首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is assumed that density and morphology of trabecular bone is partially controlled by mechanical forces. How these effects are expressed in the local metabolic functions of osteoclast resorption and osteoblast formation is not known. In order to investigate possible mechano-biological pathways for these mechanisms we have proposed a mathematical theory (Nature 405 (2000) 704). This theory is based on hypothetical osteocyte stimulation of osteoblast bone formation, as an effect of elevated strain in the bone matrix, and a role for microcracks and disuse in promoting osteoclast resorption. Applied in a 2-D Finite Element Analysis model, the theory explained the formation of trabecular patterns. In this article we present a 3-D FEA model based on the same theory and investigated its potential morphological predictability of metabolic reactions to mechanical loads. The computations simulated the development of trabecular morphological details during growth, relative to measurements in growing pigs, reasonably realistic. They confirmed that the proposed mechanisms also inherently lead to optimal stress transfer. Alternative loading directions produced new trabecular orientations. Reduction of load reduced trabecular thickness, connectivity and mass in the simulation, as is seen in disuse osteoporosis. Simulating the effects of estrogen deficiency through increased osteoclast resorption frequencies produced osteoporotic morphologies as well, as seen in post-menopausal osteoporosis. We conclude that the theory provides a suitable computational framework to investigate hypothetical relationships between bone loading and metabolic expressions.  相似文献   

2.
Bone’s response to increased or reduced loading/disuse is a feature of many clinical circumstances, and our daily life, as habitual activities change. However, there are several misconceptions regarding what constitutes loading or disuse and why the skeleton gains or loses bone. The main purpose of this article is to discuss the fundamentals of the need for bone to experience the effects of loading and disuse, why bone loss due to disuse occurs, and how it is the target of skeletal physiology which drives pathological bone loss in conditions that may not be seen as being primarily due to disuse. Fundamentally, if we accept that hypertrophy of bone in response to increased loading is a desirable occurrence, then disuse is not a pathological process, but simply the corollary of adaptation to increased loads. If adaptive processes occur to increase bone mass in response to increased load, then the loss of bone in disuse is the only way that adaptation can fully tune the skeleton to prevailing functional demands when loading is reduced. The mechanisms by which loading and disuse cause bone formation or resorption are the same, although the direction of any changes is different. The osteocyte and osteoblast are the key cells involved in sensing and communicating the need for changes in mass or architecture as a result of changes in experienced loading. However, as those cells are affected by numerous other influences, the responses of bone to loading or disuse are not simple, and alter under different circumstances. Understanding the principles of disuse and loading and the mechanisms underlying them therefore represents an important feature of bone physiology and the search for targets for anabolic therapies for skeletal pathology.  相似文献   

3.
During endochondral ossification, growth plate cartilage is replaced with bone. Mineralized cartilage matrix is resorbed by osteoclasts, and new bone tissue is formed by osteoblasts. As mineralized cartilage does not contain any cells, it is unclear how this process is regulated. We hypothesize that, in analogy with bone remodeling, osteoclast and osteoblast activity are regulated by osteocytes, in response to mechanical loading. Since the cartilage does not contain osteocytes, this means that cartilage turnover during endochondral ossification would be regulated by the adjacent bone tissue. We investigated this hypothesis with an established computational bone adaptation model. In this model, osteocytes stimulate osteoblastic bone formation in response to the mechanical bone tissue loading. Osteoclasts resorb bone near randomly occurring microcracks that are assumed to block osteocyte signals. We used finite element modeling to evaluate our hypothesis in a 2D-domain representing part of the growth plate and adjacent bone. Cartilage was added at a constant physiological rate to simulate growth. Simulations showed that osteocyte signals from neighboring bone were sufficient for successful cartilage turnover, since equilibrium between cartilage remodeling and growth was obtained. Furthermore, there was good agreement between simulated bone structures and rat tibia histology, and the development of the trabecular architecture resembled that of infant long bones. Additionally, prohibiting osteoclast invasion resulted in thickened mineralized cartilage, similar to observations in a knock-out mouse model. We therefore conclude that it is well possible that osteocytes regulate the turnover of mineralized growth plate cartilage.  相似文献   

