首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The survival of whole and bisected rabbit morulae cryopreserved by the vitrification method was investigated. The embryos were loaded in a column of vitrification solution (VS, a mixture of 25% glycerol and 25% 1, 2-propanediol in PBS+16% calf serum), which was located between two columns of 1 M sucrose solution in a plastic straw. The embryos were frozen by being plunged into liquid nitrogen and thawed in a water bath at 20 degrees C. Two methods of loading embryos into straws were used: the single and double column vitrification solution methods. The embryonic survival rates between these two methods were compared. Seventy-one (86.6%) out of 82 morulae vitrified in double column straws developed into the blastocyst stage in vitro. Eleven (18.3%) live fetuses were obtained after the transfer of 60 frozen-thawed morulae to four recipients. By contrast, the survival rate (36.5%, 27 74 ) of embryos vitrified in the single column straws was significantly lower (P<0.05). The vitrification solution of the single column straws became opaque, indicating ice-crystal formation, upon thawing in 5 of 11 straws, which was assumed to have damaged the embryos. More than 80% (29 36 ) of the bisected morulae frozen and thawed in the double column straws developed to the blastocyst stage in vitro when cryoprotectant was diluted stepwise with 1 M and 0.25 M sucrose solution. When the cryoprotectant was removed by one-step dilution with 1 M sucrose solution, swelling in blastomeres was observed and the development rate of the recovered embryos decreased (45.8%, 11 24 ). These results indicate that the vitrification method employed in our experiment is not only efficient for the cryopreservation of rabbit morulae, but it can also be used for the preservation of bisected rabbit morulae, which had not been successful using previous methods.  相似文献   

2.
Rabbit morulae were exposed to a vitrification solution-modified PBS [PB1] medium containing 40% ethylene glycol + 18% Ficoll + 0.3 M sucrose (EFS) for 2, 5, or 10 min at 20 degrees C and were vitrified in liquid nitrogen. When morulae were rapidly warmed, 96% had an intact zona pellucida. When embryos were cultured after removal of the mucin coat, high proportions of them formed blastocoel (79-100%), but the percentage of embryos developed to fully expanded blastocysts decreased with increased exposure time 87%, 40%, and 17%). The survival rate of morulae vitrified after removal of the mucin coat was lower than that of mucin-intact embryos. To assess the development potential in vivo, 131 embryos were vitrified after 2 min of exposure to EFS solution; all the embryos were recovered and 120 were transferred to recipients without removal of the mucin coat, resulting in 78 (65%) full-term fetuses or young. This simple method, which yields high survival both in vitro and in vivo, will be of practical use for vitrifying rabbit embryos.  相似文献   

3.
The in vivo survival rate of rabbit morulae after vitrification in a mixture of dimethyl sulphoxide and ethylene glycol solution without protein supplement (WPS) was compared with two types of protein supplements: rabbit serum (RS) and bovine serum albumin (BSA). Significant differences were observed in the percentage of transferable embryos (undamaged embryos after devitrification, 80.4% versus 93.2 and 92.1%, WPS, BSA and RS, respectively, P < 0.05) and live born rate (40.9% versus 56.1%, WPS and BSA, respectively, P < 0.05). Non-significant differences were, however, observed in the percentages of implanted embryos at 12 days post-ovulation induction (56.7, 69.7 and 68.6%), post-implantation survival rate (82.3, 74.2 and 77.2%) and live born rate in pregnant does (54.6, 56.1 and 50.5%) with different vitrification media (RS, BSA and WPS). We conclude that rabbit embryos can be vitrified and stored using protein-free vitrification medium with moderate losses of viability.  相似文献   

