首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
2.
Cell cycle checkpoints that are engaged in response to damaged and unreplicated DNA may serve additional, constitutive functions. In the developing Xenopus laevis embryo, the checkpoint kinase Chk1 is transiently activated at the midblastula transition (MBT), a period of extensive cell cycle remodeling including the acquisition of cell cycle checkpoints. The timing of many cell cycle remodeling events at the MBT, such as the lengthening of cell cycles, depends upon a critical nucleocytoplasmic (N/C) ratio. However, other events, including the degradation of maternal cyclin E, do not depend upon the N/C ratio, and are regulated by an autonomous developmental timer. To better understand what regulates Chk1 activation at the MBT, embryos were treated with aphidicolin, at different developmental times and for different lengths of time, to reduce the DNA content at the MBT. Chk1 was activated at the MBT in these embryos establishing that Chk1 activation occurs independently of the N/C ratio. Cdc25A is normally phosphorylated by Chk1 at the MBT and then degraded. The degradation of Cdc25A demonstrated partial dependence on DNA content, suggesting that factors other than Chk1 regulate its degradation. When the cyclin E developmental timer was disrupted with the Cdk2 inhibitor Δ34-Xic1, Chk1 was still activated at the MBT, indicating that activation of Chk1 at the MBT was not directly linked to the cyclin E timer. Conversely, unreplicated or damaged DNA, delayed the degradation of cyclin E at the MBT, indicating that the cyclin E/Cdk2 timer is sensitive to engagement of cell cycle checkpoints.  相似文献   

3.
The onset of gastrulation at the Mid-Blastula Transition can accompany profound changes in embryonic cell cycles including the introduction of gap phases and the transition from maternal to zygotic control. Studies in Xenopus and Drosophila embryos have also found that cell cycles respond to DNA damage differently before and after MBT (or its equivalent, MZT, in Drosophila). DNA checkpoints are absent in Xenopus cleavage cycles but are acquired during MBT. Drosophila cleavage nuclei enter an abortive mitosis in the presence of DNA damage whereas post-MZT cells delay the entry into mitosis. Despite attributes that render them workhorses of embryonic cell cycle studies, Xenopus and Drosophila are hardly representative of diverse animal forms that exist. To investigate developmental changes in DNA damage responses in a distant phylum, I studied the effect of an alkylating agent, Methyl Methanesulfonate (MMS), on embryos of Hydractinia echinata. Hydractinia embryos are found to differ from Xenopus embryos in the ability to respond to a DNA damaging agent in early cleavage but are similar to Xenopus and Drosophila embryos in acquiring stronger DNA damage responses and greater resistance to killing by MMS after the onset of gastrulation. This represents the first study of DNA damage responses in the phylum Cnidaria.  相似文献   

4.
5.
We have recently demonstrated that negative regulation of human Cdc25 protein phosphatases by phosphorylation at their 14-3-3 site can be antagonized through phosphorylation at an adjacent site in the -2 position.1 Based on structural homology for different Cdc25 phosphatases, a similar regulatory pathway also could be conserved in Xenopus embryos, where cell cycle checkpoints are not operational prior to the Midblastula Transition (MBT). Here, we demonstrate that before MBT, XeCdc25C is phosphorylated on Ser285, an analogous site to Ser214 in human Cdc25C or Ser307 in Cdc25B.1 Phosphorylation of Ser285 prevents subsequent inhibitory phosphorylation of XeCdc25C on Ser287, thus maintaining XeCdc25C in an active form. Mutation of Ser285 to alanine allows the reconstitution of a DNA damage replication checkpoint. This effect is completely dependent on Ser287 phosphorylation as additional mutation of Ser287 to alanine fully reversed the cell cycle inhibitory effect of Ser285A XeCdc25C. We propose that phosphorylation of XeCdc25C Ser285 may account for the lack of a DNA replication checkpoint in cleaving Xenopus embryos prior to the MBT.  相似文献   