4.
5.
6.
Osteocyte apoptosis is known to trigger targeted bone resorption. In the present study, we developed an osteocyte-viability-based trabecular bone remodeling (OVBR) model. This novel remodeling model, combined with recent advanced simulation methods and analysis techniques, such as the element-by-element 3D finite element method and the ITS technique, was used to quantitatively study the dynamic evolution of bone mass and trabecular microstructure in response to various loading and unloading conditions. Different levels of unloading simulated the disuse condition of bed rest or microgravity in space. The amount of bone loss and microstructural deterioration correlated with the magnitude of unloading. The restoration of bone mass upon the reloading condition was achieved by thickening the remaining trabecular architecture, while the lost trabecular plates and rods could not be recovered by reloading. Compared to previous models, the predictions of bone resorption of the OVBR model are more consistent with physiological values reported from previous experiments. Whereas osteocytes suffer a lack of loading during disuse, they may suffer overloading during the reloading phase, which hampers recovery. The OVBR model is promising for quantitative studies of trabecular bone loss and microstructural deterioration of patients or astronauts during long-term bed rest or space flight and thereafter bone recovery.  相似文献   

7.
8.
Apoptosis of osteocytes and osteoblasts precedes bone resorption and bone loss with reduced mechanical stimulation, and receptor activator of NF-κB ligand (RANKL) expression is increased with unloading in mice. Because osteocytes are major RANKL producers, we hypothesized that apoptotic osteocytes signal to neighboring osteocytes to increase RANKL expression, which, in turn, increases osteoclastogenesis and bone resorption. The traditional bisphosphonate (BP) alendronate (Aln) or IG9402, a BP analog that does not inhibit resorption, prevented the increase in osteocyte apoptosis and osteocytic RANKL expression. The BPs also inhibited osteoblast apoptosis but did not prevent the increase in osteoblastic RANKL. Unloaded mice exhibited high serum levels of the bone resorption marker C-telopeptide fragments of type I collagen (CTX), elevated osteoclastogenesis, and increased osteoclasts in bone. Aln, but not IG9402, prevented all of these effects. In addition, Aln prevented the reduction in spinal and femoral bone mineral density, spinal bone volume/tissue volume, trabecular thickness, mechanical strength, and material strength induced by unloading. Although IG9402 did not prevent the loss of bone mass, it partially prevented the loss of strength, suggesting a contribution of osteocyte viability to strength independent of bone mass. These results demonstrate that osteocyte apoptosis leads to increased osteocytic RANKL. However, blockade of these events is not sufficient to restrain osteoclast formation, inhibit resorption, or stop bone loss induced by skeletal unloading.  相似文献   

9.
A summary of results of investigations by the author and a brief review of some literature data on human bone tissue deprived of mechanical loading (spaceflight, hypokinesia) is given. The direction and markedness of changes in bone mass--the bone mineral density and the bone mineral content--in different skeletal segments depend on their position relative to the gravity vector. A theoretically expected bone mass reduction was revealed in the trabecular structures of the bones of the lower part of the skeleton (local osteopenia). In the upper part of the skeleton, an increase in the bone mineral content is observed, which is considered as a secondary response and is due to redistribution of body fluids cephalad. The main cause of osteopenia is mechanical unloading. Arguments are presented that osteocyte osteolysis, delayed osteoblast histogenesis, and osteoclast resorption provoked by rearrangement in the hierarchy of the systems of fluid volume and ion regulation, and the endocrine control of calcium homeostasis are the main mechanisms of osteopenia.  相似文献   

10.
An osteocyte lacunae differential count under the light microscope (LM) (1-lacunae with live osteocytes, 2-empty lacunae and lacunae with degenerating osteocytes) was carried out outside the reversal lines of osteonic lamellar bone from various mammals and man to evaluate the possibility of osteocyte survival where osteoclast resorption had occurred. The polarized light microscope (PLM) was used to establish the curvature of bony lamellae outside the convexity of reversal lines: concave lamellae indicate osteocytes reabsorbed on their vascular side where they radiate long vascular dendrites; convex lamellae indicate bone resorption on the osteocyte mineral side, radiating short dendrites. In all samples it was found that: a) about 60% of osteocytes outside the reversal lines were live; b) the percentage of alive osteocytes close to reversal lines is higher when they are attacked on their mineral side. The present data support our view that surviving osteocytes, particularly those attacked from their mineral side, might intervene in the final phase of bone resorption (osteoclast inhibition?). The fact that under the transmission electron microscope (TEM) intercellular contacts were never observed between osteocytes and osteoclasts indicates that if a modulation should occur between these two cellular types it could take place by a paracrine route only. The putative role of the cells of the osteogenic system, particularly osteocytes, in the bone remodeling cycle is also discussed.  相似文献   

