首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Sundarbans tiger inhabits a unique mangrove habitat and are morphologically distinct from the recognized tiger subspecies in terms of skull morphometrics and body size. Thus, there is an urgent need to assess their ecological and genetic distinctiveness and determine if Sundarbans tigers should be defined and managed as separate conservation unit. We utilized nine microsatellites and 3 kb from four mitochondrial DNA (mtDNA) genes to estimate genetic variability, population structure, demographic parameters and visualize historic and contemporary connectivity among tiger populations from Sundarbans and mainland India. We also evaluated the traits that determine exchangeability or adaptive differences among tiger populations. Data from both markers suggest that Sundarbans tiger is not a separate tiger subspecies and should be regarded as Bengal tiger (P. t. tigris) subspecies. Maximum likelihood phylogenetic analyses of the mtDNA data revealed reciprocal monophyly. Genetic differentiation was found stronger for mtDNA than nuclear DNA. Microsatellite markers indicated low genetic variation in Sundarbans tigers (He= 0.58) as compared to other mainland populations, such as northern and Peninsular (Hebetween 0.67- 0.70). Molecular data supports migration between mainland and Sundarbans populations until very recent times. We attribute this reduction in gene flow to accelerated fragmentation and habitat alteration in the landscape over the past few centuries. Demographic analyses suggest that Sundarbans tigers have diverged recently from peninsular tiger population within last 2000 years. Sundarbans tigers are the most divergent group of Bengal tigers, and ecologically non-exchangeable with other tiger populations, and thus should be managed as a separate “evolutionarily significant unit” (ESU) following the adaptive evolutionary conservation (AEC) concept.  相似文献   

2.
Conservation biologists assign population distinctiveness by classifying populations as evolutionarily significant units (ESUs). Historically, this classification has included ecological and genetic data. However, recent ESU concepts, coupled with increasing availability of data on neutral genetic variation, have led to criteria based exclusively on molecular phylogenies. We argue that the earlier definitions of ESUs, which incorporated ecological data and genetic variation of adaptive significance, are more relevant for conservation. Furthermore, this dichotomous summary (ESU or not) of a continuum of population differentiation is not adequate for determining appropriate management actions. We argue for a broader categorization of population distinctiveness based on concepts of ecological and genetic exchangeability (sensu Templeton).  相似文献   

3.
The way environmental variation shapes neutral and adaptive genetic variation in natural populations is a key issue in evolutionary biology. Genome scans allow the identification of the genetic basis of local adaptation without previous knowledge of genetic variation or traits under selection. Candidate loci for divergent adaptation are expected to show higher FST than neutral loci influenced solely by random genetic drift, migration and mutation. The comparison of spatial patterns of neutral markers and loci under selection may help disentangle the effects of gene flow, genetic drift and selection among populations living in contrasting environments. Using the gastropod Radix balthica as a system, we analyzed 376 AFLP markers and 25 mtDNA COI haplotypes for candidate loci and associations with local adaptation among contrasting thermal environments in Lake Mývatn, a volcanic lake in northern Iceland. We found that 2% of the analysed AFLP markers were under directional selection and 12% of the mitochondrial haplotypes correlated with differing thermal habitats. The genetic networks were concordant for AFLP markers and mitochondrial haplotypes, depicting distinct topologies at neutral and candidate loci. Neutral topologies were characterized by intense gene flow revealed by dense nets with edges connecting contrasting thermal habitats, whereas the connections at candidate loci were mostly restricted to populations within each thermal habitat and the number of edges decreased with temperature. Our results suggest microgeographic adaptation within Lake Mývatn and highlight the utility of genome scans in detecting adaptive divergence.  相似文献   

