首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Primary cultures of rabbit hepatocytes which were preincubated for 20 h in a medium containing lipoprotein-deficient serum subsequently bound, internalized and degraded 125I-labeled high-density lipoproteins2 (HDL2). The rate of degradation of HDL2 was constant in incubations from 3 to 25 h. As the concentration of HDL2 in the incubation medium was increased, binding reached saturation. At 37 degrees C, half-maximal binding (Km) was achieved at a concentration of 7.3 micrograms of HDL2 protein/ml (4.06 X 10(-8)M) and the maximum amount bound was 476 ng of HDL2 protein/mg of cell protein. At 4 degrees C, HDL2 had a Km of 18.6 micrograms protein/ml (1.03 X 10(-7)M). Unlabeled low-density lipoproteins (LDL) inhibited only at low concentrations of 125I-labeled HDL2. Quantification of 125I-labeled HDL2 binding to a specific receptor (based on incubation of cells at 4 degrees C with and without a 50-fold excess of unlabeled HDL) yielded a dissociation constant of 1.45 X 10(-7)M. Excess HDL2 inhibited the binding of both 125I-labeled HDL2 and 125I-labeled HDL3, but excess HDL3 did not affect the binding of 125I-labeled HDL3. Preincubation of hepatocytes in the presence of HDL resulted in only a 40% reduction in specific HDL2 receptors, whereas preincubation with LDL largely suppressed LDL receptors. HDL2 and LDL from control and hypercholesterolemic rabbits inhibited the degradation of 125I-labeled HDL2, but HDL3 did not. Treatment of HDL2 and LDL with cyclohexanedione eliminated their capacity to inhibit 125I-labeled HDL2 degradation, suggesting that apolipoprotein E plays a critical role in triggering the degradative process. The effect of incubation with HDL on subsequent 125I-labeled LDL binding was time-dependent: a 20 h preincubation with HDL reduced the amount of 125I-labeled LDL binding by 40%; there was a similar effect on LDL bound in 6 h but not on LDL bound in 3 h. The binding of 125I-labeled LDL to isolated liver cellular membranes demonstrated saturation kinetics at 4 degrees C and was inhibited by EDTA or excess LDL. The binding of 125I-labeled HDL2 was much lower than that of 125I-labeled LDL and was less inhibited by unlabeled lipoproteins. The binding of 125I-labeled HDL3 was not inhibited by any unlabeled lipoproteins. EDTA did not affect the binding of either HDL2 or HDL3 to isolated liver membranes. Hepatocytes incubated with [2-14C]acetate in the absence of lipoproteins incorporated more label into cellular cholesterol, nonsaponifiable lipids and total cellular lipid than hepatocytes incubated with [2-14C]acetate in the presence of any lipoprotein fraction. However, the level of 14C-labeled lipids released into the medium was higher in the presence of medium lipoproteins, indicating that the effect of those lipoproteins was on the rate of release of cellular lipids rather than on the rate of synthesis.  相似文献   

2.
The effect of bile acid flux on the fate of lipoprotein-derived cholesterol was studied in bile acid-transporting McNtcp.18 hepatoma cells. The intracellular unesterified cholesterol (UC) concentration rose when McNtcp.18 cells grown in the presence of either high density lipoproteins (HDL) or low density lipoproteins (LDL) were incubated with taurocholic acid (TCA). This effect was more pronounced when the exogenous source of cholesterol was HDL. The presence of TCA in the culture medium of McNtcp.18 cells had no discernible effect on the uptake of cholesteryl esters (CE) from either lipoprotein. TCA treatment of cells preincubated with either lipoprotein did not affect cholesterol synthesis but antagonized the stimulation of cholesterol esterification in cells that were incubated with LDL. The CE concentration in cells treated with TCA was decreased, relative to cells not incubated with TCA, suggesting that cellular CE stores were also hydrolyzed. The TCA treatment reduced the amount of total cholesterol released into the medium by the lipoprotein-treated cells, which was coincident with the reduction in the amount of apolipoprotein B in the culture medium. However, the proportion of UC released into the medium by the lipoprotein-treated cells was increased in cells capable of active bile acid transport. The results indicate that active bile acid flux through hepatoma cells increases the cellular pool of UC derived from lipoproteins. The UC released by the cells into the culture medium under this condition may represent cholesterol destined for direct biliary secretion.  相似文献   

