首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary In Drosophila melanogaster a partial loss of ribosomal genes leads to the bobbed phenotype. Magnification is a heritable increase in rDNA that may occur in males carrying a deleted X chromosome with a strong bobbed phenotype. The restriction patterns of X chromosome total rDNA, insertions and spacers from magnified bobbed strains were compared with those of the original bobbed mutations. It was found that magnification modifies restriction patterns and differentially affects gene types, increasing specific genes lacking insertions (INS-). Increases in copy number of genes with type I insertions are generally lower than the total number of INS- genes, while type II insertion genes are not perceptibly increased. The recovery of homogeneous progeny from a single premagnified male indicates that the magnification event might take place and become stable very early in the germ line, arguing against magnification being due to extrachromosomal amplification. Additionally, some gene types increase 3.5-fold while others are eliminated, indicating that they could not result from a single unequal cross-over. These results are in good agreement with the existence of partial clustering of rDNA genes according to type, and suggest that magnification could result from local amplification of genes.  相似文献   

2.
Summary The purpose of this work was to analyze the difference between males and females with respect to rDNA magnification. To study eventual rDNA variations in females a Ybb chromosome was chosen since it can magnify in males but not show phenomena of rDNA dosage compensation.The authors have observed an increase of rDNA pertaining to the Ybb chromosome in females of genotype with respect to the same Ybb chromosome studied in females.This non-inheritable rDNA increase cannot be explained in terms of compensatory increase reported in X/O males nor can it fit in the magnification scheme. The possibility might be entertained that some mechanism is missing in females which cannot complete a magnification cycle.The rDNA increase that we called rDNA magnification in males occurs in the germ line and in the soma, whereas the evidence, here reported, suggest that magnification in females occurs only in the soma.  相似文献   

3.
The Effect of mei-41 on Rdna Redundancy in DROSOPHILA MELANOGASTER   总被引:2,自引:1,他引:1  
The recombination and repair defective mutant, mei-41, exhibits three rather striking effects on the genetic properties and chromosomal stability of rDNA in Drosophila. First, mei-41 inhibits rDNA magnification. However, mei-9, another recombination and repair defective mutation has no similar effect. This indicates that magnification requires some, but not all, of the gene products necessary for meiotic exchange. Second, under magnifying conditions, mei-41 induces interchanges between the X rDNA and either arm of the Ybb- chromosome. These interchanges occur at high frequency and are independent of rDNA orientation. Third, in mei-41 bb+/Ybb+ males, bobbed mutants in the X, but not the Y, also arise at high frequency. Evidence suggests that these events involve the rDNA type I insertion. The recombination and repair defective properties of mei-41 together with our results regarding its unusual and specific effects involving rDNA are explained in a simple model that has general implications for chromosome structure.  相似文献   

4.
E S Coen  G A Dover 《Cell》1983,33(3):849-855
We have examined the molecular basis of the response of individuals of D. melanogaster to artificial selection for high and low abdominal bristles. By monitoring the fate of particular rDNA spacer length variants associated with individually isolated X and Y chromosomes, we show that flies from the low bristle number selection lines have undergone an unequal exchange between the X and Y rDNA arrays. Such exchanges result in translocations between X and Y chromosomes, visualised as X.Y compound chromosomes at mitosis. Transfer of few copies of a length variant between X and Y indicates a clustering of variants. Flies that have reverted back to wild-type seemingly have undergone a second unequal exchange, giving rise to a compound X.Y chromosome containing Y rDNA of normal amounts. Unequal exchanges between X and Y rDNA arrays could contribute to the observed coevolution of rDNA sequences on these chromosomes. The biological significance of this outcome is discussed.  相似文献   

5.
6.
7.
During macronuclear development the Tetrahymena thermophila ribosomal RNA gene is excised from micronuclear chromosome 1 by site-specific cleavage at chromosome breakage sequence (Cbs) elements, rearranged into a ‘palindromic’ 21 kb minichromosome and extensively amplified. Gene amplification initiates from origins in the 5′ non-transcribed spacer, and forks moving toward the center of the palindrome arrest at a developmentally regulated replication fork barrier (RFB). The RFB is inactive during vegetative cell divisions, suggesting a role in the formation or amplification of macronuclear rDNA. Using micronuclear (germline) transformation, we show that the RFB region facilitates Cbs-mediated excision. Deletion of the RFB inhibits chromosome breakage in a sub-population of developing macronuclei and promotes alternative processing by a Cbs-independent mechanism. Remarkably, the RFB region prevents spontaneous breakage of chromosome 1 in the diploid micronucleus. Strains heterozygous for ΔRFB and wild-type rDNA lose the ΔRFB allele and distal left arm of chromosome 1 during vegetative propagation. The wild-type chromosome is subsequently fragmented near the rDNA locus, and both homologs are progressively eroded, suggesting that broken micronuclear chromosomes are not ‘healed’ by telomerase. Deletion of this 363 bp segment effectively creates a fragile site in the micronuclear genome, providing the first evidence for a non-telomere cis-acting determinant that functions to maintain the structural integrity of a mitotic eukaryotic chromosome.  相似文献   

