首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
精原干细胞是雄性动物体内精子发生过程中起重要作用的精原细胞类型,不但具有干细胞特性,还能定向分化为雄性配子将自身基因传递给后代。除此之外,体外培养和鉴定精原干细胞为移植和转基因提供了基础。我们对精原干细胞的生物学特性、分离培养、鉴定、移植及精原干细胞介导的转基因进行简要概述。  相似文献   

2.
Although stem cells are believed to divide infinitely by self-renewal division, there is little evidence that demonstrates their infinite replicative potential. Spermatogonial stem cells are the founder cell population for spermatogenesis. Recently, in vitro culture of spermatogonial stem cells was described. Spermatogonial stem cells can be expanded in vitro in the presence of glial cell line-derived neurotrophic factor (GDNF), maintaining the capacity to produce spermatogenesis after transplantation into testis. Here, we examined the stability and proliferative capacity of spermatogonial stem cells using cultured cells. Spermatogonial stem cells were cultured over 2 years and achieved approximately 10(85)-fold expansion. Unlike other germline cells that often acquire genetic and epigenetic changes in vitro, spermatogonial stem cells retained the euploid karyotype and androgenetic imprint during the 2-year experimental period, and produced normal spermatogenesis and fertile offspring. However, the telomeres in spermatogonial stem cells gradually shortened during culture, suggesting that they are not immortal. Nevertheless, the remarkable stability and proliferative potential of spermatogonial stem cells suggest that they have a unique machinery to prevent transmission of genetic and epigenetic damages to the offspring, and these characteristics make them an attractive target for germline modification.  相似文献   

3.
Functional analysis of stem cells in the adult rat testis   总被引:12,自引:0,他引:12  
Adult stem cells maintain several self-renewing systems and processes in the body, including the epidermis, hematopoiesis, intestinal epithelium, and spermatogenesis. However, studies on adult stem cells are hampered by their low numbers, lack of information about morphologic or biochemical characteristics, and absence of functional assays, except for hematopoietic and spermatogonial stem cells. We took advantage of the recently developed spermatogonial transplantation technique to analyze germ line stem cells of the rat testis. The results indicate that the stem cell concentration in rat testes is 9.5-fold higher than that in mouse testes, and spermatogenic colonies derived from rat donor testis cells are 2.75 times larger than mouse-derived colonies by 3 mo after transplantation. Therefore, the extent of spermatogenesis from rat stem cells was 26-fold greater than that from mouse stem cells at the time of recipient testis analysis. Attempts to enrich spermatogonial stem cells in rat testis populations using the experimental cryptorchid procedure were not successful, but selection by attachment to laminin-coated plates resulted in 8.5-fold enrichment. Spermatogonial stem cells are unique among adult stem cells because they pass genetic information to the next generation. The high concentration of stem cells in the rat testis and the rapid expansion of spermatogenesis after transplantation will facilitate studies on stem cell biology and the introduction of genetic modifications into the male germ line. The functional differences between spermatogonial stem cells of rat vs. mouse origin after transplantation suggest that the potential of these cells may vary greatly among species.  相似文献   

4.
Transplantation of germ cells from rabbits and dogs into mouse testes.   总被引:23,自引:0,他引:23  
Spermatogonial stem cells of a fertile mouse transplanted into the seminiferous tubules of an infertile mouse can develop spermatogenesis and transmit the donor haplotype to progeny of the recipient mouse. When testis cells from rats or hamsters were transplanted to the testes of immunodeficient mice, complete rat or hamster spermatogenesis occurred in the recipient mouse testes, albeit with lower efficiency for the hamster. The objective of the present study was to investigate the effect of increasing phylogenetic distance between donor and recipient animals on the outcome of spermatogonial transplantation. Testis cells were collected from donor rabbits and dogs and transplanted into testes of immunodeficient recipient mice in which endogenous spermatogenesis had been destroyed. In separate experiments, rabbit or dog testis cells were frozen and stored in liquid nitrogen or cultured for 1 mo before transplantation to mice. Recipient testes were analyzed, using donor-specific polyclonal antibodies, from 1 to >12 mo after transplantation for the presence of donor germ cells. In addition, the presence of canine cells in recipient testes was demonstrated by polymerase chain reaction using primers specific for canine alpha-satellite DNA. Donor germ cells were present in the testes of all but one recipient. Donor germ cells predominantly formed chains and networks of round cells connected by intercellular bridges, but later stages of donor-derived spermatogenesis were not observed. The pattern of colonization after transplantation of cultured cells did not resemble spermatogonial proliferation. These results indicate that fresh and cryopreserved germ cells can colonize the mouse testis but do not differentiate beyond the stage of spermatogonial expansion.  相似文献   