3.
Unilamellar lipid vesicles of various cholesterol:phosphatidylcholine molar ratios were used to alter, via passive exchange at the plasma membrane, the cellular free cholesterol content of cultured human skin fibroblasts which had been preincubated in lipoprotein-deficient serum. The effects of these net surface transfers of cholesterol on cellular cholesterol biosynthesis, cholesterol esterification and low density lipoprotein (LDL) binding were determined and were compared with the effects of cholesterol delivered to the cell interior via the receptor-mediated endocytosis of LDL. Both LDL and cholesterol-rich lipid vesicles increased cell cholesterol within 6 h. Cells exposed to LDL also showed, within 6 h, decreased cholesterol synthesis, decreased LDL binding and increased cholesterol esterification. Cells incubated with the cholesterol-rich vesicles showed similar changes but these were delayed and did not occur until 24 h. Fibroblasts incubated with cholesterol-free phosphatidylcholine vesicles had decreased cell cholesterol, increased cholesterol synthesis, increased LDL binding, and decreased esterification, but only after 24 h of incubation. These results suggest that passive net transfers of cholesterol occurring at the cell surface can with time modulate intracellular cholesterol metabolism. These findings are consistent with the idea that the movement of cholesterol from the cell surface to the cell interior is a limited and relatively slow process.  相似文献   

4.
Homogeneous subpopulations of human high-density lipoproteins subfraction-3 (HDL3) have been incubated at 37 degrees C with purified lecithin: cholesterol acyltransferase, human serum albumin and varying concentrations of human low-density lipoproteins (LDL). Changes in HDL particle size and composition during these incubations were monitored. Incubation of HDL3a (particle radius 4.3 nm) in the absence of LDL resulted in an esterification of more than 70% of the HDL free cholesterol after 24 h of incubation. This, however, was sufficient to increase the HDL cholesteryl ester by less than 10% and was not accompanied by any change in particle size. When this mixture was incubated in the presence of progressively increasing concentrations of LDL, which donated free cholesterol to the HDL, the molar rate of production of cholesteryl ester was much greater; at the highest LDL concentration HDL cholesteryl ester content was almost doubled after 24 h and there was an increase in the HDL particle size up to the HDL2 range. In the case of HDL3b (radius 3.9 nm), there were again only minimal changes in particle size in incubations not containing LDL. In the presence of the highest concentration of LDL tested, however, the particles were again enlarged into the HDL2 size range after 24 h incubation. These HDL2-like particles were markedly enriched with cholesteryl ester but depleted of phospholipid and free cholesterol when compared with native HDL2. Furthermore, the ratio of apolipoprotein A-I to apolipoprotein A-II resembled that in the parent-HDL3 and was very much lower than that in native HDL2. It has been concluded that purified lecithin: cholesterol acyltransferase is capable of increasing the size of HDL3 towards that of HDL2 but that other factors must operate in vivo to modulate the chemical composition of the enlarged particles.  相似文献   

5.
The regulation of lipoprotein secretion in the cell line HepG2 was studied. HepG2 cells were preincubated with chylomicron remnants (triglyceride- and cholesterol-rich) or with beta very low density lipoproteins (beta-VLDL) (cholesterol-rich). The medium was removed and the cells were incubated for and additional 24 hr in a lipoprotein-free medium that contained either [2-3H]glycerol or DL-[2-3H]mevalonate. Cells and media were harvested, and lipoproteins were separated and fractionated. The mass and radioactivity of the lipids in cells and in the lipoproteins were measured. The activities of cellular acyl-CoA:cholesterol acyltransferase (ACAT) and 3-hydroxy-3-methylglutaryl CoA (HMG-CoA) reductase were also determined. Preincubation with chylomicron remnants induced an increase in cellular triglyceride and stimulated both HMG-CoA reductase and ACAT. Preincubation with beta-VLDL induced an increase in cellular free and esterified cholesterol, inhibited HMG-CoA reductase and stimulated ACAT. Although the absolute amount of VLDL is small, chylomicron remnants induced large relative increases in the amount of triglyceride and phospholipid secreted in VLDL and decreases in the amount of triglyceride secreted in low density (LDL) and high density (HDL) lipoproteins as well as a decrease in the amount of phospholipid secreted in HDL. In contrast, preincubation with beta-VLDL did not affect triglyceride secretion, but markedly stimulated the amount of phospholipid secreted in HDL. Comparison of the mass of glycerolipid actually secreted with that calculated from the cellular specific activity suggested that glycerolipids are secreted from single, rapidly equilibrating pools. Cholesterol and cholesteryl ester secretion were affected differently. Preincubation with chylomicron remnants increased the amount of free cholesterol secreted in both VLDL and LDL, but did not alter cholesteryl ester secretion. Preincubation with beta-VLDL increased free cholesterol secretion in all lipoprotein fractions and increased cholesteryl ester secretion in VLDL and LDL, but not HDL. Comparison of isotope and mass data suggested that the cholesteryl ester secreted came primarily from a preformed, rather than an newly synthesized, pool. In summary, these data provide insight to the mechanism whereby a liver cell regulates the deposition of exogenous lipid.  相似文献   

