首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Han YH  Kim HS  Kim JM  Kim SK  Yu DY  Moon EY 《FEBS letters》2005,579(21):4897-4902
Reactive oxygen species (ROS) were generated in all oxygen-utilizing organisms. Peroxiredoxin II (Prx II) as one of antioxidant enzymes may play a protective role against the oxidative damage caused by ROS. In order to define the role of Prx II in organismal aging, we evaluated cellular senescence in Prx II(-/-) mouse embryonic fibroblast (MEF). As compared to wild type MEF, cellular senescence was accelerated in Prx II(-/-) MEF. Senescence-associated (SA)-beta-galactosidase (Gal)-positive cell formation was about 30% higher in Prx II(-/-) MEF. N-Acetyl-l-cysteine (NAC) treatment attenuated SA-beta-Gal-positive cell formation. Prx II(-/-) MEF exhibited the higher G2/M (41%) and lower S (1.6%) phase cells as compared to 24% and 7.3% [corrected] in wild type MEF, respectively. A high increase in the p16 and a slight increase in the p21 and p53 levels were detected in PrxII(-/-) MEF cells. The cellular senescence of Prx II(-/-) MEF was correlated with the organismal aging of Prx II(-/-) mouse skin. While extracellular signal-regulated kinase (ERK) and p38 activation was detected in Prx II(-/-) MEF, ERK and c-Jun N-terminal kinase (JNK) activation was detected in Prx II(-/-) skin. These results suggest that Prx II may function as an enzymatic antioxidant to prevent cellular senescence and skin aging.  相似文献   

3.
Oxidative stress is known to be involved in growth control of vascular smooth muscle cells (VSMCs). We and others have demonstrated that angiotensin II (Ang II) has an important role in vascular remodeling. Several reports suggested that VSMC growth induced by Ang II was elicited by oxidative stress. Gax, growth arrest-specific homeobox is a homeobox gene expressed in the cardiovascular system. Over expression of Gax is demonstrated to inhibit VSMC growth. We previously reported that Ang II down-regulated Gax expression. To address the regulatory mechanism of Gax, we investigated the significance of oxidative stress in Ang II-induced suppression of Gax expression. We further examined the involvement of mitogen-activated protein kinases (MAPKs), which is crucial for cell growth and has shown to be activated by oxidative stress, on the regulation of Gax expression by Ang II. Ang II markedly augmented intracellular H2O2 production which was decreased by pretreatment with N-acetylcystein (NAC), an anti-oxidant. Ang II and H2O2 decreased Gax expression dose-dependently and these effects were blocked by administration of both NAC and pyrrolidine dithiocarbamate (PDTC), another anti-oxidant. Ang II and H2O2 induced marked activation of extracellular signal-responsive kinase1/2 (ERK1/2), which was blocked by NAC. Ang II and H2O2 also activated p38MAPK, and they were blocked by pre-treatment with NAC. However, the level of activated p38MAPK was quite low in comparison with ERK1/2. Ang II- or H2O2 -induced Gax down-regulation was significantly inhibited by PD98059, an ERK1/2 inhibitor but not SB203580, a p38MAPK inhibitor. The present results demonstrated the significance of regulation of Gax expression by redox-sensitive ERK1/2 activation.  相似文献   

4.
5.
6.
EB病毒潜伏膜蛋白1在鼻咽癌细胞中通过ERK介导Ets-1表达   总被引:2,自引:0,他引:2  
为了探讨EB病毒编码的潜伏膜蛋白1(LMP1)对核转录因子Ets-1表达和活化的影响,并证实细胞外信号调节激酶1/2(ERK1/2)参与了该过程,选用可调控表达LMP1的鼻咽癌细胞系L7,应用蛋白质印迹法检测Ets-1、p-ERK蛋白质表达,免疫共沉淀-蛋白质印迹法检测Ets-1磷酸化状态,使用ERK1/2特异性小分子阻断物PD98059作用后,蛋白质印迹法检测p-ERK、Ets-1表达及磷酸化变化.结果显示:在L7细胞中诱导性LMP1可促进p-ERK、Ets-1蛋白质表达及其苏氨酸残基磷酸化,在一定范围呈时间和剂量效应;通过PD98059对诱导性LMP1作用的干预发现,p-ERK大部分表达被阻断,而Ets-1表达及其苏氨酸磷酸化也被部分阻断,以上结果提示ERK部分介导了LMP1诱导Ets-1表达和活化.  相似文献   