5.
Spermatogonial stem cells have unique properties to self-renew and support spermatogenesis throughout their lifespan. Although glial cell line-derived neurotrophic factor (GDNF) has recently been identified as a self-renewal factor for spermatogonial stem cells, the molecular mechanism of spermatogonial stem cell self-renewal remains unclear. In the present study, we assessed the role of the phosphoinositide-3 kinase (PI3K)-Akt pathway using a germline stem (GS) cell culture system that allows in vitro expansion of spermatogonial stem cells. Akt was rapidly phosphorylated when GDNF was added to the GS cell culture, and the addition of a chemical inhibitor of PI3K prevented GS cell self-renewal. Furthermore, conditional activation of the myristoylated form of Akt-Mer (myr-Akt-Mer) by 4-hydroxy-tamoxifen induced logarithmic proliferation of GS cells in the absence of GDNF for at least 5 months. The myr-Akt-Mer GS cells expressed spermatogonial markers and retained androgenetic imprinting patterns. In addition, they supported spermatogenesis and generated offspring following spermatogonial transplantation into the testes of infertile recipient mice, indicating that they are functionally normal. These results demonstrate that activation of the PI3K-Akt pathway plays a central role in the self-renewal division of spermatogonial stem cells.  相似文献   

6.
Germ cell transplantation in pigs.   总被引:21,自引:0,他引:21  
Spermatogonial stem cells form the foundation of spermatogenesis, and their transplantation provides a unique opportunity to study spermatogenesis and may offer an alternative approach for animal transgenesis. This study was designed to extend the technique of spermatogonial transplantation to an economically important, large-animal model. Isolated immature pig testes were used to develop the intratesticular injection technique. Best results of intratubular germ cell transfer were obtained when a catheter was inserted into the rete testis under ultrasound guidance. The presence of infused dye or labeled cells was confirmed in the seminiferous tubules from 70 of 89 injected isolated testes. Infusion of 3-6 ml of dye solution or cell suspension could fill the rete and up to 50% of seminiferous tubules. The technique was subsequently applied in vivo. Donor cells included testis cells from 1- or 10-wk-old boars (from the recipients' contralateral testis or unrelated donors) and those from mice carrying a marker gene. Porcine testis cells were labeled with a fluorescent marker before transplantation. Testes were examined for the presence and localization of labeled donor cells immediately after transplantation or every week for 4 wk. Labeled porcine donor cells were found in numerous seminiferous tubules from 10 of 11 testes receiving pig cells. These results indicate that germ cell transplantation is feasible in immature pigs, and that porcine transplanted cells are retained in the recipient testis for at least 1 mo. This study represents a first step toward successful spermatogonial transplantation in a farm animal species.  相似文献   