4.
The survival of ovine embryos (morulae and blastocysts) either frozen by a conventional method or vitrified was investigated in culture. In Experiment I, embryos were vitrified using a solution containing 25% propylene glycol and 25% glycerol. A group of embryos (simulated control) was processed without freezing to evaluate the toxicity of the vitrification solution. In Experiment II, embryos were exposed to a solution of PBS containing 10% glycerol and 0.25 M sucrose placed horizontally in a programmable freezer. Automatic seeding was applied at -7 degrees C in 2 positions on straws and cooled at -0.3 degrees C/min to -25 degrees C and then stored in liquid nitrogen. In vitro development rates of vitrified embryos were 12% (morulae) and 19% (blastocysts). Simulated embryos showed a higher rate of survival than embryos cryopreserved by vitrification (67 and 63%, morulae and blastocysts respectively). In conventional cooling, the blastocysts showed the highest viability percentage (67%) of all the experimental groups but these values decreased significantly in morulae (31%). Differences in temperature between straws placed in distinct positions in the freezing chamber and thermic deviation were observed when automatic seeding was applied. Embryo viability differed from 51 to 75% according the relative position of the embryos within the chamber. Survival was higher when automatic seeding was applied on the meniscus of the embryo column versus the central point of this column (65 vs 21%). The damage of both cryopreservation methods on zona pellucida integrity (27 and 35% in vitrified and conventionally frozen embryos, respectively) had no effect on the in vitro survival.  相似文献   

5.
The aim of this study was to assess the application of a cryopreservation program to preserve two selected rabbit lines. One of them was selected by litter size at weaning, line V (Synthetic breed). The second, line R (synthetic breed), was selected by growth rate. In this study, embryos were collected, from donor does belonging to the 7th and 15th generations of lines R and V, respectively, were vitrified and were stored from 1992-1993. Those embryos from donor does belonging to the 17th and 21st generations of lines R and V respectively, were vitrified and sotred from 1998-1999. Embryo transfers were carried out in 1999. Morphologically normal embryos at the morulae stage were cryopreserved by vitrification in a 2.8 M dimethyl-sulfoxide + 3.5 M ethylene-glycol + 0.3 g x L(-1) bovine serum albumine in Dulbecco phosphate buffered saline solution. The main problem in the cryopreservation program was the low embryo production efficiency: significant differences were obtained in recovery efficiency between lines and line R showed the lowest proportion of donor does with 55% (at least 4 normal embryos) vs. 72% in line V. However, after transfer in recipient does of line V, the fertility rate at birth (81%), the rate of alive born by pregnant recipients (43%) and the number of males and does with offspring (9 to 18 different males, 12 to 32 females) enabled the different generations from each line to be re-established and studies on the selection process genetic gain to be developed.  相似文献   

6.
The objective of the present study was to assess the in vitro viability of ovine embryos at different stages of development after combining cell sampling and vitrification. Precompacted morulae, compacted morulae and blastocysts were obtained from superovulated Sarda ewes at 4, 5 or 6 d following insemination. Embryo cell biopsy was carried out in a 100-microl drop of PBS + 10% fetal calf serum (FCS) with 10 micromol nocodazole and 7.5 microg/ml cytochalasin-b by aspiration (3-5 cells). Embryos were cryopreserved at room temperature after exposure of 2 solutions for 5 min, transferred into a vitrification solution, loaded into the center of 0.25-ml straws separated by air bubbles from 2 columns of sucrose 0.5 M and plunged immediately into liquid nitrogen. In Experiment 1, the in vitro viability of manipulated or vitrified embryos after in vitro co-culture in TCM 199 medium with 10% FCS and sheep oviductal epithelial cells (SOEC) in 5% CO2 humidified atmosphere in air at 39 degrees C was significantly lower (P < 0.05 and P < 0.01, respectively) at precompacted morula (60 and 30%) and compacted morula (62 and 39%) stages than intact embryos at the same stages (87 and 88%). No differences were found at the blastocyst stage. In Experiment 2, the in vitro survival rate of precompacted morulae which were manipulated and immediately vitrified was lower (P < 0.05) than in those manipulated and, after a temporary period of culture, vitrified at blastocyst stage (21 vs 48%); while no differences were found at compacted morula and blastocyst stages. The results show that 1) the stage of development influences the subsequent in vitro viability of manipulated and vitrified ovine embryos, 2) temporary culture after manipulation and before vitrification improves the in vitro viability of embryos, and 3) the hole in the zona pellucida resulting from biopsy does not affect blastocyst survival after subsequent vitrification.  相似文献   