4.
Monsen KJ  Blouin MS 《Molecular ecology》2003,12(12):3275-3286
There is substantial debate over the criteria that should be used to group populations of a species into distinct units for conservation (e.g. evolutionarily significant units, management units, distinct population segments). However, in practice molecular genetic differentiation is often the only or main criterion used to identify such units. Most genetic studies attempting to define conservation units in animals use a single molecular marker, most often mitochondrial, and use samples from a limited number of populations throughout the species' range. Although there are many benefits to using mtDNA, certain features can cause it to show patterns of differentiation among populations that do not reflect the history of differentiation at the nuclear genome where loci controlling traits of adaptive significance presumably occur. Here we illustrate an example of such mitochondrial-nuclear discordance in a ranid frog, and show how using mtDNA or nuclear loci alone could have led to very different conservation recommendations. We also found very high genetic differentiation among populations on a local scale, and discuss the conservation implications of our results.  相似文献   

5.
Delimiting species is important to every subfield in biology. Templeton's cohesion species concept uses genetic and ecological exchangeability to identify sets of populations that ought to be considered as the same species, and the lack of exchangeability helps determine which populations can be grouped as evolutionarily significant units (ESU) in conservation science. However, previous work assessing genetic and ecological interchangeability among populations has been limited in scope. Here, we provide a method for assessing exchangeability that incorporates multiple, independent lines of multivariate evidence in genetic, behavioural and morphological data. We use this approach to assess exchangeability across three disjunct groups of populations of the Pine Barrens Treefrog (Hyla andersonii) from the eastern United States. This species is considered threatened by each state in which it occurs and conservation management of this taxon requires a clearer understanding of how populations in these three regions may differ from one another. We find a strikingly concordant pattern in which the first axis of variation for each of the three types of data distinguishes populations along a latitudinal gradient and the second axis distinguishes the set of populations occurring in the Carolinas from those occurring in the New Jersey and Florida/Alabama regions. We know of no comparable data set that displays such concordance among different types of data across so large a geographic range. The overlap in trait values (i.e. exchangeability) between neighbouring regions, however, is substantial in all three types of data, which supports continued consideration of this taxon as a single species.  相似文献   

6.
Evolutionary inferences are usually based on statistical models that compare mean genotypes or phenotypes (or their frequencies) among populations. An alternative is to use the full distribution of genotypes and phenotypes to infer the “exchangeability” of individuals among populations. We illustrate this approach by using discriminant functions on principal components to classify individuals among paired lake and stream populations of threespine stickleback in each of six independent watersheds. Classification based on neutral and nonneutral microsatellite markers was highest to the population of origin and next highest to populations in the same watershed. These patterns are consistent with the influence of historical contingency (separate colonization of each watershed) and subsequent gene flow (within but not between watersheds). In comparison to this low genetic exchangeability, ecological (diet) and morphological (trophic and armor traits) exchangeability was relatively high—particularly among populations from similar habitats. These patterns reflect the role of natural selection in driving parallel adaptive changes when independent populations colonize similar habitats. Importantly, however, substantial nonparallelism was also evident. Our results show that analyses based on exchangeability can confirm inferences based on statistical analyses of means or frequencies, while also refining insights into the drivers of—and constraints on—evolutionary diversification.  相似文献   

7.
The study of the association between morphological and genetic divergence can provide important information on the factors determining population differentiation and gene flow at different spatiotemporal scales. In this study we analyze the congruence between morphological and genetic divergence in the Iberian populations of Mioscirtus wagneri, a specialized grasshopper exclusively inhabiting highly fragmented hypersaline low grounds. We have found strong morphological variation among the studied localities and among mtDNA- and microsatellite-based genetic clusters. However, we have detected some cases of morphological convergence between highly differentiated populations. By contrast, certain genetically homogeneous populations at both mtDNA and microsatellite markers showed significant morphological differentiation which may be explained by phenotypic plasticity or divergent selection pressures acting at different spatiotemporal scales. Mantel tests also revealed that morphological divergence was associated with microsatellite- but not with mtDNA-based genetic distances. Overall, this study suggests that morphological traits can provide additional information on the underlying population genetic structure when only data on scarcely variable mtDNA markers is available. Thus, morphology can retain useful information on genetic structure and has the benefit over molecular methods of being inexpensive, offering a preliminary/complementary useful criterion for the establishment of management units necessary to guide conservation policies.  相似文献   