7.
Huang CD  Chen HH  Wang CH  Chou CL  Lin SM  Lin HC  Kuo HP 《Life sciences》2004,74(20):2479-2492
Neutrophils and their derived elastase are abundant in chronic inflammatory responses of asthma. This study aimed to investigate the mitogenic effect of elastase on airway smooth muscle (ASM) cells and the implicated signal transduction pathway. Near confluent cultured human ASM cells were treated with human neutrophil elastase (HNE, 0.01 to 0.5 microg/ml) or vehicle for 24 hours with or without extracellular signal-regulated kinase (ERK) inhibitor (PD98059, 30 microM), p38 kinase inhibitor (SB203580, 10 microM) or elastase inhibitor II (100 microg/ml). The ASM cell numbers were counted by a hemocytometer and DNA synthesis was assessed by flowcytometry. Western blots analysis for the expression of ERK, p38 and cyclin D1 was determined. HNE dose-dependently increased ASM cell numbers and the percentage of cells entering S-phase of cell cycle. This response was abolished by neutrophil elastase inhibitors and attenuated by PD98059, but not SB203580. HNE increased ERK phosphorylation and cyclin D1 expression. Pretreatment with PD98059 significantly inhibited elastase-induced cyclin D1 activity. The increased ASM cellular gap and cell shape change by proteolytic activity of HNE may be contributory to ERK activation and therefore cell proliferation. Our results demonstrate that HNE is mitogenic for ASM cells by increasing cyclin D1 activity through ERK signaling pathway.  相似文献   

8.
In response to DNA damage, ataxia-telangiectasia mutant and ataxia-telangiectasia and Rad-3 activate p53, resulting in either cell cycle arrest or apoptosis. We report here that DNA damage stimuli, including etoposide (ETOP), adriamycin (ADR), ionizing irradiation (IR), and ultraviolet irradiation (UV) activate ERK1/2 (ERK) mitogen-activated protein kinase in primary (MEF and IMR90), immortalized (NIH3T3) and transformed (MCF-7) cells. ERK activation in response to ETOP was abolished in ATM-/- fibroblasts (GM05823) and was independent of p53. The MEK1 inhibitor PD98059 prevented ERK activation but not p53 stabilization. Maximal ERK activation in response to DNA damage was not attenuated in MEF(p53-/-). However, ERK activation contributes to either cell cycle arrest or apoptosis in response to low or high intensity DNA insults, respectively. Inhibition of ERK activation by PD98059 or U0126 attenuated p21(CIP1) induction, resulting in partial release of the G(2)/M cell cycle arrest induced by ETOP. Furthermore, PD98059 or U0126 also strongly attenuated apoptosis induced by high dose ETOP, ADR, or UV. Conversely, enforced activation of ERK by overexpression of MEK-1/Q56P sensitized cells to DNA damage-induced apoptosis. Taken together, these results indicate that DNA damage activates parallel ERK and p53 pathways in an ATM-dependent manner. These pathways might function cooperatively in cell cycle arrest and apoptosis.  相似文献   

9.
It has been shown that ultrasound (US) stimulation accelerates fracture healing in the animal models and non‐operatively clinical uses. Nitric oxide (NO) is a crucial early mediator in mechanically induced bone formation. Here we found that US‐mediated inducible nitric oxide synthase (iNOS) expression was attenuated by Ras inhibitor (manumycin A), Raf‐1 inhibitor (GW5074), MEK inhibitor (PD98059), NF‐κB inhibitor (PDTC), and IκB protease inhibitor (TPCK). US‐induced Ras activation was inhibited by manumycin A. Raf‐1 phosphorylation at Ser338 by US was inhibited by manumycin A and GW5074. US‐induced MEK and ERK activation was inhibited by manumycin A, GW5074, and PD98059. Stimulation of preosteoblasts with US activated IκB kinase α/β (IKK α/β), IκBαphosphorylation, p65 phosphorylation at Ser276, p65, and p50 translocation from the cytosol to the nucleus, and κB‐luciferase activity. US‐mediated an increase of IKK α/β, IκBα, and p65 phosphorylation, κB‐luciferase activity and p65 and p50 binding to the NF‐κB element was inhibited by manumycin A, GW5074, and PD98059. Our results suggest that US increased iNOS expression in preosteoblasts via the Ras/Raf‐1/MEK/ERK/IKKαβ and NF‐κB signaling pathways. J. Cell. Physiol. 220: 196–203, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