7.
Comparisons were made of the osmotic and cryoprotective effects on rabbit embryos preserved by vitrification with 2 solutions and by conventional freezing. Embryos obtained from rabbits killed 70 to 72 h after mating were used in the study (n = 948). Initially, toxicity of the 3 cryoprotectants was studied in fresh (unfrozen) embryos (n = 135). Subsequently, embryos placed in ethylene glycol (EG, 40% v/v; n = 88) and ethylene glycol with dimethyl sulfoxide (EG+DMSO, 20% v/v each, respectively; n = 344) were loaded into straws and plunged directly into liquid nitrogen. Embryos placed in 1.5 M DMSO and 20% heat inactivated rabbit serum were subjected to conventional freezing in a programmable freezer (control group, n = 363). The osmotic effect was estimated by measuring the changes in the embryonic and interzonal volume (crossectional area) and in the thickness of the mucin coat (n = 18). Cryoprotective effectivity was determined by development to the blastocyst stage in vitro, or birth of normal pups after transfer into synchronized recipients. Osmotic effects of cryoprotective solutions on embryonic and interzonal volume and mucin coat thickness were variable and overall not significant. Survival rate of cryopreserved embryos in vitro and development to blastocysts, was worst in the EG-treated embryos. Survival rate at birth was higher in vitrified vs frozen embryos. We conclude that rabbit morulae can be vitrified successfully in EG+DMSO medium.  相似文献   

8.
This study was performed to pursue the optimal condition for the cryopreservation of mouse morulae by a two-step OPS method and to investigate the feasibility of the optimal condition for vitrification of embryos at other developmental stages. First, the mouse morulae were vitrified in OPS using one-step procedure-that is, embryos were vitrified after direct exposure to EDFS30 (15% ethylene glycol (EG), 15% dimethyl sulfoxide (DMSO), Ficoll and sucrose), or two-step method-that is, embryos were first pretreated in 10%E + 10%D (10% EG and 10% DMSO in mPBS) for 30 sec, then exposed to EDFS30 for 15 to 60 sec, respectively. After vitrification and warming, the embryos were morphologically evaluated and assessed by their development to blastocysts, expanded/hatched blastocysts, or to term after transfer. The result showed that all the vitrified-warmed morulae had similar blastocyst rate compared to that of control (91.7% vs. 100%), and the highest developmental rate to expanded blastocysts (100%) or hatched blastocysts (62.3%) was observed when the morulae were pretreated with 10%E + 10%D for 0.5 min, exposed to EDFS30for 25 sec before vitrification and warming in 0.5 M sucrose for 5 min. After transfer, the survival rate (33.1%) in vivo of the vitrified morulae was higher (P > 0.05) than that of the fresh embryos (24.6%). Secondly, embryos at different stages were cryopreserved and thawed following the above program. Most (93.4 to 100%) of the embryos recovered after vitrification were morphologically normal at all the developmental stages. The blastocyst rates of the vitrified one-cell (52.5 to 66.7%) and the two-cell (63.3 to 68.9%) embryos were lower (P < 0.05) than those of the vitrified four-cell embryos (81.7 to 86.4%), the eight-cell embryos (90.0 to 93.3%), morulae (96.7 to 100%), and the expanded blastocysts rate (98.3 to 100.0%) of the vitrified early blastocysts. The highest survival rate in vivo of vitrified embryos were from the early blastocysts (40.4%), which was similar to that of fresh embryos (48.6%). The data demonstrate that the optimal protocol for the cryopreservation of morulae was suitable for the four-cell embryos to early blastocyst stages and that the early blastocyst stage is the most feasible stage for mouse embryo cryopreservation under our experimental conditions.  相似文献   