8.
The rDNA magnification process consists of a rapid and inheritable rDNA increase occurring in bobbed males: in a few generations the bb loci acquire the wild-type rDNA value and reach a bb+ phenotype.—We have analyzed the rDNA magnification process in the repair-recombination-deficient mutant mei9a, both at the phenotypical and rDNA content levels. In mei9a bb double mutants the recovery of bb+ phenotype is strongly disturbed and the rDNA redundancy value fails to reach the wild-type level. The strong effect of this meiotic mutation on rDNA magnification suggests a close relationship between this phenomenon and the repair-recombination processes.  相似文献   

9.
The genetically induced increase in the number of 18S + 28S ribosomal genes known as magnification has been reported to occur in male Drosophila but has not previously been observed in females. We now report that bobbed magnified (bbm) is recovered in progeny of female Drosophila carrying three different X bobbed (Xbb) chromosomes and the helper XYbb chromosome, which is a derivative of the Ybb- chromosome. Using different combinations of bb or bb+ X and Y chromosomes, we show that magnification in females requires both a deficiency in ribosomal genes and the presence of a Y chromosome: X/X females that are rDNA-deficient but do not carry a Y chromosome do not produce bbm; similarly, X/X/Y females that carry a Y chromosome but are not rDNA-deficient do not produce bbm. Bobbed magnified is only recovered from rDNA-deficient X/XY, X/X/Y or XX/Y females. We have also found that females carrying a ring Xbb chromosome together with the XYbb- chromosome do not produce bbm, indicating that ring X chromosomes are inhibited to magnify in females as in males. We postulate that the requirement for a Y chromosome is due to sequences on the Y chromosome that regulate or encode factor(s) required for magnification, or alternatively, affect pairing of the ribosomal genes.--These studies demonstrate that magnification is not limited to males but also occurs in females. Magnification in females is induced by rDNA-deficient conditions and the presence of a Y chromosome, and probably occurs by a mechanism similar to that in males.  相似文献   

10.
In all eukaryotes, the ribosomal RNA genes are stably inherited redundant elements. In Drosophila melanogaster, the presence of a Ybb(-) chromosome in males, or the maternal presence of the Ribosomal exchange (Rex) element, induces magnification: a heritable increase of rDNA copy number. To date, several alternative classes of mechanisms have been proposed for magnification: in situ replication or extra-chromosomal replication, either of which might act on short or extended strings of rDNA units, or unequal sister chromatid exchange. To eliminate some of these hypotheses, none of which has been clearly proven, we examined molecular-variant composition and compared genetic maps of the rDNA in the bb(2) mutant and in some magnified bb(+) alleles. The genetic markers used are molecular-length variants of IGS sequences and of R1 and R2 mobile elements present in many 28S sequences. Direct comparison of PCR products does not reveal any particularly intensified electrophoretic bands in magnified alleles compared to the nonmagnified bb(2) allele. Hence, the increase of rDNA copy number is diluted among multiple variants. We can therefore reject mechanisms of magnification based on multiple rounds of replication of short strings. Moreover, we find no changes of marker order when pre- and postmagnification maps are compared. Thus, we can further restrict the possible mechanisms to two: replication in situ of an extended string of rDNA units or unequal exchange between sister chromatids.  相似文献   

