the reverse of amyloid assembly. The ability of the compounds to remodel IAPP amyloid closely follows their relative ability to inhibit amyloid formation. 相似文献
16.
Human islet amyloid polypeptides (hIAPP) aggregate into amyloid deposits in the pancreatic islets of Langerhans, contributing to the loss of β-cells of patients with type 2 diabetes. Despite extensive studies of membrane disruption associated with hIAPP aggregates, the molecular details regarding the complex interplay between hIAPP aggregates and raft-containing membranes are still very limited. Using all-atom molecular dynamics simulations, we investigate the impact of hIAPP aggregate insertion on lipid segregation. We have found that the domain separation of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) is enhanced upon hIAPP membrane permeabilization in the absence of cholesterol, while within our simulation timescale, we cannot provide definitive evidence regarding the impact of hIAPP insertion on domain segregation in the ternary mixture (DOPC/DPPC/cholesterol). When the lipid domains are perturbed, their restoration occurs rapidly and spontaneously in the presence of hIAPP aggregates. hIAPP insertion affects membrane thickness in its immediate surroundings. On average, hIAPP causes the fluidity of lipids to increase and even cholesterol shows enhanced diffusivity. The acyl chain packing of the lipids near hIAPP is disrupted as compared to that further away from it. Cholesterol not only modulates membrane mobility and ordering but also hIAPP aggregates' structure and relative orientation to the membrane. Our investigations on the interaction between hIAPP aggregates and raft-containing membranes could lead to a better understanding of the mechanisms of amyloid cytotoxicity. 相似文献
17.
The 37-residue islet amyloid polypeptide (IAPP) is the major protein component of the amyloid deposits found in type-II diabetes. IAPP is stored in a relatively low pH environment in the pancreatic secretory granules prior to its release to the extracellular environment. Human IAPP contains a single histidine at position 18. Aggregation of IAPP is considerably faster at a lower pH (4.0 +/- 0.3) than at high pH (8.8 +/- 0.3), as judged by turbidity and thioflavine-T fluorescence studies. The rate of aggregation at low pH increases drastically in the presence of salt. CD experiments show that the conversion of largely unstructured monomers to beta-sheet-rich structures is faster at high pH. TEM studies show that fibrils are formed at both pH values but are more prevalent at pH 8.8 (+/-0.3). Both the free N terminus of IAPP and His-18 will titrate over the pH range studied. An N-terminal acetylated fragment consisting of residues 8-37 of human IAPP was also studied to isolate contributions from the protonation of His-18. Previous studies have shown that this fragment forms protofibrils that are very similar to those formed by intact IAPP. The effects of varying the protonation state of His-18 in the 8-37 analogue indicate that the rate of aggregation and fibril formation is noticeably faster when His-18 is deprotonated, similar to the wild type. However, the pH-dependent effects are larger for full-length IAPP than for the disulfide-truncated, acetylated analogue. TEM studies indicate differences in the morphology of the deposits formed at high and low pH. These results are discussed in light of recent structural models of IAPP fibrils. 相似文献
18.
Assembly of amyloid-beta peptide (Aβ) into cytotoxic oligomeric and fibrillar aggregates is believed to be a major pathologic event in Alzheimer's disease (AD) and interfering with Aβ aggregation is an important strategy in the development of novel therapeutic approaches. Prior studies have shown that the double N-methylated analogue of islet amyloid polypeptide (IAPP) IAPP-GI, which is a conformationally constrained IAPP analogue mimicking a non-amyloidogenic IAPP conformation, is capable of blocking cytotoxic self-assembly of Aβ. Here we investigate the interaction of IAPP-GI with Aβ40 and Aβ42 using NMR spectroscopy. The most pronounced NMR chemical shift changes were observed for residues 13-20, while residues 7-9, 15-16 as well as the C-terminal half of Aβ--that is both regions of the Aβ sequence that are converted into β-strands in amyloid fibrils--were less accessible to solvent in the presence of IAPP-GI. At the same time, interaction of IAPP-GI with Aβ resulted in a concentration-dependent co-aggregation of Aβ and IAPP-GI that was enhanced for the more aggregation prone Aβ42 peptide. On the basis of the reduced toxicity of the Aβ peptide in the presence of IAPP-GI, our data are consistent with the suggestion that IAPP-GI redirects Aβ into nontoxic "off-pathway" aggregates. 相似文献
19.
Native human islet amyloid polypeptide (hIAPP) has been identified as the major component of amyloid plaques found in the pancreatic islets of Langerhans of persons affected by type 2 diabetes mellitus. Early studies of hIAPP determined that a segment of the molecule, amino acids 20-29, is responsible for its aggregation into amyloid fibrils. The present study demonstrates that the aggregation of hIAPP 20-29-Trp is a nucleation-dependent process, displaying a distinct lag time before the onset of rapid aggregation. Moreover, the lag time can be eliminated by seeding the sample of unaggregated peptide with preformed fibrils. In contrast to the expectation from the conventional model of nucleation-dependent aggregation, however, the lag time of hIAPP aggregation does not depend on peptide concentration. To explain this observation, a modified version of the standard model of nucleation-dependent aggregation is presented in which the monomeric peptide concentration is buffered by an off-aggregation-pathway formation of peptide micelles. 相似文献
20.
Bhattacharya S Latha JN Kumresan R Singh S 《Biochemical and biophysical research communications》2007,356(3):622-628
Efforts to clone amyloidogenic proteins in the cells often have resulted in cell death. We report successful cloning and expression of recombinant human islet amyloid polypeptide (hIAPP) in cultured mammalian cells. Amylin gets secreted, forms fibrils that are toxic to target cells like beta cells of rat and human. The study involves cloning of full-length amylin in fluorescent protein vector followed by transfection into mammalian cells. The transfected cells with recombinant human amylin, secrete the translated protein corresponding to 37-amino acid native mature IAPP. The mature IAPP secreted out of the cell is purified and characterized by MALDI-TOF/TOF-MS and Western blotting. Purified IAPP forms fibrils as seen by Thioflavin-T fluorescence and AFM, and these fibrils were cytotoxic towards pancreatic cell line RIN5mf cells. 相似文献