9.
This study was performed to pursue the optimal condition for the cryopreservation of mouse morulae by a two-step OPS method and to investigate the feasibility of the optimal condition for vitrification of embryos at other developmental stages. First, the mouse morulae were vitrified in OPS using one-step procedure—that is, embryos were vitrified after direct exposure to EDFS30 (15% ethylene glycol (EG), 15% dimethyl sulfoxide (DMSO), Ficoll and sucrose), or two-step method—that is, embryos were first pretreated in 10%E+10%D (10% EG and 10% DMSO in mPBS) for 30 sec, then exposed to EDFS30 for 15 to 60 sec, respectively. After vitrification and warming, the embryos were morphologically evaluated and assessed by their development to blastocysts, expanded/hatched blastocysts, or to term after transfer. The result showed that all the vitrified-warmed morulae had similar blastocyst rate compared to that of control (91.7% vs. 100%), and the highest developmental rate to expanded blastocysts (100%) or hatched blastocysts (62.3%) was observed when the morulae were pretreated with 10%E+10%D for 0.5 min, exposed to EDFS30 for 25 sec before vitrification and warming in 0.5 M sucrose for 5 min. After transfer, the survival rate (33.1%) in vivo of the vitrified morulae was higher (P > 0.05) than that of the fresh embryos (24.6%). Secondly, embryos at different stages were cryopreserved and thawed following the above program. Most (93.4 to 100%) of the embryos recovered after vitrification were morphologically normal at all the developmental stages. The blastocyst rates of the vitrified one-cell (52.5 to 66.7%) and the two-cell (63.3 to 68.9%) embryos were lower (P < 0.05) than those of the vitrified four-cell embryos (81.7 to 86.4%), the eight-cell embryos (90.0 to 93.3%), morulae (96.7 to 100%), and the expanded blastocysts rate (98.3 to 100.0%) of the vitrified early blastocysts. The highest survival rate in vivo of vitrified embryos were from the early blastocysts (40.4%), which was similar to that of fresh embryos (48.6%). The data demonstrate that the optimal protocol for the cryopreservation of morulae was suitable for the four-cell embryos to early blastocyst stages and that the early blastocyst stage is the most feasible stage for mouse embryo cryopreservation under our experimental conditions.  相似文献   

10.
In cryopreserved rat embryos, survival rates obtained in vitro are not always consistent with the rates obtained in vivo. To determine the optimal conditions for in vivo development to term, rat embryos at the 4-cell, 8-cell, and morula stages were vitrified in EFS40 by a one-step method and transferred into oviducts or uterine horns of recipients at various times during pseudopregnancy. Vitrified and fresh 4-cell embryos only developed after transfer into oviducts of asynchronous recipients on Days -1 to -2 of synchrony (i.e., at a point in pseudopregnancy 1-2 days earlier than the embryos). Approximately half the vitrified embryos transferred into oviducts on Day -1 developed to term, but only a minority of embryos, whether vitrified (10%-34%) or fresh (24%-33%), transferred at later times did so, suggesting that this may not be the most suitable stage for cryopreservation. Very few 8-cell embryos, either vitrified or fresh, developed when transferred into oviducts on Day 0 to -0.5. However, when transferred into uterine horns, high proportions of vitrified 8-cell embryos ( approximately 63%) developed to term in reasonably synchronous recipients (Day 0 to -0.5) but not in more asynchronous ones (6%; Day -1). A majority of vitrified morulae also developed to term (52%-68%) in a wider range of recipients (Days 0 to -1), the greatest success occurring in recipients on Day -0.5. Similar proportions of vitrified and fresh 4-cell embryos, 8-cell embryos, and morulae developed to term when appropriate synchronization existed between embryo and recipient. Thus, vitrification of preimplantation-stage rat embryos does not appear to impair their developmental potential in vivo.  相似文献   