11.
12.
The phylogenetic potential of entire 26S rDNA sequences in plants   总被引:6,自引:1,他引:5  
18S ribosomal RNA genes are the most widely used nuclear sequences for phylogeny reconstruction at higher taxonomic levels in plants. However, due to a conservative rate of evolution, 18S rDNA alone sometimes provides too few phylogenetically informative characters to resolve relationships adequately. Previous studies using partial sequences have suggested the potential of 26S or large-subunit (LSU) rDNA for phylogeny retrieval at taxonomic levels comparable to those investigated with 18S rDNA. Here we explore the patterns of molecular evolution of entire 26S rDNA sequences and their impact on phylogeny retrieval. We present a protocol for PCR amplification and sequencing of entire (approximately 3.4 kb) 26S rDNA sequences as single amplicons, as well as primers that can be used for amplification and sequencing. These primers proved useful in angiosperms and Gnetales and likely have broader applicability. With these protocols and primers, entire 26S rDNA sequences were generated for a diverse array of 15 seed plants, including basal eudicots, monocots, and higher eudicots, plus two representatives of Gnetales. Comparisons of sequence dissimilarity indicate that expansion segments (or divergence domains) evolve 6.4 to 10.2 times as fast as conserved core regions of 26S rDNA sequences in plants. Additional comparisons indicate that 26S rDNA evolves 1.6 to 2.2 times as fast as and provides 3.3 times as many phylogenetically informative characters as 18S rDNA; compared to the chloroplast gene rbcL, 26S rDNA evolves at 0.44 to 1.0 times its rate and provides 2.0 times as many phylogenetically informative characters. Expansion segment sequences analyzed here evolve 1.2 to 3.0 times faster than rbcL, providing 1.5 times the number of informative characters. Plant expansion segments have a pattern of evolution distinct from that found in animals, exhibiting less cryptic sequence simplicity, a lower frequency of insertion and deletion, and greater phylogenetic potential.   相似文献   

13.
Dhar MK  Friebe B  Koul AK  Gill BS 《Chromosoma》2002,111(5):332-340
The present study documents the de novo origin of an apparent B chromosome in Plantago lagopus. The origin was associated with mutation (aneuploidy), chromosome fragmentation, specific DNA sequence amplification, addition of telomeric repeats, and centromeric misdivision. It originated in the progeny of trisome 2, from the excision of 5S rDNA and 18S, 5.8S, 25S rDNA sequences located on chromosome 2, and within a few generations acquired many characteristics of an apparent B chromosome. The B chromosome has preferential transmission through the male (41%, P<0.025) and female gametes (42%, P<0.01) but does not affect plant phenotype. The B chromosome is completely heterochromatic, has a functional centromere and does not pair at meiosis with any A chromosomes of the standard complement. Fluorescence in situ hybridization analysis showed that it arose from massive amplification of 5S rDNA sequences, has 18S, 5.8S, 25S rDNA sequences at the ends of both arms and telomeric repeats at both termini. Ag-NOR-banding and determination of the maximum number of nucleoli in interphase cells indicate that the nucleolar organizer regions at the ends of both arms of the B chromosome are active in organizing nucleoli. RNA blot analysis showed that the 5S rDNA sequences are not transcribed. To our knowledge, this is the first report that fully documents one of the mechanisms by which B chromosomes may arise in nature.  相似文献   

14.
B D McKee  G H Karpen 《Cell》1990,61(1):61-72
In Drosophila melanogaster males, the sex chromosomes pair during meiosis in the centric X heterochromatin and at the base of the short arm of the Y (YS), in the vicinity of the nucleolus organizers. X chromosomes deficient for the pairing region segregate randomly from the Y. In this report we show that a single ribosomal RNA (rRNA) gene stimulates X-Y pairing and disjunction when inserted onto a heterochromatically deficient X chromosome by P element-mediated transformation. We also show that insert-containing X chromosomes pair at the site of insertion, that autosomal rDNA inserts do not affect X-Y pairing or disjunction, and that the strength of an X pairing site is proportional to the dose of ectopic rRNA genes. These results demonstrate that rRNA genes can promote X-Y pairing and disjunction and imply that the nucleolus organizers function as X-Y pairing sites in wild-type Drosophila males.  相似文献   

15.
Ring Chromosomes and rDNA Magnification in Drosophila   总被引:4,自引:0,他引:4       下载免费PDF全文
Tartof showed that ribosomal gene magnification in Drosophila was inhibited in a ring X chromosome. The present studies extend this observation by showing that ring X chromosomes are lost meiotically in male Drosophila undergoing ribosomal gene magnification as evidenced by the recovery of a lower number of ring-bearing progeny under magnifying conditions compared with nonmagnifying conditions. Associated with ring chromosome loss is a highly significant increase in the number of double-sized dicentric ring chromosomes in meiotic cells from magnifying males. These observations explain the failure of ring X chromosomes to magnify and imply that magnification in rod chromosomes occurs via a mechanism of unequal sister chromatid exchange. Our results support the hypothesis that the primary event of magnification is a sister chromatid exchange in the rDNA, that the frequency of sister strand exchanges is increased in magnifying flies, that a significant number of exchanges in magnifying flies occurs meiotically and that some of the exchanges are nonreciprocal. We have also found that autosomal mutations can affect both the frequency of abnormal ring structures and the ability of ring X chromosomes to magnify.  相似文献   