8.
Recent technological developments have facilitated an increased focus on identifying genomic regions underlying adaptive trait variation in natural populations, and it has been advocated that this information should be important for designating population units for conservation. In marine fishes, phenotypic studies have suggested adaptation through divergence of life-history traits among natural populations, but the distribution of adaptive genetic variation in these species is still relatively poorly known. In this study, we extract information about the geographical distribution of genetic variation for 33 single nucleotide polymorphisms (SNPs) associated with life-history trait candidate genes, and compare this to variation in 70 putatively neutral SNPs in Atlantic cod (Gadus morhua). We analyse samples covering the major population complexes in the eastern Atlantic and find strong evidence for non-neutral levels and patterns of population structuring for several of the candidate gene-associated markers, including two SNPs in the growth hormone 1 gene. Thus, this study aligns with findings from phenotypic studies, providing molecular data strongly suggesting that these or closely linked genes are under selection in natural populations of Atlantic cod. Furthermore, we find that patterns of variation in outlier markers do not align with those observed at selectively neutral markers, and that outlier markers identify conservation units on finer geographical scales than those revealed when analysing only neutral markers. Accordingly, results also suggest that information about adaptive genetic variation will be useful for targeted conservation and management in this and other marine species.  相似文献   

9.
Frankham R 《Heredity》2012,108(3):167-178
Levels of genetic diversity in finite populations are crucial in conservation and evolutionary biology. Genetic diversity is required for populations to evolve and its loss is related to inbreeding in random mating populations, and thus to reduced population fitness and increased extinction risk. Neutral theory is widely used to predict levels of genetic diversity. I review levels of genetic diversity in finite populations in relation to predictions of neutral theory. Positive associations between genetic diversity and population size, as predicted by neutral theory, are observed for microsatellites, allozymes, quantitative genetic variation and usually for mitochondrial DNA (mtDNA). However, there are frequently significant deviations from neutral theory owing to indirect selection at linked loci caused by balancing selection, selective sweeps and background selection. Substantially lower genetic diversity than predicted under neutrality was found for chromosomes with low recombination rates and high linkage disequilibrium (compared with 'normally' recombining chromosomes within species and adjusted for different copy numbers and mutation rates), including W (median 100% lower) and Y (89% lower) chromosomes, dot fourth chromosomes in Drosophila (94% lower) and mtDNA (67% lower). Further, microsatellite genetic and allelic diversity were lost at 12 and 33% faster rates than expected in populations adapting to captivity, owing to widespread selective sweeps. Overall, neither neutral theory nor most versions of the genetic draft hypothesis are compatible with all empirical results.  相似文献   

10.
Population introduction is an important tool for ecosystem restoration. However, before introductions should be conducted, it is important to evaluate the genetic, phenotypic and ecological suitability of possible replacement populations. Careful genetic analysis is particularly important if it is suspected that the extirpated population was unique or genetically divergent. On the island of Martha's Vineyard, Massachusetts, the introduction of greater prairie chickens (Tympanuchus cupido pinnatus) to replace the extinct heath hen (T. cupido cupido) is being considered as part of an ecosystem restoration project. Martha's Vineyard was home to the last remaining heath hen population until its extinction in 1932. We conducted this study to aid in determining the suitability of greater prairie chickens as a possible replacement for the heath hen. We examined mitochondrial control region sequences from extant populations of all prairie grouse species (Tympanuchus) and from museum skin heath hen specimens. Our data suggest that the Martha's Vineyard heath hen population represents a divergent mitochondrial lineage. This result is attributable either to a long period of geographical isolation from other prairie grouse populations or to a population bottleneck resulting from human disturbance. The mtDNA diagnosability of the heath hen contrasts with the network of mtDNA haplotypes of other prairie grouse (T. cupido attwateri, T. pallidicinctus and T. phasianellus), which do not form distinguishable mtDNA groupings. Our findings suggest that the Martha's Vineyard heath hen was more genetically isolated than are current populations of prairie grouse and place the emphasis for future research on examining prairie grouse adaptations to different habitat types to assess ecological exchangeability between heath hens and greater prairie chickens.  相似文献   