11.
Vitrification of rat embryos at various developmental stages   总被引:6,自引:0,他引:6  
Han MS  Niwa K  Kasai M 《Theriogenology》2003,59(8):1851-1863
The effect of developmental stage on the survival of cryopreserved rat embryos was examined. Wistar rat embryos at various developmental stages were vitrified by a 1-step method with EFS40, an ethylene glycol-based solution, or by a 2-step method with EFS20 and EFS40. After warming, the survival of the embryos was assessed by their morphology, their ability to develop to blastocysts (or expanded blastocysts for blastocysts) in culture, or their ability to develop to term after transfer. Most (91-100%) of the embryos recovered after vitrification were morphologically normal in all developmental stages. However, the developmental ability of 1-cell embryos was quite low; exposing them to EFS40 for just 0.5 min decreased the in vitro survival rate from 76 to 9%. The survival rates of 2-cell embryos and blastocysts, both in vitro and in vivo, were significantly higher with a 2-step vitrification process than with a 1-step vitrification process. Very high in vitro survival rates (94-100%) were obtained in 4- to 8-cell embryos and morulae in the 1-step method. Although survival rates in vivo of 4-cell (40%) and 8-cell (4%) embryos vitrified by the 1-step method were comparatively low, the values were similar to those obtained in non-vitrified fresh embryos. When morulae vitrified by the 1-step method were transferred to recipients, the in vivo survival rate (61%) was high, and not significantly different from that of fresh embryos (70%). These results show that rat embryos at the 2-cell to blastocyst stages can be vitrified with EFS40, and that the morula stage is the most feasible stage for embryo cryopreservation in this species.  相似文献   

12.
The aim of this study was to evaluate pregnancy and embryo survival rate of vitrified in vivo produced Merino sheep and Criolla goat (morulae and blastocysts) embryos, using the plastic tips of micropipettes, as containers (Cryo-tips). The embryos were exposed, at room temperature, to two successive equilibration solutions for a period of 5 min and then to a vitrification solution (VS) for 30 s. Then embryos were then loaded in 1 μl VS, into a plastic micropipette tip, and plunged into liquid nitrogen. On thawing, the embryos were warmed (37 °C) and placed into cryoprotectant dilutions (three-step-process). In the ovine, the morula and blastocyst pregnancy rates (47.1% vs 50%) and embryo survival rates (41.2% vs 50%) recorded were similar for both embryonic stages. Unlike the sheep, no pregnancies were recorded in goat vitrified/thawed morulae embryos, following transfer. However, in contrast, goats receiving blastocysts recorded high rates of pregnancy and embryo survival (64% and 64%, respectively). This technique allows for easy handling of cryopreserved embryos, is simple and efficient in both ovine embryo stages and also for goat vitrified blastocysts. The technique has definite potential application.  相似文献   

13.
Misumi K  Suzuki M  Sato S  Saito N 《Theriogenology》2003,60(2):253-260
This study was conducted to determine the efficiency of vitrification using the microdroplet (MD) method for early stage porcine embryos. Embryos at compacted morulae to early blastocyst stage were vitrified in a vitrification solution containing 40% (v/v) ethylene glycol, 0.6M sucrose and 2% (w/v) polyethylene glycol in M2 (ESP) without any pretreatment. The equilibration and dilution were carried out in third and fourth steps, respectively, at 38 degrees C. The survivability of the cryopreserved embryos was assessed for both in vitro culture (Experiment 1) and by embryo transfer (Experiment 2). In Experiment 1, the embryos were vitrified within a microdroplet or 0.25 ml straw (ST) and fresh embryos were used as a control group. The survival rates after 24h culture in the MD, ST and control groups were 21/23, 14/20 and 20/20, respectively. The hatching rates of the embryos after 48 h incubation were 14/23, 4/20 and 16/20, respectively. In Experiment 2, 171 vitrified embryos were transferred to 5 recipient gilts, and 17 healthy piglets were produced from 2 recipients (3 recipients aborted) in Group 1. In Group 2, 81 vitrified embryos and 16 fresh embryos in total were transferred to 4 recipient gilts, and 10 healthy piglets from the vitrified embryos were produced from 3 recipients. These results indicated that porcine embryos of compacted morulae to early blastocyst stage can survive cryopreservation using the microdroplet method without any special intracellular manipulation or treatment.  相似文献   