6.
7.
We have recently demonstrated that negative regulation of human Cdc25 protein phosphatases by phosphorylation at their 14-3-3 site can be antagonized through phosphorylation at an adjacent site in the -2 position.1 Based on structural homology for different Cdc25 phosphatases, a similar regulatory pathway also could be conserved in Xenopus embryos, where cell cycle checkpoints are not operational prior to the Midblastula Transition (MBT). Here, we demonstrate that before MBT, XeCdc25C is phosphorylated on Ser285, an analogous site to Ser214 in human Cdc25C or Ser307 Cdc25B.(1) Phosphorylation of Ser285 prevents subsequent inhibitory phosphorylation of XeCdc25C on Ser287, thus maintaining XeCdc25C in an active form. Mutation of Ser285 to alanine allows the reconstitution of a DNA damage replication checkpoint. This effect is completely dependent on Ser287 phosphorylation as additional mutation of Ser287 to alanine fully reversed the cell cycle inhibitory effect of Ser285A XeCdc25C. We propose that phosphorylation of XeCdc25C Ser285 may account for the lack of a DNA replication checkpoint in cleaving Xenopus embryos prior to the MBT.  相似文献   

8.
At the Xenopus midblastula transition (MBT), cell cycles lengthen, and checkpoints that respond to damaged or unreplicated DNA are established. The MBT is triggered by a critical nucleocytoplasmic (N/C) ratio; however, the molecular basis for its initiation remains unknown. In egg extracts, activation of Chk1 checkpoint kinase requires the adaptor protein Claspin, which recruits Chk1 for phosphorylation by ATR. At the MBT in embryos, Chk1 is transiently activated to lengthen the cell cycle. We show that Xenopus Claspin is phosphorylated at the MBT at both DNA replication checkpoint-dependent and -independent sites. Further, in egg extracts, Claspin phosphorylation depends on a threshold N/C ratio, but occurs even when ATR is inhibited. Not all phosphorylation that occurs at the MBT is reproduced in egg extracts. Our results identify Claspin as the most upstream molecule in the signaling pathway that responds to the N/C ratio and indicate that Claspin may also respond to an independent timer to trigger the MBT and activation of cell cycle checkpoints.  相似文献   

9.
10.
11.
12.
13.
The cleavage cycle, which is initiated by fertilization, consists of only S and M phases, and the gap phases (G1 and G2) appear after the midblastula transition (MBT) in the African clawed frog, Xenopus laevis. During early development in Xenopus, we examined the E2F activity, which controls transition from the G1 to S phase in the somatic cell cycle. Gel retardation and transactivation assays revealed that, although the E2F protein was constantly present throughout early development, the E2F transactivation activity was induced in a stage-specific manner, that is, low before MBT and rapidly increased after MBT. Introduction of the recombinant dominant negative E2F (dnE2F), but not the control, protein into the 2-cell stage embryos specifically suppressed E2F activation after MBT. Cells in dnE2F-injected embryos appeared normal before MBT, but ceased to proliferate and eventually died at the gastrula. These cells contained decreased cdk activity with enhanced inhibitory phosphorylation of Cdc2 at Tyr15. Thus, E2F activity is required for cell cycle progression and cell viability after MBT, but not essential for MBT transition and developmental progression during the cleavage stage.  相似文献   