11.
12.
Interstitial fluid flow (IFF) is a potent regulatory signal in bone. During mechanical loading, IFF is generated through two distinct mechanisms that result in spatially distinct flow profiles: poroelastic interactions within the lacunar-canalicular system, and intramedullary pressurization. While the former generates IFF primarily within the lacunar-canalicular network, the latter generates significant flow at the endosteal surface as well as within the tissue. This gives rise to the intriguing possibility that loading-induced IFF may differentially activate osteocytes or surface-residing cells depending on the generating mechanism, and that sensation of IFF generated via intramedullary pressurization may be mediated by a non-osteocytic bone cell population. To begin to explore this possibility, we used the Dmp1-HBEGF inducible osteocyte ablation mouse model and a microfluidic system for modulating intramedullary pressure (ImP) to assess whether structural adaptation to ImP-driven IFF is altered by partial osteocyte depletion. Canalicular convective velocities during pressurization were estimated through the use of fluorescence recovery after photobleaching and computational modeling. Following osteocyte ablation, transgenic mice exhibited severe losses in bone structure and altered responses to hindlimb suspension in a compartment-specific manner. In pressure-loaded limbs, transgenic mice displayed similar or significantly enhanced structural adaptation to Imp-driven IFF, particularly in the trabecular compartment, despite up to ~50% of trabecular lacunae being uninhabited following ablation. Interestingly, regression analysis revealed relative gains in bone structure in pressure-loaded limbs were correlated with reductions in bone structure in unpressurized control limbs, suggesting that adaptation to ImP-driven IFF was potentiated by increases in osteoclastic activity and/or reductions in osteoblastic activity incurred independently of pressure loading. Collectively, these studies indicate that structural adaptation to ImP-driven IFF can proceed unimpeded following a significant depletion in osteocytes, consistent with the potential existence of a non-osteocytic bone cell population that senses ImP-driven IFF independently and potentially parallel to osteocytic sensation of poroelasticity-derived IFF.  相似文献   

13.
Loss of mechanical stress or unloading causes disuse osteoporosis that leads to fractures and deteriorates body function and affects mortality rate in aged population. This bone loss is due to reduction in osteoblastic bone formation and increase in osteoclastic bone resorption. MuRF1 is a muscle RING finger protein which is involved in muscle wasting and its expression is enhanced in the muscle of mice subjected to disuse condition such as hind limb unloading (HU). However, whether MuRF1 is involved in bone loss due to unloading is not known. We therefore examined the effects of MuRF1 deficiency on unloading-induced bone loss. We conducted hind limb unloading of MuRF1 KO mice and wild-type control mice. Unloading induced about 60% reduction in cancellous bone volume (BV/TV) in WT mice. In contrast, MuRF1 deficiency suppressed unloading-induced cancellous bone loss. The cortical bone mass was also reduced by unloading in WT mice. In contrast, MuRF1 deficiency suppressed this reduction in cortical bone mass. To understand whether the effects of MuRF1 deficiency suppress bone loss is on the side of bone formation or bone resorption, histomorphometry was conducted. Unloading reduced bone osteoblastic formation rate (BFR) in WT. In contrast, MuRF1 deficiency suppressed this reduction. Regarding bone resorption, unloading increased osteoclast number in WT. In contrast, MURF1 deficiency suppressed this osteoclast increase. These data indicated that the ring finger protein, MURF1 is involved in disuse-induced bone loss in both of the two major bone remodeling activities, osteoblastic bone formation and osteoclastic bone resorption.  相似文献   