14.
The objectives of this study were: (1) to evaluate the influence of porcine embryo developmental stage on in vitro embryo development after vitrification, (2) to study the efficiency of the one-step dilution procedure, compared with conventional warming, for vitrified embryos at different stages of development, and (3) to determine the influence of the embryo donor on the in vitro survival of vitrified embryos at morulae and blastocyst stages. Two to four cell embryos, morulae and blastocysts were collected by laparotomy from weaned crossbred sows (n=55). Vitrification and conventional warming were performed using the OPS procedure with Superfine Open Pulled Straws (SOPS). For one-step dilution, embryos were placed in 800 microl TCM199-HEPES containing 20% of new born calf serum and 0.13 M sucrose for 5 min. To evaluate development, two to four cell embryos, morulae and blastocysts were cultured in vitro for 120, 48 and 24h, respectively. Some fresh embryos from each developmental stage were not vitrified and cultured as controls. Embryos were morphologically evaluated for their developmental capacity during the in vitro culture by stereomicroscopy. The total cell number of embryos was assessed by Hoechst-33342 staining and fluorescence microscope observation. There was a significant effect of the stage of development on the in vitro survival, perihatching rate and the number of cells of embryos after vitrification and warming (Experiment 1; p<0.001). The survival and perihatching rates of two to four cell embryos were lower than those obtained for morulae and blastocysts (p<0.001). No differences (p>0.05) in survival rates were found between vitrified and fresh blastocysts. The warming procedure did not affect the development and total cell number of vitrified two to four cell embryos, morulae or blastocysts (Experiment 2). However, donor had a significant effect (p<0.001) on the in vitro development and the number of cells of morulae and blastocysts after vitrification and warming (Experiment 3). In conclusion, the embryo developmental stage and the embryo donor were important factors that affected the development of porcine embryos after OPS-vitrification and warming. OPS-vitrification and the one-step dilution are efficient procedures to be used with intact porcine morulae and blastocysts.  相似文献   

15.
In swine, five to six days post-insemination, morulae and blastocysts are collected together after uterine flushing. The purpose of this study was to vitrify zona pellucida-intact morulae with Open Pulled Straw (OPS) technology and obtain piglets after transfer. Morulae (200) were vitrified after a two-step equilibration in ethylene glycol, dimethyl sulfoxide and sucrose in Hepes-buffered TCM199 + 20% NBCS medium (TCM). 2-6 morulae were loaded into OPS and plunged into liquid nitrogen. At embryo warming, a three-step dilution with decreasing concentrations of sucrose was applied. In each of 10 recipients, 20 morulae were transferred surgically. Day 25, gestation rate and the farrowing rate were 80% and 70%, respectively. The pregnant recipients farrowed from 1 to 8 piglets and the survival of total transferred embryos was 13%. Although survival rates are still compromised, OPS technology is therefore appropriate to cryopreserve porcine morulae with intact zona pellucida.  相似文献   