11.
One of the main questions in evolutionary and conservation biology is how geographical and environmental features of the landscape shape neutral and adaptive genetic variation in natural populations. The identification of genomic polymorphisms that account for adaptive variation can aid in finding candidate loci for local adaptation. Consequently, a comparison of spatial patterns in neutral markers and loci under selection may help disentangle the effects of gene flow, genetic drift and selection at the landscape scale. Many amphibians breed in wetlands, which differ in environmental conditions and in the degree of isolation, enhancing the potential for local adaptation. We used microsatellite markers to measure genetic differentiation among 17 local populations of Rana arvalis breeding in a network of wetlands. We found that locus RC08604 deviated from neutral expectations, suggesting that it is a good candidate for directional selection. We used a genetic network analysis to show that the allele distribution in this locus is correlated with habitat characteristics, whereas this was not the case at neutral markers that displayed a different allele distribution and population network in the study area. The graph approach illustrated the genomic heterogeneity (neutral loci vs. the candidate locus for directional selection) of gene exchange and genetic divergence among populations under directional selection. Limited gene flow between wetlands was only observed at the candidate genomic region under directional selection. RC08604 is partially located inside an up‐regulated thyroid‐hormone receptor (TRβ) gene coordinating the expression of other genes during metamorphosis and appears to be linked with variation in larval life‐history traits found among R. arvalis populations. We suggest that directional selection on genes coding larval life‐history traits is strong enough to maintain the divergence in these genomic regions, reducing the effective recombination of locally adapted alleles but not in other regions of the genome. Integrating this knowledge into conservation plans at the landscape scale will improve the design of management strategies to preserve adaptive genetic diversity in wetland networks.  相似文献   

12.
Species population genetics could be an important factor explaining variation in clade species richness. Here, we use newly generated amplified fragment length polymorphism (AFLP) data to test whether five pairs of sister clades of Costa Rican orchids that differ greatly in species richness also differ in average neutral genetic differentiation within species, expecting that if the strength of processes promoting differentiation within species is phylogenetically heritable, then clades with greater genetic differentiation should diversify more. Contrary to expectation, neutral genetic differentiation does not correlate directly with total diversification in the clades studied. Neutral genetic differentiation varies greatly among species and shows no heritability within clades. Half of the variation in neutral genetic differentiation among populations can be explained by ecological variables, and species‐level traits explain the most variation. Unexpectedly, we find no isolation by distance in any species, but genetic differentiation is greater between populations occupying different niches. This pattern corresponds with those observed for microscopic eukaryotes and could reflect effective widespread dispersal of tiny and numerous orchid seeds. Although not providing a definitive answer to whether population genetics processes affect clade diversification, this work highlights the potential for addressing new macroevolutionary questions using a comparative population genetic approach.  相似文献   

13.
The identification of hybrids is often a subject of primary concern for the development of conservation and management strategies, but can be difficult when the hybridizing species are closely related and do not possess diagnostic genetic markers. However, the combined use of mitochondrial DNA (mtDNA), autosomal and Y chromosome genetic markers may allow the identification of hybrids and of the direction of hybridization. We used these three types of markers to genetically characterize one possible wolf-dog hybrid in the endangered Scandinavian wolf population. We first characterized the variability of mtDNA and Y chromosome markers in Scandinavian wolves as well as in neighboring wolf populations and in dogs. While the mtDNA data suggested that the target sample could correspond to a wolf, its Y chromosome type had not been observed before in Scandinavian wolves. We compared the genotype of the target sample at 18 autosomal microsatellite markers with those expected in pure specimens and in hybrids using assignment tests. The combined results led to the conclusion that the animal was a hybrid between a Scandinavian female wolf and a male dog. This finding confirms that inter-specific hybridization between wolves and dogs can occur in natural wolf populations. A possible correlation between hybridization and wolf population density and disturbance deserves further research.  相似文献   