14.
The present study sought to evaluate the functional role of osteocyte-derived IGF-I in the bone repletion process by determining whether deficient expression of Igf1 in osteocytes would impair the bone repletion response to one week of dietary calcium repletion after two weeks of dietary calcium deprivation. As expected, the two-week dietary calcium depletion led to hypocalcemia, secondary hyperparathyroidism, and increases in bone resorption and bone loss in both Igf1 osteocyte conditional knockout (cKO) mutants and WT control mice. Thus, conditional disruption of Igf1 in osteocytes did not impair the calcium depletion-induced bone resorption. After one week of calcium repletion, both cKO mutants and WT littermates showed an increase in endosteal bone formation attended by the reduction in osteoclast number, indicating that deficient Igf1 expression in osteocytes also did not have deleterious effects on the bone repletion response. The lack of an effect of deficient osteocyte-derived IGF-I expression on bone repletion is unexpected since previous studies show that these Igf1 osteocyte cKO mice exhibited impaired developmental growth and displayed complete resistance to bone anabolic effects of loading. These studies suggest that there is a dichotomy between the mechanisms necessary for anabolic responses to mechanical loading and the regulatory hormonal and anabolic skeletal repletion following low dietary calcium challenge. In conclusion, to our knowledge this study has demonstrated for the first time that osteocyte-derived IGF-I, which is essential for anabolic bone response to mechanical loading, is not a key regulatory factor for bone repletion after a low calcium challenge.  相似文献   

15.
Transforming growth factor-beta (TGF-beta) is abundant in bone matrix and has been shown to regulate the activity of osteoblasts and osteoclasts in vitro. To explore the role of endogenous TGF-(beta) in osteoblast function in vivo, we have inhibited osteoblastic responsiveness to TGF-beta in transgenic mice by expressing a cytoplasmically truncated type II TGF-beta receptor from the osteocalcin promoter. These transgenic mice develop an age-dependent increase in trabecular bone mass, which progresses up to the age of 6 months, due to an imbalance between bone formation and resorption during bone remodeling. Since the rate of osteoblastic bone formation was not altered, their increased trabecular bone mass is likely due to decreased bone resorption by osteoclasts. Accordingly, direct evidence of reduced osteoclast activity was found in transgenic mouse skulls, which had less cavitation and fewer mature osteoclasts relative to skulls of wild-type mice. These bone remodeling defects resulted in altered biomechanical properties. The femurs of transgenic mice were tougher, and their vertebral bodies were stiffer and stronger than those of wild-type mice. Lastly, osteocyte density was decreased in transgenic mice, suggesting that TGF-beta signaling in osteoblasts is required for normal osteoblast differentiation in vivo. Our results demonstrate that endogenous TGF-beta acts directly on osteoblasts to regulate bone remodeling, structure and biomechanical properties.  相似文献   

16.
Osteocytes have been suggested to play a role in the regulation of bone resorption, although their effect on bone turnover has remained controversial. In order to study this open question, we developed an organ culture system based on isolated rat calvaria, where the osteocyte viability and its effect on osteoclastic bone resorption can be monitored. Our results suggest that osteocytes are constitutively negative regulators of osteoclastic activity. Osteoclasts, which were cultured on calvarial slices with living osteocytes inside, failed to form actin rings which are the hallmarks of resorbing cells. A similar inhibitory effect was also achieved by the conditioned medium obtained from calvarial organ culture, suggesting that living osteocytes produce yet unrecognized osteoclast inhibitors. On the contrary, when osteocyte apoptosis was induced, this inhibitory effect disappeared and strong osteoclastic bone resorption activity was observed. Thus, local apoptosis of osteocytes may play a major role in triggering local bone remodeling.  相似文献   

17.
Mechanical disuse will bias bone marrow stromal cells towards adipogenesis, ultimately compromising the regenerative capacity of the stem cell pool and impeding the rapid and full recovery of bone morphology. Here, it was tested whether brief daily exposure to high-frequency, low-magnitude vibrations can preserve the marrow environment during disuse and enhance the initiation of tissue recovery upon reambulation. Male C57BL/6J mice were subjected to hindlimb unloading (HU, n = 24), HU interrupted by weight-bearing for 15 min/d (HU+SHAM, n = 24), HU interrupted by low-level whole body vibrations (0.2 g, 90 Hz) for 15 min/d (HU+VIB, n = 24), or served as age-matched controls (AC, n = 24). Following 3 w of disuse, half of the mice in each group were released for 3 w of reambulation (RA), while the others were sacrificed. RA+VIB mice continued to receive vibrations for 15 min/d while RA+SHAM continued to receive sham loading. After disuse, HU+VIB mice had a 30% greater osteogenic marrow stromal cell population, 30% smaller osteoclast surface, 76% greater osteoblast surface but similar trabecular bone volume fraction compared to HU. After 3 w of reambulation, trabecular bone of RA+VIB mice had a 30% greater bone volume fraction, 51% greater marrow osteoprogenitor population, 83% greater osteoblast surfaces, 59% greater bone formation rates, and a 235% greater ratio of bone lining osteoblasts to marrow adipocytes than RA mice. A subsequent experiment indicated that receiving the mechanical intervention only during disuse, rather than only during reambulation, was more effective in altering trabecular morphology. These data indicate that the osteogenic potential of bone marrow cells is retained by low-magnitude vibrations during disuse, an attribute which may have contributed to an enhanced recovery of bone morphology during reambulation.  相似文献   