14.
In Xenopus embryos, cell cycle elongation and degradation of Cdc25A (a Cdk2 Tyr15 phosphatase) occur naturally at the midblastula transition (MBT), at which time a physiological DNA replication checkpoint is thought to be activated by the exponentially increased nucleo-cytoplasmic ratio. Here we show that the checkpoint kinase Chk1, but not Cds1 (Chk2), is activated transiently at the MBT in a maternal/zygotic gene product-regulated manner and is essential for cell cycle elongation and Cdc25A degradation at this transition. A constitutively active form of Chk1 can phosphorylate Cdc25A in vitro and can target it rapidly for degradation in pre-MBT embryos. Intriguingly, for this degradation, however, Cdc25A also requires a prior Chk1-independent phosphorylation at Ser73. Ectopically expressed human Cdc25A can be degraded in the same way as Xenopus Cdc25A. Finally, Cdc25A degradation at the MBT is a prerequisite for cell viability at later stages. Thus, the physiological replication checkpoint is activated transiently at the MBT by developmental cues, and activated Chk1, only together with an unknown kinase, targets Cdc25A for degradation to ensure later development.  相似文献   

15.
16.

Background  

The cell cycles of the Xenopus laevis embryo undergo extensive remodeling beginning at the midblastula transition (MBT) of early development. Cell divisions 2–12 consist of rapid cleavages without gap phases or cell cycle checkpoints. Some remodeling events depend upon a critical nucleo-cytoplasmic ratio, whereas others rely on a maternal timer controlled by cyclin E/Cdk2 activity. One key event that occurs at the MBT is the degradation of maternal Wee1, a negative regulator of cyclin-dependent kinase (Cdk) activity.  相似文献   

17.
18.
The role of cyclin-dependent kinases in cell proliferation is well characterized, whereas their somewhat paradoxical role in catalyzing apoptosis is less understood. One Cdk complex implicated in both cell proliferation and cell death is cyclin A/Cdk2. During early embryonic development of Xenopus laevis, distinct isoforms of cyclin A are expressed at different times. From fertilization through gastrulation, cyclin A1 is the predominant isoform. Cyclin A1 dimerizes with Cdk2 but not Cdk1. In contrast, cyclin A2 is expressed at a low level until gastrulation, when it becomes the major A-type cyclin and associates with both Cdk1 and Cdk2. When Xenopus embryos are treated with ionizing radiation (IR) prior to the midblastula transition (MBT), cyclin A1 protein persists beyond the MBT and forms an active complex with Cdk2. During this window of cyclin A1/Cdk2 activity, the embryo undergoes apoptosis. To test the hypothesis that cyclin A1-associated activity is a mediator of apoptosis, cyclin A1 protein level and associated kinase activity were measured in embryos treated with aphidicolin to induce apoptosis. Both cyclin A1 content and associated kinase activity were sustained after the MBT as embryos underwent apoptosis. To determine whether cyclin A1/Cdk2 was sufficient to induce apoptosis, recombinant cyclin A1/Cdk2 complex was injected into single-celled embryos, which induced apoptosis after the MBT. However, morpholinos targeting translation of cyclins A1 and A2 did not block apoptosis in embryos treated with X-rays or aphidicolin. These data indicate that cyclin A1/Cdk2 is sufficient, but not required for apoptosis during early development.  相似文献   

19.
The DNA damage/replication checkpoints act by sensing the presence of damaged DNA or stalled replication forks and initiate signaling pathways that arrest cell cycle progression. Here we report the cloning and characterization of Xenopus orthologues of the RFCand PCNA-related checkpoint proteins. XRad17 shares regions of homology with the five subunits of Replication factor C. XRad9, XRad1, and XHus1 (components of the 9-1-1 complex) all show homology to the DNA polymerase processivity factor PCNA. We demonstrate that these proteins associate with chromatin and are phosphorylated when replication is inhibited by aphidicolin. Phosphorylation of X9-1-1 is caffeine sensitive, but the chromatin association of XRad17 and the X9-1-1 complex after replication block is unaffected by caffeine. This suggests that the X9-1-1 complex can associate with chromatin independently of XAtm/XAtr activity. We further demonstrate that XRad17 is essential for the chromatin binding and checkpoint-dependent phosphorylation of X9-1-1 and for the activation of XChk1 when the replication checkpoint is induced by aphidicolin. XRad17 is not, however, required for the activation of XCds1 in response to dsDNA ends.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号