6.
We have utilized the human hepatocellular carcinoma cell line, Hep G2, to study the effects of low density lipoproteins (LDL), high density lipoproteins (HDL), and free cholesterol on apolipoprotein (apo) A-I mRNA levels. Incubation of the Hep G2 cells with LDL and free cholesterol led to a significant increase in the cellular content of cholesterol without any effect on the yield of total RNA or in the cellular protein content. Our studies established that incubation with LDL or free cholesterol increased the relative levels of apoA-I mRNA in the Hep G2 cells. In contrast with cholesterol loading, HDL had the effect of lowering the levels of apoA-I mRNA. These results indicate the LDL and HDL pathways as well as intracellular cholesterol may be important in apoA-I gene expression and regulation.  相似文献   

7.
The cholesterol transfer between human erythrocytes and main classes of serum lipoproteins (LP) from healthy donors and artery-coronary disease patients was studied (artery-coronary disease is the main manifestation of atherosclerosis). It is shown that low-density lipoproteins (LDL) are capable of transporting cholesterol to erythrocytes, which lack the specific receptors for LDL. The cell cholesterol content in comparison with erythrocytes incubated without LDL was increased by 11.4%. The effect was even higher in case of LDL, isolated from serum of artery-coronary subjects (the cell cholesterol content was increased by 33.8%). High-density lipoproteins (HDL) accept cholesterol from cell membranes. However, cholesterol-accepting properties of HDL from artery-coronary disease patients were suppressed as compared with normal HDL. Both discovered events must promote the cholesterol accumulation in cell membranes in atherosclerosis. As it is shown by the spin probe method, lipid peroxidation (LPO) causes the disturbance of the structural organization of LP and as the consequence of that--the increase of LDL cholesterol-donating ability and the decrease of HDL cholesterol-accepting ability. The greater LDL are oxidized, the more cholesterol they transport to erythrocytes during incubation. The greater is the level of HDL peroxidation, the stronger their cholesterol-accepting function is suppressed. These results suggest that LPO can play an important role in LP modification, the disturbance of their interaction with cell surface and the cholesterol accumulation in cells in atherosclerosis.  相似文献   

8.
9.
Human endothelial cells (EA.hy 926 line) were loaded with cationized low density lipoprotein (LDL) and subsequently incubated with fatty acid/bovine serum albumin complexes. The fatty acids were palmitic, oleic, linoleic, arachidonic, and eicosapentaenoic acids. The preincubations resulted in extensively modified fatty acid profiles in cell membrane phospholipids and in cellular cholesteryl esters. The cholesterol efflux from these fatty acid-modified cells was measured using 0.2 mg high density lipoprotein3 (HDL3)/ml medium. The efflux was significantly higher for the palmitic acid-treated cells, compared to all other fatty acid treatments. These differences in efflux rates were not caused by changes in the binding of HDL3 to high affinity receptors on the EA.hy 926 cells. Efflux mediated by dimethyl suberimidate-treated HDL3, which does not interact with high affinity HDL receptors, was similar to efflux induced by native HDL3 after all fatty acid treatments. Our results indicate that high affinity HDL receptors are not important for HDL-mediated efflux of cell cholesterol. The fatty acid composition of the cell membrane phospholipids may be an important determinant.  相似文献   