16.
Previously, we developed a new method by which 2‐cell mouse embryos can be vitrified in liquid nitrogen in a near‐equilibrium state, and then kept at ?80°C for several days. In the present study, we examined whether or not the method was effective for mouse embryos at other developmental stages. Eight‐cell embryos, morulae, and expanded blastocysts of ICR mice were vitrified with ethylene glycol‐based solutions, named EFSc because of their composition of ethylene glycol (30–40%, v/v) and FSc solution. The FSc solution was PB1 medium containing 30% (w/v) Ficoll PM‐70 plus 1.5 M sucrose. The extent of equilibrium was assessed by examining how well vitrified embryos survived after being kept at ?80°C. When 8‐cell embryos and morulae were vitrified with EFS35c or EFS40c and then kept at ?80°C, the survival rate was high even after 4 days in storage and remained high after re‐cooling in liquid nitrogen. On the other hand, the survival of vitrified‐expanded blastocysts kept at ?80°C was low. Therefore, 8‐cell embryos and morulae can be vitrified in a near‐equilibrium state using the same method as for 2‐cell embryos. A high proportion of C57BL/6J embryos at the 2‐cell, 8‐cell, and morula stages vitrified with EFS35c developed to term after transportation on dry ice, re‐cooling in liquid nitrogen, and transfer to recipients. In conclusion, the near‐equilibrium vitrification method, which is effective for 2‐cell mouse embryos, is also effective for embryos at the 8‐cell and morula stages. The method would enable handy transportation of vitrified embryos using dry ice. Mol. Reprod. Dev. 79: 785–794, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

17.
The Mongolian gerbil (Meriones unguiculatus) has been used as a laboratory species in many fields of research, including neurology, oncology, and parasitology. Although the cryopreservation of embryos has become a useful means to protect valuable genetic resources, its application to the Mongolian gerbil has not yet been reported. In this study, we investigated the in vitro and in vivo developmental competence of Mongolian gerbil embryos cryopreserved by vitrification. In vivo-fertilized embryos were vitrified on the day of collection using the ethylene glycol (EG)-based solutions EFS20 and EFS40, which contained 20% and 40% EG, respectively, in PB1 containing 30% (w/v) Ficoll 70 and 0.5 M sucrose. First, we compared one-step and two-step vitrification protocols. In the one-step method, the embryos were directly transferred into the vitrification solution (EFS40), whereas in the two-step method, the embryos were exposed serially to EFS20 and EFS40 and then vitrified. After liquefying (thawing), late two-cell embryos (collected on day 3) vitrified by the two-step method showed significantly better rates of in vitro development to the morula stage compared to those vitrified by the one-step method (65% vs. 5%, P < 0.0001). We then examined whether the same two-step method could be applied to early two-cell embryos (collected on day 2), four-cell embryos (day 4), morulae (day 5), and blastocysts (day 6). After liquefying, 87%-100% of the embryos were morphologically normal in all groups, and 23% and 96% developed to the compacted morula stage from early two- and four-cell embryos, respectively. After transfer into recipient females, 3% (4/123), 1% (1/102), 5% (4/73), and 10% (15/155) developed to full-term offspring from vitrified and liquefied early two-cell embryos, late two-cell embryos, morulae, and blastocysts, respectively. This demonstrates that Mongolian gerbil embryos can be safely cryopreserved using EG-based vitrification solutions.  相似文献   

18.
Vitrification of mouse embryos in two cryoprotectant solutions   总被引:5,自引:0,他引:5  
The objective of this study was to compare the efficiency of 2 media on the vitrification of mouse compacted morulae, early blastocysts and expanded blastocysts after equilibration at room temperature of 4 degrees C. Embryos were equilibrated for 10 min in either 25% VS3 (Rall Equilibration Medium, REM) or 10% glycerol + 20% propylene glycol (Massip Equilibration Medium, MEM) in DPBS at 20 degrees C or 4 degrees C. For vitrification either 100% VS3 (Rall Vitrification Medium, RVM) or 25% glycerol + 25% propylene glycol (Massip Vitrification Medium, MVM) in DPBS was used. Embryos equilibrated at room temperature were loaded in 20 microL of vitrification media into 250 microL straws and then immediately (30 sec) plunged into liquid nitrogen (LN2). After equilibration at 4 degrees C the embryos were put into straws with 20 microL of precooled vitrification medium, and after 20 min at 4 degrees C they were plunged into LN2. Embryos from both groups were thawed in a 20 degrees C water bath for 20 sec, transferred to 1.0 M sucrose in DPBS for 5 min and then cultured for 24 to 48 h in Whitten's medium at 37 degrees C in 5% CO2 in air. In the groups of embryos prepared for vitrification at room temperature the survival rate of compact morulae vitrified in RVM was higher than those vitrified in MVM (65/70, 93% vs 49/74, 66%; P < 0.01). No difference was found in the survival rate of early blastocysts and expanded blastocysts vitrified in RVM or MVM (30/83, 36% vs 25/75, 33% and 4/66, 6% vs 4/76, 5%). No difference was found between the survival rate of compact morulae after equilibration with RVM or MVM at 4 degrees C (62/75, 83% vs 52/74, 70%). Both the early blastocysts and expanded blastocysts equilibrated at 4 degrees C MVM yielded a higher survival rate than RVM (28/74, 38% and 40/70, 57% vs 4/75, 5% and 4/77, 5%; P < 0.01). We conclude that, of the 3 developmental stages, compact morulae withstand the vitrification process best, and reduction of the temperature prior to plunging into LN2 is not required. A 10-fold increase in the survival rate of expanded blastocysts can be achieved using low temperature equilibration (4 degrees C) and MVM.  相似文献   