18.
Osteoclasts resorb the mineralized matrices formed by chondrocytes or osteoblasts. The cytokine receptor activator of nuclear factor-κB ligand (RANKL) is essential for osteoclast formation and thought to be supplied by osteoblasts or their precursors, thereby linking bone formation to resorption. However, RANKL is expressed by a variety of cell types, and it is unclear which of them are essential sources for osteoclast formation. Here we have used a mouse strain in which RANKL can be conditionally deleted and a series of Cre-deleter strains to demonstrate that hypertrophic chondrocytes and osteocytes, both of which are embedded in matrix, are essential sources of the RANKL that controls mineralized cartilage resorption and bone remodeling, respectively. Moreover, osteocyte RANKL is responsible for the bone loss associated with unloading. Contrary to the current paradigm, RANKL produced by osteoblasts or their progenitors does not contribute to adult bone remodeling. These results suggest that the rate-limiting step of matrix resorption is controlled by cells embedded within the matrix itself.  相似文献   

19.
Jang IG  Kim IY 《Journal of biomechanics》2008,41(11):2353-2361
In the field of bone adaptation, it is believed that the morphology of bone is affected by its mechanical loads, and bone has self-optimizing capability; this phenomenon is well known as Wolff's law of the transformation of bone. In this paper, we simulated trabecular bone adaptation in the human proximal femur using topology optimization and quantitatively investigated the validity of Wolff's law. Topology optimization iteratively distributes material in a design domain producing optimal layout or configuration, and it has been widely and successfully used in many engineering fields. We used a two-dimensional micro-FE model with 50 microm pixel resolution to represent the full trabecular architecture in the proximal femur, and performed topology optimization to study the trabecular morphological changes under three loading cases in daily activities. The simulation results were compared to the actual trabecular architecture in previous experimental studies. We discovered that there are strong similarities in trabecular patterns between the computational results and observed data in the literature. The results showed that the strain energy distribution of the trabecular architecture became more uniform during the optimization; from the viewpoint of structural topology optimization, this bone morphology may be considered as an optimal structure. We also showed that the non-orthogonal intersections were constructed to support daily activity loadings in the sense of optimization, as opposed to Wolff's drawing.  相似文献   

20.
Cancellous bone has a dynamic 3-dimensional architecture of trabeculae, the arrangement of which is continually reorganized via bone remodeling to adapt to the mechanical environment. Osteocytes are currently believed to be the major mechanosensory cells and to regulate osteoclastic bone resorption and osteoblastic bone formation in response to mechanical stimuli. We previously developed a mathematical model of trabecular bone remodeling incorporating the possible mechanisms of cellular mechanosensing and intercellular communication in which we assumed that interstitial fluid flow activates the osteocytes to regulate bone remodeling. While the proposed model has been validated by the simulation of remodeling of a single trabecula, it remains unclear whether it can successfully represent in silico the functional adaptation of cancellous bone with its multiple trabeculae. In the present study, we demonstrated the response of cancellous bone morphology to uniaxial or bending loads using a combination of our remodeling model with the voxel finite element method. In this simulation, cancellous bone with randomly arranged trabeculae remodeled to form a well-organized architecture oriented parallel to the direction of loading, in agreement with the previous simulation results and experimental findings. These results suggested that our mathematical model for trabecular bone remodeling enables us to predict the reorganization of cancellous bone architecture from cellular activities. Furthermore, our remodeling model can represent the phenomenological law of bone transformation toward a locally uniform state of stress or strain at the trabecular level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号