10.
Human erythrocytes were incubated for 5 h at 37 degrees C with lipoproteins (LP), preliminary oxidized to different extent, as assessed by thiobarbituric acid (TBA) test. Cholesterol content in the cells was increased by 12-14% after incubation with low-density lipoproteins (LDL) along with augmentation of order parameter and rotational correlation time of spin-labeled stearic acids incorporated into membranes. If erythrocytes were incubated with oxidized LDL, containing 2.5-4 times more TBA-reactive material than native ones, cellular content of cholesterol was increased by 24-28%. In contrast, high-density lipoproteins (HDL2 and HDL3) removed cholesterol from cell membranes, when incubated with erythrocytes. This was followed by increased fluidity of membrane lipid phase as detected by the spin probe method. Oxidation of HDL2 and HDL3 decreased their ability to accept cholesterol from cell membranes. No detectable accumulation of TBA-reactive material was observed in the samples during the incubation. The antioxidant, butylated hydroxytoluene (BHT), in the concentration of 10(-5) M did not influence the cholesterol transfer between LP and erythrocytes. Hence, the effects of lipid peroxidation (LPO) on the cholesterol transfer seem to result from LP alterations by oxidation rather than from free radical reactions occurring during the incubation. By increasing cholesterol-donating ability of LDL and inhibition of cholesterol-accepting capacity of HDL lipid peroxidation in LP may activate cholesterol accumulation in blood vessel cells and thus contribute to atherosclerosis.  相似文献   

11.
Apolipoprotein B (apoB) of plasma low density lipoproteins (LDL) binds to high affinity receptors on many cell types. A minor subclass of high density lipoproteins (HDL), termed HDL1, which contains apoE but lacks apoB, binds to the same receptor. Bound lipoproteins are engulfed, degraded, and regulate intracellular cholesterol metabolism and receptor activity. The HDL of many patients with liver disease is rich in apoE. We tested the hypothesis that such patient HDL would reduce LDL binding and would themselves regulate cellular cholesterol metabolism. Normal HDL had little effect on binding, uptake, and degradation of 125I-labeled LDL by cultured human skin fibroblasts. Patient HDL (d 1.063-1.21 g/ml) inhibited these processes, and in 15 of the 25 samples studied there was more than 50% inhibition at 125I-labeled LDL and HDL protein concentrations of 10 micrograms/ml and 25 micrograms/ml, respectively. There was a significant negative correlation between the percentage of 125I-labeled LDL bound and the apoE content of the competing HDL (r = -0.54, P less than 0.01). Patient 125I-labeled HDL was also taken up and degraded by the fibroblasts, apparently through the LDL-receptor pathway, stimulated cellular cholesterol esterification, increased cell cholesteryl ester content, and suppressed cholesterol synthesis and receptor activity. We conclude that LDL catabolism by the receptor-mediated pathway may be impaired in liver disease and that patient HDL may deliver cholesterol to cells.  相似文献   

12.
The exchange of free cholesterol in vitro between human red blood cells and low density lipoproteins (LDL) was quantified. The flux of sterol between LDL and red cells was relatively constant over a wide range of concentrations of free cholesterol in lipoproteins. In a system containing a suspension of red blood cells in a mixed solution of high density lipoproteins (HDL) and LDL, the fractional rate of exchange of HDL cholesterol was most rapid followed by LDL and lastly, by red cells. Increasing the ionic strength of the incubation media had no effect on the exchange of cholesterol between LDL and red cells. However, when both HDL and LDL were incubated with red cells in a buffer of increased ionic strength, total red cell cholesterol exchange was unaltered, but proportionately more exchange occurred with HDL and less with LDL. Addition of acetone to the buffer increased the exchange of cholesterol between LDL and red cells but produced no increment in red cell-HDL exchange.  相似文献   