10.
11.
In this study, we investigated the signaling pathways involved in bradykinin (BK)-induced NF-kappaB activation and cyclooxygenase-2 (COX-2) expression in human airway epithelial cells (A549). BK caused concentration- and time-dependent increase in COX-2 expression, which was attenuated by a selective B2 BK receptor antagonist (HOE140), a Ras inhibitor (manumycin A), a Raf-1 inhibitor (GW 5074), a MEK inhibitor (PD 098059), an NF-kappaB inhibitor (pyrrolidine dithiocarbate), and an IkappaB protease inhibitor (L-1-tosylamido-2-phenylethyl chloromethyl ketone). The B1 BK receptor antagonist (Lys-(Leu8)des-Arg9-BK) had no effect on COX-2 induction by BK. BK-induced increase in COX-2-luciferase activity was inhibited by cells transfected with the kappaB site deletion of COX-2 construct. BK-induced Ras activation was inhibited by manumycin A. Raf-1 phosphorylation at Ser338 by BK was inhibited by manumycin A and GW 5074. BK-induced ERK activation was inhibited by HOE140, manumycin A, GW 5074, and PD 098059. Stimulation of cells with BK activated IkappaB kinase alphabeta (IKKalphabeta), IkappaBalpha phosphorylation, IkappaBalpha degradation, p65 and p50 translocation from the cytosol to the nucleus, the formation of an NF-kappaB-specific DNA-protein complex, and kappaB-luciferase activity. BK-mediated increase in IKKalphabeta activity and formation of the NF-kappaB-specific DNA-protein complex were inhibited by HOE140, a Ras dominant-negative mutant (RasN17), manumycin A, GW 5074, and PD 098059. Our results demonstrated for the first time that BK, acting through B2 BK receptor, induces activation of the Ras/Raf-1/ERK pathway, which in turn initiates IKKalphabeta and NF-kappaB activation, and ultimately induces COX-2 expression in human airway epithelial cell line (A549).  相似文献   

12.
We have investigated heat shock stimulation of MAPK cascades in an interleukin 3-dependent cell line, BaF3. Following exposure to 42 degrees C, the stress-activated JNK MAPKs were phosphorylated and activated, but p38 MAPKs remained unaffected. Surprisingly, heat shock also activated ERK MAPKs in a potent (>60-fold), delayed (>30 min), and sustained (>/=120 min) manner. These characteristics suggested a novel mechanism of ERK MAPK activation and became the focus of this study. A MEK-specific inhibitor, PD98059, inhibited heat shock ERK MAPK activation by >75%. Surprisingly, a role for Ras in the heat shock response was eliminated by the failure of a dominant-negative Ras(Asn-17) mutant to inhibit ERK MAPK activation and the failure to observe increases in Ras.GTP. Heat shock also failed to stimulate activation of A-, B-, and c-Raf. Instead, a serine/threonine phosphatase inhibitor, okadaic acid, activated ERK MAPK in a similar manner to heat shock. Furthermore, pretreatment with suramin, generally recognized as a broad range inhibitor of growth factor receptors, inhibited both okadaic acid-stimulated and heat shock-stimulated ERK MAPK activity by >40%. Inhibiting ERK MAPK activation during heat shock with PD98059 enhanced losses in cell viability. These results demonstrate Ras- and Raf-independent ERK MAPK activation maintains cell viability following heat shock.  相似文献   