16.
Sequence arrangement of the rDNA of Drosophila melanogaster.   总被引:41,自引:0,他引:41  
M Pellegrini  J Manning  N Davidson 《Cell》1977,10(2):213-214
The sequence arrangement of genes coding for stable rRNA species and of the interspersed spacers on long single strands of rDNA purified from total chromosomal DNA of Drosophila melanogaster has been determined by a study of the structure of rRNA:DNA hybrids which were mounted for electron microscope observation by the gene 32-ethidium bromide technique. One repeat unit contains the following sequences in the order given. First, an 18 S gene of length 2.13 +/- 0.17 kb. Second, an internal transcribed spacer (Spl) of length 1.58 +/- 0.15 kb. A short sequence coding for the 5.8S and perhaps the 2S rRNA species is located within this spacer. Third, the 28S gene with a length of 4.36 +/- 0.23 kb. About 55% of the 28S genes are unbroken or continuous (C genes). However, about 45% of the 28S genes contain an insertion of an additional segment of DNA that is not complementary to rRNA (l genes). The insertion occurs at a reproducible point 2.99 +/- 0.26 kb from the junction with Spl. The insertions are heterogeneous in length and occur in three broad size classes: 1.42 +/- 0.47, 3.97 +/- 0.55, and 6.59 +/- 0.62 kb. Fourth, an external spacer between the 28S gene and the next 18S gene which is presumably mainly nontranscribed and which has a heterogeneous length distribution with a mean length and standard deviation of 5.67 +/- 1.92 kb. Short inverted repeat stems (100-400 nucleotide pairs) occur at the base of the insertion. It is known from other studies that I genes occur only on the X chromosome. The present study shows that the I and C genes on the X chromosomes are approximately randomly assorted. The sequence arrangement on the plasmid pDm103 containing one repeat of rDNA (Glover et al., 1975) has been determined by similar methods. The I gene on this plasmid contains an inverted repeat stem. The occurrence of inverted repeat sequences flanking the insertion supports the speculation that these sequences are translocatable elements similar to procaryotic translocons.  相似文献   

17.
18.
19.
A Two-Stage Model for the Control of rDNA Magnification   总被引:5,自引:3,他引:2       下载免费PDF全文
Males of the genotype bb/Ybb- have been shown to produce both magnified (bbm+) and, less frequently, reduced (bbrl) X chromosomes. An analysis of the progeny of single magnifying bb/Ybb- males reveals that bbm+ revertants may be recovered either as rare single events or, more frequently, in large clusters. To analyze the role of the bb phenotype in the induction of rDNA magnification we have constructed a series of bb and bb+ derivatives of Ybb-. Males carrying an X chromosomal bb allele and one of these derivatives (bb/bbYbb- or bb/bb+Ybb-) produce small numbers (one to two) of bbm+ progeny at a frequency similar to that observed for bb/Ybb- males but do not produce large clusters of bbm+ revertants. In addition, bb/bb+Ybb- males produce essentially equal numbers of magnified (bbm+) and reduced (bbrl) X chromosomes. These data, together with a consideration of the growth properties of the male germline in Drosophila, suggest that magnification/reduction may occur at two different times during development. Those events that give rise to large clusters, and, thus, necessarily arise early in germ cell development, appear to be dependent on the bb phenotype. However, those events that give rise to single bbm+ chromosomes arise late in spermatogenesis, probably at meiosis, and are independent of the bb phenotype.  相似文献   

20.
Sullivan M  Higuchi T  Katis VL  Uhlmann F 《Cell》2004,117(4):471-482
At anaphase onset, the protease separase triggers chromosome segregation by cleaving the chromosomal cohesin complex. Here, we show that cohesin destruction in metaphase is sufficient for segregation of much of the budding yeast genome, but not of the long arm of chromosome XII that contains the rDNA repeats. rDNA in metaphase, unlike most other sequences, remains in an undercondensed and topologically entangled state. Separase, concomitantly with cleaving cohesin, activates the phosphatase Cdc14. We find that Cdc14 exerts two effects on rDNA, both mediated by the condensin complex. Lengthwise condensation of rDNA shortens the chromosome XII arm sufficiently for segregation. This condensation depends on the aurora B kinase complex. Independently of condensation, Cdc14 induces condensin-dependent resolution of cohesin-independent rDNA linkage. Cdc14-dependent sister chromatid resolution at the rDNA could introduce a temporal order to chromosome segregation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号