13.
We studied cholesterol synthesis from [14C]acetate, cholesterol esterification from [14C]oleate, and cellular cholesterol and cholesteryl ester levels after incubating cells with apoE-free high density lipoproteins (HDL) or low density lipoproteins (LDL). LDL suppressed synthesis by up to 60%, stimulated esterification by up to 280%, and increased cell cholesteryl ester content about 4-fold. Esterification increased within 2 h, but synthesis was not suppressed until after 6 h. ApoE-free HDL suppressed esterification by about 50% within 2 h. Cholesterol synthesis was changed very little within 6 h, unless esterification was maximally suppressed; synthesis was then stimulated about 4-fold. HDL lowered cellular unesterified cholesterol by 13-20% within 2 h and promoted the removal of newly synthesized cholesterol and cholesteryl esters. These changes were transient; by 24 h, both esterification and cellular unesterified cholesterol returned to control levels, and cholesteryl esters increased 2-3-fold. HDL core lipid was taken up selectively from 125I-labeled [3H]cholesteryl ester- and ether-labeled HDL. LDL core lipid uptake was proportional to LDL apoprotein uptake. The findings suggest that 1) the cells respond initially to HDL or LDL with changes in esterification, and 2) HDL mediates both the removal of free cholesterol from the cell and the delivery of HDL cholesteryl esters to the cell.  相似文献   

14.
The objective of this study was to determine whether high density lipoproteins (HDL) that have been treated with hepatic lipase have an enhanced ability to deliver cholesterol to cells. Human HDL was incubated with rat hepatic lipase, reisolated, and subjected to compositional analysis. Approximately 28% of the HDL phosphatidylcholine was hydrolyzed by the hepatic lipase but no change was detected in the cholesterol or apoprotein content of the HDL compared to HDL incubated with heat-inactivated hepatic lipase. Cultured rat hepatoma cells exposed to hepatic lipase-modified HDL showed an increased uptake of HDL free cholesterol relative to cells exposed to control HDL. This increased delivery of HDL free cholesterol was demonstrated by both isotopic and mass determinations and it contributed to a 1.6-fold increase in total cellular cholesterol content relative to cells treated with control HDL. The free cholesterol delivered by the HDL is functionally available to the cell as evidenced by the conversion of radiolabeled free cholesterol to cholesteryl ester. The stimulation of free cholesterol delivery was dose-dependent up to a level of 100 micrograms of HDL free cholesterol/ml of extracellular medium, and was directly related to the extent of phosphatidylcholine hydrolysis. The enhanced cellular accumulation of HDL free cholesterol observed with hepatic lipase appears to be due to the phospholipase activity of this enzyme, since similar results were obtained with HDL that had been modified by snake venom phospholipase A2.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
A study was undertaken to determine the relative association of lipid and apolipoproteins among lipoproteins produced during lipolysis of very low density lipoproteins (VLDL) in perfused rat heart. Human VLDL was perfused through beating rat hearts along with various combinations of albumin (0.5%), HDL2, the infranatant of d greater than 1.08 g/ml of serum, and labeled sucrose. The products were resolved by gel filtration, ultracentrifugation, and hydroxylapatite chromatography. The composition of the lipoprotein products was assessed by analysis of total lipid profiles by gas-liquid chromatography and immunoassay of apolipoproteins. A vesicle particle, which trapped and retained 1-2% of medium sucrose, co-isolated with VLDL and VLDL remnants by gel filtration chromatography but primarily with the low density lipoprotein (LDL) fraction when isolated by ultracentrifugation. The vesicle was resolved from apoB-containing LDL lipolysis products by hydroxylapatite chromatography of the lipoproteins. The vesicle lipoprotein contained unesterified cholesterol (34%), phosphatidylcholine and sphingomyelin (50%), cholesteryl ester (6%), triacylglycerol (5%), and apolipoprotein (5%). The apolipoprotein consisted of apoC-II (7%), apoC-III (93%), and trace amounts of apoE (1%). When viewed by electron microscopy the vesicles appeared as rouleaux structures with a diameter of 453 A, and a periodicity of 51.7 A. The mass represented by the vesicle particle in terms of the initial amount in VLDL was: cholesterol (5%), phosphatidylcholine and sphingomyelin (3%), apoC-II (0.5%), apoC-III (2.2%). The majority of the apoC and E released from apoB-containing lipoproteins was associated with neutral-lipid core lipoproteins proteins which possessed size characteristics of HDL. The vesicles were also formed in the presence of HDL and serum and were not disrupted by serum HDL. It is concluded that lipolysis of VLDL in vitro results in the production of VLDL remnants and LDL apoB-containing lipoproteins, as well as HDL-like lipoproteins. A vesicular lipoprotein which has many characteristics of lipoprotein X found in cholestasis, lecithin: cholesterol acyltransferase deficiency, and during Intralipid infusion is also formed. The majority of apolipoprotein C and E released from apoB-containing lipoproteins is associated with the HDL-like lipoprotein. It is suggested that the formation and stability of the vesicle lipoprotein may be related to the high ratio of cholesterol/phospholipid in this particle.  相似文献   