13.
The human sst(4) receptor, recombinantly expressed in Chinese hamster ovary cells, mediates proliferative activity of the peptide hormone somatostatin. This effect was shown to involve activation of pertussis toxin-sensitive G proteins and was inhibited by overexpression of the betagamma-sequestrant, transducin. Somatostatin-induced proliferation was abolished by the MEK1 inhibitor, PD 98059, whereas the Src inhibitor, PP1, had no effect. A marked increase was observed in the phosphorylation of extracellular signal-regulated kinase 1 and 2 (ERK1 and ERK2) 10 min after sst(4) receptor activation, which was blocked by pertussis toxin, decreased by PP1 and the betagamma-sequestrant, but unaffected by PD 98059. In contrast, the somatostatin-induced phosphorylation of ERK obtained at 4 h, although sensitive to both pertussis toxin and transducin, was unaffected by PP1 but ablated by PD 98059. Protein kinase C inhibition also abolished this somatostatin-induced sustained phosphorylation of ERK, together with the associated increase in cell proliferation. Expression of dominant negative Ras (N17) failed to significantly reduce the proliferative effect mediated by the sst(4) receptor but markedly attenuated the acute phase of the somatostatin-induced phosphorylation of ERK obtained at 10 min. In contrast, the phosphorylation induced at 4 h was unaffected. We conclude that ERK activation by G(i/o)-coupled sst(4) receptors involves a Src and Ras-dependent acute phase, but the proliferative response is dependent upon the prolonged ERK-induced activity, mediated by protein kinase C.  相似文献   

14.
The functional role of mitogen-activated protein kinase (MAPK) signaling and c-Jun induction in phorbol 12-myristate 13-acetate (PMA)-induced human 12(S)-lipoxygenase gene expression was studied in human epidermoid carcinoma A431 cells. Among the family of MAPK, PMA only increased the activity of extracellular signal-regulated kinase (ERK). Treatment of cells with PD98059, which is an inhibitor of mitogen-activated protein kinase kinase (MEK), decreased the PMA-induced expression of 12(S)-lipoxygenase. Transfection of cells with Ras, Raf and ERK2 dominant negative mutants inhibited the PMA-induced promoter activation of the 12(S)-lipoxygenase gene in all cases. PMA-induced expression of c-Jun was inhibited by pretreatment with PD98059. Following treatment with PMA, the interaction between c-Jun and simian virus 40 promoter factor 1 (Sp1) in cells increased with time. Enhancement of binding between the c-Jun-Sp1 complex and the Sp1 oligonucleotide was observed in cells treated with PMA, suggesting the possible interaction of c-Jun-Sp1 with GC-rich binding sites in the gene promoter. These results indicate that PMA treatment induced ERK activation mainly through the Raf-MEK-ERK signaling pathway following induction of c-Jun expression, and the formation of the c-Jun-Sp1 complex. Finally, PMA activated the promoter activity of the 12(S)-lipoxygenase gene in cells overexpressing protein kinase C (PKC)delta but not PKCalpha, indicating that PKCdelta played the functional role in mediating the gene activation of 12(S)-lipoxygenase induced by PMA.  相似文献   

15.
Osteopontin (OPN), also called cytokine Eta-1, expressed in the myocardium co-incident with heart failure plays an important role in post myocardial infarction (MI) remodeling by promoting collagen synthesis and accumulation. Angiotensin II (Ang II) and inflammatory cytokines are increased in the heart following MI. We studied the involvement of mitogen-activated protein kinases (ERK1/2, JNKs, p38 kinase) and reactive oxygen species (ROS) in Ang II- and cytokine-induced OPN gene expression in adult rat cardiac fibroblasts. Ang II alone increased OPN mRNA (3.3 +/- 0.3-folds; P < 0.05; n = 7), while interleukin-1beta (IL-1beta), tumor necrosis factor (TNF-alpha), and interferon-gamma (IFN-gamma) had no effect. A combination of Ang II with IL-1beta or TNF-alpha, not IFN-gamma, increased OPN mRNA more than Ang II alone. Nitric oxide donor, S-nitrosoacetylpenicillamine (SNAP), alone or in combination with Ang II had no effect. Diphenylene iodonium (DPI), inhibitor of NAD(P)H oxidase, and tiron, superoxide scavenger, inhibited Ang II- and Ang II+ IL-1beta-stimulated increases in OPN mRNA. Ang II activated ERK1/2 within 5 min of treatment, not JNKs. IL-1beta activated ERK1/2 and JNKs within 15 min of treatment. A combination of Ang II and IL-1beta activated ERK1/2 within 5 min of treatment. None of these stimuli activated p38 kinase. DPI almost completely inhibited Ang II + IL-1beta-stimulated activation of ERK1/2, while partially inhibiting JNKs. PD98059, ERK1/2 pathway inhibitor, and SP600125, JNKs inhibitor, partially inhibited Ang II + IL-1beta-stimulated increases in OPN mRNA. A combination of PD98059 and SP600125 almost completely inhibited Ang II + IL-1beta-stimulated increases in OPN mRNA. Thus, Ang II alone increases OPN expression, while IL-1beta and TNF-alpha act synergistically with Ang II to increase OPN mRNA possibly via NO independent mechanisms. The synergistic increase in OPN mRNA involves ROS-mediated activation of ERK1/2 and JNKs, not P38 kinase, pathways in cardiac fibroblasts.  相似文献   