14.
The existence and mode of selection operating on heritable adaptive traits can be inferred by comparing population differentiation in neutral genetic variation between populations (often using F(ST) values) with the corresponding estimates for adaptive traits. Such comparisons indicate if selection acts in a diversifying way between populations, in which case differentiation in selected traits is expected to exceed differentiation in neutral markers [F(ST )(selected) > F(ST )(neutral)], or if negative frequency-dependent selection maintains genetic polymorphisms and pulls populations towards a common stable equilibrium [F(ST) (selected) < F(ST) (neutral)]. Here, we compared F(ST) values for putatively neutral data (obtained using amplified fragment length polymorphism) with estimates of differentiation in morph frequencies in the colour-polymorphic damselfly Ischnura elegans. We found that in the first year (2000), population differentiation in morph frequencies was significantly greater than differentiation in neutral loci, while in 2002 (only 2 years and 2 generations later), population differentiation in morph frequencies had decreased to a level significantly lower than differentiation in neutral loci. Genetic drift as an explanation for population differentiation in morph frequencies could thus be rejected in both years. These results indicate that the type and/or strength of selection on morph frequencies in this system can change substantially between years. We suggest that an approach to a common equilibrium morph frequency across all populations, driven by negative frequency-dependent selection, is the cause of these temporal changes. We conclude that inferences about selection obtained by comparing F(ST) values from neutral and adaptive genetic variation are most useful when spatial and temporal data are available from several populations and time points and when such information is combined with other ecological sources of data.  相似文献   

15.
The view on homogeneous population genetic structure in many marine fish with high mobility has changed significantly during the last ten years. Molecular genetic population studies over the whole ranges of such species as Atlantic herring and Atlantic cod showed a complex picture of spatial differentiation both on the macrogeographic and, in many areas, on the microgeographic scale, although the differentiation for neutral molecular markers was low. It was established that the migration activity of such fish is constrained in many areas of the species range by hydrological and physicochemical transition zones (environmental gradients), as well as gyres in the spawning regions. Natal homing was recorded in a number of marine fish species. Existing in marine fish constraints of gene migration and a very high variance of reproductive success determine a significantly smaller proportion of effective reproductive size of their populations in the total population size, which generates more complex abundance dynamics than assumed earlier. The various constraints on gene migration and natal homing in marine fish promote the formation of local adaptations at ecologically important phenotypic traits. Effects of selection underlying adaptations are actively investigated in marine fish on the genomic level, using approaches of population genomics. The knowledge of adaptive intraspecific structure enables understanding the ecological and evolutionary processes, that influence biodiversity and providing spatial frames for conservation of genetic resources under commercial exploitation. Contemporary views on the population genetic and adaptive structures or biocomplexity in marine fish support and develop the main principles of the conception of systemic organization of the species and its regional populations, which were advanced by Yu.P. Altukhov and Yu.G. Rychkov.  相似文献   

16.
Adaptive radiation is the evolution of ecological and phenotypical diversity. It arises via ecological opportunity that promotes the exploration of underutilized or novel niches mediating specialization and reproductive isolation. The assumed precondition for rapid local adaptation is diversifying natural selection, but random genetic drift could also be a major driver of this process. We used 27 populations of European whitefish (Coregonus lavaretus) from nine lakes distributed in three neighboring subarctic watercourses in northern Fennoscandia as a model to test the importance of random drift versus diversifying natural selection for parallel evolution of adaptive phenotypic traits. We contrasted variation for two key adaptive phenotypic traits correlated with resource utilization of polymorphic fish; the number of gill rakers and the total length of fish, with the posterior distribution of neutral genetic differentiation from 13 microsatellite loci, to test whether the observed phenotypic divergence could be achieved by random genetic drift alone. Our results show that both traits have been under diversifying selection and that the evolution of these morphs has been driven by isolation through habitat adaptations. We conclude that diversifying selection acting on gill raker number and body size has played a significant role in the ongoing adaptive radiation of European whitefish morphs in this region.  相似文献   