16.
The action of lecithin-cholesterol acyltransferase (LCAT, EC 2.3.1.43) on the different pig lipoprotein classes was investigated with emphasis on low-density lipoproteins (LDL). It was demonstrated previously that LDL can serve as substrate for LCAT, probably because they contain sufficient amounts of apoA-I and other non-apoB proteins, known as LCAT activators. Upon a 24-h incubation of pig plasma in vitro in the presence of active LCAT, both pig LDL subclasses, LDL-1 and LDL-2, fused together, forming one fraction, as revealed by analytical ultracentrifugation. This fusion was time dependent, becoming visible after 3 h and complete after 18 h of incubation. Concomitantly, free cholesterol and phospholipids decreased and cholesteryl esters increased. When isolated LDL-1 and LDL-2 were incubated with purified pig LCAT for 24 h, LDL-1 floated toward higher densities and LDL-2 toward lower densities, although this effect was not as pronounced as in incubations of whole serum. In further experiments, pig serum was incubated for various periods of time in the presence and absence of the LCAT inhibitor sodium iodoacetate. The individual lipoproteins then were separated by density gradient ultracentrifugation or by specific immunoprecipitation and chemically analyzed. Both methods revealed that in the absence of active LCAT there was a transfer of free cholesterol from LDL to high-density lipoproteins (HDL) and a small transfer of cholesteryl esters in the opposite direction. In the presence of LCAT the loss of free cholesterol started immediately in all three lipoprotein classes, was most prominent in LDL, and was proportional to the newly synthesized cholesteryl esters incorporated in each fraction.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The aim of this study was to determine in humans whether oxidized cholesterol in the diet is absorbed and contributes to the pool of oxidized lipids in circulating lipoproteins. When a meal containing 400 mg cholestan-5alpha,6alpha-epoxy-3beta-ol (alpha-epoxy cholesterol) was fed to six controls and three subjects with Type III hyperlipoproteinemia, alpha-epoxy cholesterol in serum was found in chylomicron/chylomicron remnants (CM/RM) and endogenous (VLDL, LDL, and HDL) lipoproteins. In controls, alpha-epoxy cholesterol in CM/RM was decreased by 10 h, whereas in endogenous lipoproteins it remained in the circulation for 72 h. In subjects with Type III hyperlipoproteinemia, alpha-epoxy cholesterol was mainly in CM/RM. In vitro incubation of the CM/RM fraction containing alpha-epoxy cholesterol with human LDL and HDL that did not contain alpha-epoxy cholesterol resulted in a rapid transfer of oxidized cholesterol from CM/RM to both LDL and HDL. In contrast, no transfer was observed when human serum was substituted with rat serum, suggesting that cholesteryl ester transfer protein is mediating the transfer. Thus, alpha-epoxy cholesterol in the diet is incorporated into the CM/RM fraction and then transferred to LDL and HDL, contributing to lipoprotein oxidation. Moreover, LDL containing alpha-epoxy cholesterol displayed increased susceptibility to further copper oxidation in vitro. It is possible that oxidized cholesterol in the diet accelerates atherosclerosis by increasing oxidized cholesterol levels in circulating LDL and chylomicron remnants.  相似文献   