16.
The treatment of endothelial cell monolayers with phorbol 12-myristate 13-acetate (PMA), a direct protein kinase C (PKC) activator, leads to disruption of endothelial cell monolayer integrity and intercellular gap formation. Selective inhibition of PKC (with bisindolylmaleimide) and extracellular signal-regulated kinases (ERKs; with PD-98059, olomoucine, or ERK antisense oligonucleotides) significantly attenuated PMA-induced reductions in transmonolayer electrical resistance consistent with PKC- and ERK-mediated endothelial cell barrier regulation. An inhibitor of the dual-specificity ERK kinase (MEK), PD-98059, completely abolished PMA-induced ERK activation. PMA also produced significant time-dependent increases in the activity of Raf-1, a Ser/Thr kinase known to activate MEK ( approximately 6-fold increase over basal level). Similarly, PMA increased the activity of Ras, which binds and activates Raf-1 ( approximately 80% increase over basal level). The Ras inhibitor farnesyltransferase inhibitor III (100 microM for 3 h) completely abolished PMA-induced Raf-1 activation. Taken together, these data suggest that the sequential activation of Ras, Raf-1, and MEK are involved in PKC-dependent endothelial cell barrier regulation.  相似文献   

17.
Preadipocyte factor 1 (Pref-1) is found in preadipocytes but is absent in adipocytes. Pref-1 is made as a transmembrane protein but is cleaved to generate a biologically active soluble form. Although Pref-1 inhibition of adipogenesis has been well studied in vitro and in vivo, the signaling pathway for Pref-1 is not known. Here, by using purified soluble Pref-1 in Pref-1 null mouse embryo fibroblasts (MEF), we show that Pref-1 increases MEK/extracellular signal-regulated kinase (ERK) phosphorylation in a time- and dose-dependent manner. Compared to wild-type MEF, differentiation of Pref-1 null MEF into adipocytes is enhanced, as judged by lipid accumulation and adipocyte marker expression. Both wild-type and Pref-1 null MEF show a transient burst of ERK phosphorylation upon addition of adipogenic agents. Wild-type MEF show a significant, albeit lower, second increase in ERK phosphorylation peaking at day 2. This ERK phosphorylation, corresponding to Pref-1 abundance, is absent during differentiation of Pref-1 null MEF. Prevention of this second increase in ERK1/2 phosphorylation in wild-type MEF by the MEK inhibitor PD98059 or by transient depletion of ERK1/2 via small interfering RNA-enhanced adipocyte differentiation. Furthermore, treatment of Pref-1 null MEF with Pref-1 restores this ERK phosphorylation, resulting in inhibition of adipocyte differentiation primarily by preventing peroxisome proliferator-activated receptor gamma2 induction. However, in the presence of PD98059 or depletion of ERK1/2, exogenous Pref-1 cannot inhibit adipocyte differentiation in Pref-1 null MEF. We conclude that Pref-1 activates MEK/ERK signaling, which is required for Pref-1 inhibition of adipogenesis.  相似文献   