7.
Spermatogonial stem cells continuously divide in the testis to support spermatogenesis throughout the life of adult male animals. Although very few spermatogonial stem cells are present in vivo, we recently succeeded in expanding these cells in vitro. Germ cells from postnatal testes were able to proliferate in the presence of several types of cytokines, and they formed uniquely shaped colonies of spermatogonia (germline stem or GS cells). These cells reinitiated normal spermatogenesis when transplanted into seminiferous tubules. However, much remains unknown about the contributions of cytokines to successful stem cell culture. In the present study, we examined the role of leukemia inhibitory factor (LIF) in GS cell culture. We found that the addition of LIF to newborn testis cell culture enhances the formation of germ cell colonies. Ciliary neurotrophic factor, but not oncostatin M, had the same effect, although they both bind to the IL-6ST (gp130) receptor. On the other hand, GS cells could be established from pup or adult testes in the absence of LIF. No phenotypic or functional difference was found between GS cells established from different stages, and normal offspring were born from pup-derived GS cells that had been maintained in the absence of LIF, indicating that LIF per se is not involved in the self-renewal of GS cells. These results demonstrate that LIF is useful in the initiation of GS cell culture and suggest that LIF or a related cytokine is involved in the maturation of gonocytes into spermatogonia.  相似文献   

8.
Retrovirus-mediated modification of male germline stem cells in rats   总被引:10,自引:0,他引:10  
The ability to isolate, manipulate, and transplant spermatogonial stem cells provides a unique opportunity to modify the germline. We used the rat-to-nude mouse transplantation assay to characterize spermatogonial stem cell activity in rat testes and in culture. Our results indicate that rat spermatogonial stem cells can survive and proliferate in short-term culture, although a net loss of stem cells was observed. Rat spermatogonial stem cells also were susceptible to transduction with a retroviral vector carrying a lacZ reporter transgene. Using a 3-day periodic infection protocol, 0.5% of stem cells originally cultured were transduced and produced transgenic colonies of spermatogenesis in recipient mouse testes. The level of transgenic donor-derived spermatogenesis observed in the rat-to-mouse transplantation was similar to levels that produced transgenic progeny in the mouse-to-mouse transplantation. This work provides a basis for understanding the biology of rat spermatogonial stem cells. Development of an optimal rat recipient testis model and application of these methods for germline modification will enable the production of transgenic rats, potentially valuable tools for evaluating genes and their functions. In addition, these methods may be applicable in other species where existing transgenic methods are inefficient or not available.  相似文献   

9.
Spermatogenesis originates from a small number of spermatogonial stem cells that can reinitiate spermatogenesis and produce germ cell colonies following transplantation into infertile recipient testes. Although several previous studies have suggested a single-cell origin of germ cell colonies, only indirect evidence has been presented. In this investigation, we tested the clonal origin hypothesis using a retrovirus, which could specifically mark an individual spermatogonial stem cell. Spermatogonial stem cells were infected in vitro with an enhanced green fluorescence protein-expressing retrovirus and subsequently transplanted into infertile recipient mice. Live haploid germ cells were recovered from individual colonies and were microinjected into eggs to create offspring. In total, 45 offspring were produced from five colonies, and 23 (51%) of the offspring were transgenic. Southern blot analysis indicated that the transgenic offspring from the single colony carried a common integration site, and the integration site was different among the transgenic offspring from different colonies. These results provide evidence that germ cell colonies develop from single spermatogonial stem cells.  相似文献   

10.
Testis cell transplantation from mice or rats into recipient mouse seminiferous tubules results in donor cell-derived spermatogenesis in nearly all host testes. Normal spermatozoa are produced and, in the most successful mouse transplantations, the donor haplotype is transmitted to progeny of the recipient. However, few studies have been performed in other species. In this report, we demonstrate that rat and mouse testis cells will generate donor cell-derived spermatogenesis in recipient rat seminiferous tubules. Depletion of endogenous spermatogenesis before donor cell transplantation was more difficult in rat than reported for mouse recipients. A protocol employing treatment of neonatal rats with busulfan was most effective in preparing recipients and allowed more than 90% of testes to be colonized by donor cells. Transplantation of mouse testis cells into rat seminiferous tubules was most successful in recipients made cryptorchid and treated with busulfan. In the best experiments, about 55% of rat testes were colonized by mouse cells. Both rat and mouse donor cell-derived spermatogenesis were improved by treatment of rat recipients with leuprolide, a gonadotropin-releasing hormone agonist. The studies indicated that recipient preparation for spermatogonial stem cell transplantation was critical in the rat and differs from the mouse. However, modification of currently used techniques should allow male germ line stem cell transplantation in many species.  相似文献   