19.
For the purpose of ascertaining parameters to embryo transfer on some domestic animals, mouse morulae were used as a model to investigate the effect of in-straw thawing on in vitro and in vivo-development of vitrified embryos. Embryos were vitrified in 0.25 ml straws preloaded with dilution solution (0.5 M Sucrose) and thawed in the straw by mixing the vitrification solution (Ethylene glycol + Ficoll 70 + Sucrose) and the dilution solution at 25 degrees C. The embryos were randomly divided into six groups and expelled from the straws after they had been suspended in the in-straw mixture for 3 min, 5 min, 8 min, 12 min, 16 min, and 20 min, respectively, and then they were collected under a microscope for in vitro culture or direct transfer. The in vitro developmental rates of the embryos were 92.3% to 98.4% and hatching rates were 64.1% to 75.6% for the groups of 3 min to 16 min, showing no significant differences with those of nonfrozen controls (100%, 76.2%; P > 0.05). While embryos were suspended in the straw for 20 min, the developmental rate (86.6%) and hatching rate (52.4%) were significant lower than those of the control (100%, 76.2%; P < 0.01). When the 168 frozen-thawed embryos (in-straw thawing for 5 min) and 168 fresh embryos were transferred, respectively, the proportion of live fetuses in the pregnant recipients between them (58.7% vs. 54.5%) showed no significant difference (P > 0.05). The data indicate that vitrification with EFS30 and suspension in the in-straw mixture for 3 min to 16 min, when thawing, did not affect the in vitro developmental rate and hatching rate. Moreover, the in vivo developmental rate between vitrified embryos and fresh embryos did not differ significantly. It can be concluded that this method is fit for nonsurgical embryo transfer in some domestic animals with a suggestion that the operation of embryo transfer should be accomplished within 16 min.  相似文献   

20.
Jiang JY  Umezu M  Sato E 《Cryobiology》1999,38(2):160-164
Two-cell embryos derived from immature rdw rats by in vitro fertilization (IVF) were vitrified in ethylene glycol-based solutions. Embryos exposed to EFS20 before being vitrified in EFS40 exhibited improved viability in vitro. All embryos exposed to EFS20 for 1-3 min before vitrification in EFS40 were morphologically normal. However, 2-3 min of exposure to EFS20 increased the number of embryos that developed beyond the four-cell stage. More embryos exposed to EFS20 for 2-3 min developed to morulae (63-64%) and blastocysts (34-38%) than those exposed for 1 min (35 and 10%, respectively). After transfer, 33% of embryos exposed to EFS20 for 3 min and vitrified in EFS40 developed to term compared to 29% of fresh embryos. Fifteen (47%) of live young were homozygous rdw and all of the others were heterozygous rats. The present study demonstrated that vitrification in EFS solution can be routinely used to cryopreserve rat two-cell IVF-embryos with no loss of viability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号