18.
Thioredoxin (TRX-1) is a multifunctional protein that controls the redox status of other proteins. TRX-1 can be found in the extracellular milieu, cytoplasm and nucleus, and it has distinct functions in each environment. Previously, we studied the intracellular localization of TRX-1 and its relationship with the activation of the p21Ras - ERK1/2 MAP Kinases signaling pathway. In situations where this pathway was activated by stress conditions evoked by a nitrosothiol, S-nitroso-N-acetylpenicillamine (SNAP), TRX-1 accumulated in the nuclear compartment due to nitrosylation of p21Ras and activation of downstream ERK1/2 MAP kinases. Presently, we demonstrate that ERK1/2 MAP Kinases activation and spatial distribution within cells trigger TRX-1 nuclear translocation through down-regulation of the physiological inhibitor of TRX-1, Thioredoxin Interacting Protein (TXNIP). Once activated by the oxidants, SNAP and H2O2, the ERK1/2 MAP kinases migrate to the nucleus. This is correlated with down-regulation of TXNIP. In the presence of the MEK inhibitors (PD98059 or UO126), or in cells transfected with the Protein Enriched in Astrocytes (PEA-15), a cytoplasmic anchor of ERK1/2 MAP kinases, TRX-1 nuclear migration and TXNIP down-regulation are no longer observed in cells exposed to oxidants. On the other hand, over-expression of TXNIP abolishes nuclear migration of TRX-1 under nitrosative/oxidative stress conditions, whereas gene silencing of TXNIP facilitates nuclear migration even in the absence of stress conditions. Studies based on the TXNIP promoter support this regulation. In conclusion, changes in TRX-1 compartmentalization under nitrosative/oxidative stress conditions are dependent on the expression levels of TXNIP, which are regulated by cellular compartmentalization and activation of the ERK1/2 MAP kinases.  相似文献   

19.
20.
Zhu JH  Liu Z  Huang ZY  Li S 《生理学报》2005,57(5):587-592
本文研究血管紧张素Ⅱ(angiotensin Ⅱ,Ang Ⅱ)对自发性高血压大鼠(spontaneously hypertensive rat,SHR)和Wistar- Kyoto(WKY)大鼠血管平滑肌细胞(vascular smooth muscle cells.VSMCs)细胞外信号调节激酶(extracellular signal-regulated pro- tein kinases,ERKs)信号途径的影响。体外培养SHR和WKY大鼠的VSMCs,先在培养基中加入终浓度为1×105mmol/L 的缬沙坦或1×105mmol/L的PD98059或不加药物,再给予1×107mmol/L的Ang Ⅱ刺激24 h后收集细胞,以无血清培养基 培养的VSMCs作对照。用免疫沉淀法测定ERK活性;用Western-blot方法检测总ERK(total ERK,t-ERK)、磷酸化ERK (phosphorylated-ERK,p-ERK)及丝裂素活化蛋白激酶磷酸酶-1(mitogen-activated protem kinases phosphatase-1,MKP-1)水 平;用RT-PCR法半定量测定MKP-1 mRNA的含量。结果显示:(1)SHR和WKY大鼠Ang Ⅱ刺激组VSMCs中ERK活 性、p-ERK、MKP-1及MKP-1 mRNA水平均明显高于对照组(P<0.05);SHR和WKY大鼠Ang Ⅱ+缬沙坦组和Ang Ⅱ +PD98059组的上述指标与对照组比较均无显著性差异。(2)SHR大鼠VSMCs中ERK活性、P-ERK、MKP-1及MKP-1 mRNA均显著高于相同干预的WKY大鼠(P<0.01)。(3)SHR和WKY大鼠之间以及对照组、Ang Ⅱ刺激组、Ang Ⅱ+缬沙 坦组和Ang Ⅱ+PD98059组间VSMCs中t-ERK水平均无显著性差异。以上结果表明,Ang Ⅱ可能主要通过其1型(Ang Ⅱ type 1,AT)受体激活SHR和WKY大鼠VSMCs中ERK途径,增加ERK活性和p-ERK蛋白水平,继而引起MKP-1及 MKP-1 mRNA水平升高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号