11.
Spermatogenesis originates from a small population of spermatogonial stem cells. These cells are believed to divide infinitely and support spermatogenesis throughout life in the male. In this investigation, we examined the possibility of deriving transgenic offspring from single spermatogonial stem cells. Spermatogonial stem cells were transfected in vitro with a plasmid vector containing a drug resistant gene. Stably transfected stem cell clones were isolated by in vitro drug selection; these clones were expanded and used to produce transgenic progeny following spermatogonial transplantation into infertile recipients. An average of 49% of the offspring carried the transgene, and the recipient mice continued to produce monoclonal transgenic progeny a year after transplantation. Thus, a somatic cell-based genetic approach can be used to modify and select clones of spermatogonial stem cells in a manner similar to embryonic stem cells. The feasibility of genetic selection using postnatal spermatogonial stem cells demonstrates their extensive proliferative potential and provides the opportunity to develop new methods for generating stable animal transgenics or for germline gene therapy.  相似文献   

12.
The aim of this study was to compare the in vitro effects of glial cell line-derived neurotrophic factor, stem cell factor, granulocyte macrophage-colony stimulating factor, and co-culture with Sertoli cells on the efficiency of adult mouse spermatogonial stem cells colony formation. For these purpose, both Sertoli and spermatogonial cells were isolated from adult mouse testes. The identity of the cells was confirmed through analysis of alkaline phosphatase activity, immunocytochemistry against OCT-4, c-kit, and vimentin, and also by transplantation of these cells in the recipient testes. The isolated spermatogonial cells were treated either with various concentrations of the above mentioned factors or co-cultured with Sertoli cells for 3 wk. The spermatogonial cells of the resulting colonies were transplanted via rete testis into the mouse testes, which were irradiated with 14 Gy. The results indicated that glial cell line-derived neurotrophic factor is the most appropriate factor for in vitro colonization of adult mice spermatogonial cells compared with other cytokines and growth factors. A short-term co-culture with Sertoli cells showed a significant increase in the number and diameter of the colonies compared with the treated growth factors and the control group. We have also demonstrated that mouse spermatogonial stem cells in the colonies after co-culturing with Sertoli cells could induce spermatogenesis in the recipient testes after transplantation.  相似文献   

13.
Spermatogonial transplantation provides access to the mammalian germline and has been used in experimental animal models to study stem cell/niche biology and germline development, to restore fertility, and to produce transgenic models. The potential to manipulate and/or transplant the germline has numerous practical applications that transcend species boundaries. To make the transplantation technology more broadly accessible, it is necessary to develop practical recipient preparation protocols. In the current study, mouse recipients for spermatogonial transplantation were prepared by treating pregnant females with the chemotherapeutic agent busulfan at different times during gestation. Donor germ cells were introduced into the testes of male progeny between 5 and 12 days postpartum. Analysis of recipient animals revealed that busulfan treatment of pregnant females on 12.5 days postcoitum was the most effective; male progeny transplanted with donor germ cells became fertile and passed the donor genotype to 25% of progeny. This approach was effective because 1) the cytoablative treatment reduced (but did not abolish) endogenous spermatogenesis, creating space for colonization by donor stem cells, 2) residual endogenous germ cells contributed to a healthy testicular environment that supported robust donor and recipient spermatogenesis, and 3) fetal busulfan-treated males could be transplanted as pups, which have been established as better recipients than adults. Laboratory mice provide a valuable experimental model for developing the technology that now can be applied and evaluated in other species.  相似文献   