17.
Glacial survival and local adaptation in an alpine leaf beetle   总被引:1,自引:0,他引:1  
The challenge in defining conservation units so that they represent evolutionary entities has been to combine both genetic properties and ecological significance. Here we make use of the complexity of the European Alps, with their genetic landscape shaped by geographical barriers and postglacial colonization, to examine the correlation between ecological and genetic divergence. Montane species, because of the fragmentation of their present habitat, constitute extreme cases in which to test if genetically distinct subgroups based on neutral markers are also ecologically differentiated and show local adaptation. In the leaf beetle Oreina elongata, populations show variation in host plant use and a patchy distribution throughout the Alps and Apennines. We demonstrate that despite very strong genetic isolation (F(ST) = 0.381), variation in host plant use has led to differences in larval life-history traits between populations only as a secondary effect of host defence chemistry, and not through physiological adaptation to plant nutritional value. We also establish that populations that are more ecologically different in terms of larval performance are also more genetically divergent. In addition, morphological variation used to define subspecies appears to be mirrored in the population genetics of this species, resulting in almost perfect clustering based on microsatellite data. Finally, we argue from their strong genetic structure and congruent distribution that the subspecies of O. elongata were divided among the same glacial refugia within the Alps that have been proposed for alpine plants.  相似文献   

18.
We screened genetic variation in a polytypicorganism, whose populations are oftendistributed into numerous isolated habitats,and integrated the results into a critique ofdefining ``units' of conservation for organismswith highly fragmented populations. Sixteenpopulations of brown trout Salmo truttaL. across 8 Portuguese river basins werescreened for variation at 5 loci (mtDNA andallozymes). Population history based on mtDNArevealed a mosaic pattern driven by pastfragmentation and restricted gene flow withlittle correspondence to major river drainagesor recently proposed OCUs on the IberianPeninsula. Such patterns of variation offer achallenge to conservation strategies that basethemselves on defining units of conservation,particularly if such units intend to reflect ahierarchical evolutionary structure. Wesuggest that geographically mosaic patterns ofevolutionary lineages, as well as adaptivelysignificant traits are common characteristicsof many freshwater organisms. Thus,large-scale units, even if diagnosed by mtDNAclades, are often too heterogeneous to considera ``unit' of conservation. Alternatively, abottom-up perspective that prioritizespopulations or metapopulations is both morepractical and more effective in recognizing andpreserving evolutionary diversity.  相似文献   

19.
Genomic data have the potential to revolutionize the delineation of conservation units (CUs) by allowing the detection of adaptive genetic variation, which is otherwise difficult for rare, endangered species. In contrast to previous recommendations, we propose that the use of neutral versus adaptive markers should not be viewed as alternatives. Rather, neutral and adaptive markers provide different types of information that should be combined to make optimal management decisions. Genetic patterns at neutral markers reflect the interaction of gene flow and genetic drift that affects genome-wide variation within and among populations. This population genetic structure is what natural selection operates on to cause adaptive divergence. Here, we provide a new framework to integrate data on neutral and adaptive markers to protect biodiversity.  相似文献   

20.
The adaptation of organisms to their environment has been a subject of study for a long time. One method to study adaptations in populations involves comparing contemporary populations of the same species under different selective regimes, in what is known as a ??local adaptation?? study. A previous study of the cyclically parthenogenetic rotifer Brachionus plicatilis found high heritabilities for some life-history traits. Some of these life-history traits significantly differed among six populations from Eastern Spain and data suggested some traits to have higher evolutionary rates than neutral genetic markers. Here, by studying the same B. plicatilis populations, we examine the variation and possible local adaptation of their main life-history traits, closely related to fitness, in relation to habitat salinity and temperature. These environmental factors have been shown to play a key role in the ecological differentiation among co-generic species of B. plicatilis. The results obtained in this study show that: (1) the seasonality of rotifer populations from Eastern Spain has profoundly influenced sexual reproduction strategies; (2) salinity is probably a key factor in the ecological specialization of some populations; and (3) rotifer populations harbour high variability in their fitness components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号