18.
We have previously shown that in Hep G2 cells and human hepatocytes, as compared with fibroblasts, the low-density lipoprotein (LDL) receptor activity is only weakly down-regulated after incubation of the cells with LDL, whereas incubation with high-density lipoproteins (HDL) of density 1.16-1.20 g/ml (heavy HDL) strongly increased the LDL-receptor activity. To elucidate this difference between hepatocytes and fibroblasts, we studied the cellular cholesterol homoeostasis in relation to the LDL-receptor activity in Hep G2 cells. (1) Interrupting the cholesteryl ester cycle by inhibiting acyl-CoA: cholesterol acyltransferase (ACAT) activity with compound 58-035 (Sandoz) resulted in an enhanced LDL-mediated down-regulation of the receptor activity. (2) The stimulation of the receptor activity by incubation of the cells with cholesterol acceptors such as heavy HDL was not affected by ACAT inhibition. (3) Incubation of the Hep G2 cells with LDL, heavy HDL or a combination of both grossly affected LDL-receptor activity, but did not significantly change the intracellular content of free cholesterol, suggesting that in Hep G2 cells the regulatory free cholesterol pool is small as compared with the total free cholesterol mass. (4) We used changes in ACAT activity as a sensitive (indirect) measure for changes in the regulatory free cholesterol pool. (5) Incubation of the cells with compactin (2 microM) without lipoproteins resulted in a 4-fold decrease in ACAT activity, indicating that endogenously synthesized cholesterol is directed to the ACAT-substrate pool. (6) Incubation of the cells with LDL or a combination of LDL and heavy HDL stimulated ACAT activity 3-5 fold, whereas incubation with heavy HDL alone decreased ACAT activity more than 20-fold. Our results suggest that in Hep G2 cells exogenously delivered (LDL)-cholesterol and endogenously synthesized cholesterol are primarily directed to the cholesteryl ester (ACAT-substrate) pool or, if present, to extracellular cholesterol acceptors (heavy HDL) rather than to the free cholesterol pool involved in LDL-receptor regulation.  相似文献   

19.
Apart from its role as a risk factor in arteriosclerosis, plasma cholesterol is increasingly recognized to play a major role in the pathogenesis of Alzheimer's disease (AD). Moreover, alterations of intracellular cholesterol metabolism in neuronal and vascular cells are of considerable importance for the understanding of AD. Cellular cholesterol accumulation enhances the deposition of insoluble beta-amyloid peptides, which is considered a hallmark in the pathogenesis of AD. In order to test the hypothesis, whether exogenous beta-amyloid peptides (Abeta42, Abeta40) might contribute to cellular cholesterol accumulation by opsonization of lipoproteins, we compared the binding and uptake of native LDL, enzymatically modified LDL (E-LDL), copper oxidized LDL (Ox-LDL) and HDL as control, preincubated either in the absence or presence of Abeta42 or Abeta40, by human monocytes or monocyte-derived macrophages. Incubation of monocytes and macrophages with Abeta-lipoprotein-complexes lead to increased cellular free and esterified cholesterol when compared to non-opsonized lipoproteins, except for HDL. Furthermore, the cellular uptake of these complexes regulated Abeta-receptors such as FPRL-1 or LRP/CD91. In summary, our results suggest that Abeta42 and Abeta40 act as potent opsonins for LDL, E-LDL and Ox-LDL and enhance cellular cholesterol accumulation as well as Abeta-deposition in vessel wall macrophages.  相似文献   

20.
The density profile of serum lipoproteins and their lipid composition was studied in 12 adult, female harbour seals. The animals were sampled after an approximate 20 hr fast. The density profile of lipoproteins showed that the harbour seals displayed a distinct VLDL (density less than 1.006 g/ml) and HDL band (density about 1.125 g/ml), but no clear LDL band. There was a rather diffuse population of lipoproteins in the density range of 1.019-1.100 g/ml. Mean serum total cholesterol concentration was 5.7 mmol/l; about 60% of this cholesterol was located in the HDL fraction (density greater than 1.063 g/ml). The fasted seals were found to carry 4% of serum total lipids in chylomicrons. These lipoproteins consisted of 51% of triaclyglycerols (on the basis of total chylomicron lipids). The LDL (defined as heparin-manganese precipitable lipoproteins in VLDL and chylomicron-deficient serum) contained 49% of cholesterol and 43% of phospholipids (on the basis of total LDL lipids). The HDL (defined as heparin-manganese soluble lipoproteins in VLDL and chylomicron-deficient serum) contained 36% of cholesterol and 58% of phospholipids (on the basis of total HDL lipids).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号