14.
Functional roles of spermatogonial stem cells in spermatogenesis are self-renewing proliferation and production of differentiated daughter progeny. The ability to recapitulate these actions in vitro is important for investigating their biology and inducing genetic modification that could potentially lead to an alternative means of generating transgenic animals. The objective of this study was to evaluate the survival and proliferation of frozen-thawed bovine spermatogonial stem cells in vitro and investigate the effects of exogenous glial cell line-derived neurotrophic factor (GDNF). In order to accomplish this objective we developed a bovine embryonic fibroblast feeder cell line, termed BEF, to serve as feeder cells in a coculture system with bovine germ cells. Bovine spermatogonial stem cell survival and proliferation in vitro were evaluated by xenogeneic transplantation into the seminiferous tubules of immunodeficient mice. Bovine germ cells cocultured for 1 wk resulted in significantly more round cell donor colonies in recipient mouse testes compared to donor cells transplanted just after thawing. Bovine germ cells cocultured for 2 wk had fewer colony-forming cells than the freshly thawed cell suspensions or cells cultured for 1 wk. Characterization of the feeder cell line revealed endogenous expression of Gdnf mRNA and protein. Addition of exogenous GDNF to the culture medium decreased the number of stem cells present at 1 wk of coculture, but enhanced stem cell maintenance at 2 wk compared to cultures without added GDNF. These data indicate that frozen-thawed bovine spermatogonial stem cells survive cryopreservation and can be maintained during coculture with a feeder cell line in which the maintenance is influenced by GDNF.  相似文献   

15.
Initiation of the first wave of spermatogenesis in the neonatal mouse testis is characterized by the differentiation of a transient population of germ cells called gonocytes found in the center of the seminiferous tubule. The fate of gonocytes depends upon these cells resuming mitosis and developing the capacity to migrate from the center of the seminiferous tubule to the basement membrane. This process begins approximately Day 3 postpartum in the mouse, and by Day 6 postpartum differentiated type A spermatogonia first appear. It is essential for continual spermatogenesis in adults that some gonocytes differentiate into spermatogonial stem cells, which give rise to all differentiating germ cells in the testis, during this neonatal period. The presence of spermatogonial stem cells in a population of cells can be assessed with the use of the spermatogonial stem cell transplantation technique. Using this assay, we found that germ cells from the testis of Day 0-3 mouse pups can colonize recipient testes but do not proliferate and establish donor-derived spermatogenesis. However, germ cells from testes of Day 4-5 postpartum mice colonize recipient testes and generate large areas of donor-derived spermatogenesis. Likewise, germ cells from Day 10, 12, and 28 postpartum animals and adult animals colonize and establish donor-derived spermatogenesis, but a dramatic reduction in the number of colonies and the extent of colonization occurs from germ cell donors Days 12-28 postpartum that continues in adult donors. These results suggest spermatogonial stem cells are not present or not capable of initiating donor-derived spermatogenesis until Days 3-4 postpartum. The analysis of germ cell development during this time frame of development and spermatogonial stem cell transplantation provides a unique system to investigate the establishment of the stem cell niche within the mouse testis.  相似文献   

16.
Transplantation of germ cells from fertile donor mice to the testes of infertile recipient mice results in donor-derived spermatogenesis and transmission of the donor's genetic material to the offspring of recipient animals. Germ cell transplantation provides a bioassay to study the biology of male germ line stem cells, develop systems to isolate and culture spermatogonial stem cells, examine defects in spermatogenesis and treat male infertility. Although most widely studied in rodents, germ cell transplantation has been applied to larger mammals. In domestic animals including pigs, goats and cattle, as well as in primates, germ cells can be transplanted to a recipient testis by ultrasonographic-guided cannulation of the rete testis. Germ cell transplantation was successful between unrelated, immuno-competent pigs and goats, whereas transplantation in rodents requires syngeneic or immuno-compromised recipients. Genetic manipulation of isolated germ line stem cells and subsequent transplantation will result in the production of transgenic sperm. Transgenesis through the male germ line has tremendous potential in domestic animal species where embryonic stem cell technology is not available and current options to generate transgenic animals are inefficient. As an alternative to transplantation of isolated germ cells to a recipient testis, ectopic grafting of testis tissue from diverse mammalian donor species, including horses and primates, into a mouse host represents a novel possibility to study spermatogenesis, to investigate the effects of drugs with the potential to enhance or suppress male fertility, and to produce fertile sperm from immature donors. Therefore, transplantation of germ cells or xenografting of testis tissue are uniquely valuable approaches for the study, preservation and manipulation of male fertility in domestic animals.  相似文献   

17.
Spermatogonial stem cells are the only stem cells in the body that transmit genetic information to the next generation. These cells can be cultured for extended periods in the presence of serum and feeder cells. However, little is known about factors that regulate self-renewal division of spermatogonial stem cells. In this investigation we examined the possibility of establishing culture systems for spermatogonial stem cells that lack serum or a feeder cell layer. Spermatogonial stem cells could expand in serum-free conditions on mouse embryonic fibroblasts (MEFs), or were successfully cultivated without feeder cells on a laminin-coated plate. However, they could not expand when both serum and feeder cells were absent. Although the cells cultured on laminin differed phenotypically from those on feeder cells, they grew exponentially for at least 6 mo, and produced normal, fertile progeny following transplantation into infertile mouse testis. This culture system will provide a new opportunity for understanding the regulatory mechanism that governs spermatogonial stem cells.  相似文献   

18.
精原干细胞是动物体内的一种成体干细胞,在睾丸微环境中可以像胚胎干细胞一样具有增殖、分化潜能。近年来借助于各种细胞学技术,人们对精原干细胞在不同睾丸微环境中的分化和发育状况进行了深入研究,睾丸内不同种类细胞间的相互作用以及特定微环境对干细胞转分化的影响,已成为本领域的热点核心内容。将从精原干细胞生命历程的角度讨论该过程中所取得的研究成果和存在的问题。  相似文献   

19.
Spermatogonial transplantation provides a straightforward approach to quantify spermatogonial stem cells (SSCs). Because donor-derived spermatogenesis is regenerated in the form of distinct colonies, the number of functional SSCs can be obtained by simply counting the number of colonies established in recipient testes. However, this approach is legitimate only when one colony arises from one stem cell (one colony-one stem cell hypothesis). In this study, we evaluated the validity of this hypothesis. Two populations of donor cells were obtained from the testes of two transgenic mouse lines and mixed at a 1:1 ratio. Following transplantation of the cell mixture, donor-derived colonies were visualized and individually excised, and genomic DNA was extracted from each colony. Based on unique marker genes of the two transgenic lines, the genotype of the cells contained in a colony was examined by polymerase chain reaction. A colony was determined to be clonal when only one transgene was detected. The results showed that 100% and 90% of colonies were clonal when <5 and 19 colonies were formed per recipient testis, respectively. However, the clonality of colonies decreased as the colony number per recipient testis or the length of each colony increased. These results support the one colony-one stem cell hypothesis and demonstrate that spermatogonial transplantation provides a highly quantitative assay for SSCs; however, these conclusions are applicable under a defined transplantation condition.  相似文献   

20.
Spermatogenesis originates from a small number of spermatogonial stem cells that reside on the basement membrane and undergo self-renewal division to support spermatogenesis throughout the life of adult animals. Although the recent development of a technique to culture spermatogonial stem cells allowed reproduction of self-renewal division in vitro, much remains unknown about how spermatogonial stem cells are regulated. In this study, we found that spermatogonial stem cells could be cultured in an anchorage-independent manner, which is characteristic of stem cells from other types of self-renewing tissues. Although the cultured cells grew slowly (doubling time, approximately 4.7 days), they expressed markers of spermatogonia, and grew exponentially for at least 5 months to achieve 1.5 x 10(10) -fold expansion. The cultured cells underwent spermatogenesis following transplantation into the seminiferous tubules of infertile animals and fertile offspring were obtained by microinsemination of germ cells that had developed within the testes of recipients of the cultured cells. These results indicate that spermatogonial stem cells can undergo anchorage-independent, self-renewal division, and suggest that stem cells have the common property to survive and proliferate in the absence of exogenous substrata.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号