首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Simian immunodeficiency virus from African green monkeys.   总被引:24,自引:14,他引:10       下载免费PDF全文
Simian immunodeficiency virus (SIV) was isolated from the total peripheral blood mononuclear cell population and the monocyte-macrophage adherent cell population of three seropositive green monkeys originating from Kenya. SIV from these African green monkeys (SIVagm) was isolated and continuously produced with the MOLT-4 clone 8 (M4C18) cell line but not with a variety of other cells including HUT-78, H9, CEM, MT-4, U937, and uncloned MOLT-4 cells. Once isolated, these SIVagm isolates were found to replicate efficiently in M4C18, SupT1, MT-4, U937, and Jurkat-T cells but much less efficiently if at all in HUT-78, H9, CEM, and MOLT-4 cells. The range of CD4+ cells fully permissive for replication of these SIVagm isolates thus differs markedly from that of previous SIV isolates from macaques (SIVmac). These SIVagm isolates had a morphogenesis and morphology like that of human immunodeficiency virus (HIV) and other SIV isolates. Antigens of SIVagm and SIVmac cross-reacted by comparative enzyme-linked immunosorbent assay only with reduced efficiency, and optimal results were obtained when homologous antibody and antigen were used. Western blotting (immunoblotting) of purified preparations of SIVagm isolate 385 (SIVagm385) revealed major viral proteins of 120, 27, and 16 kilodaltons (kDa). The presumed major core protein of 27 kDa cross-reacted antigenically with the corresponding proteins of SIVmac (28 kDa) and HIV-1 (24 kDa) by Western blotting. Hirt supernatant replicative-intermediate DNA prepared from cells freshly infected with SIVagm hybridized to SIVmac and HIV-2 DNA probes. Detection of cross-hybridizing DNA sequences, however, required very low stringency, and the restriction endonuclease fragmentation patterns of SIVagm were not similar to those of SIVmac and HIV-2. The nucleotide sequence of a portion of the pol gene of SIVagm385 revealed amino acid identities of 65% with SIVmac142, 64% with HIV-2ROD, and 56% with HIV-1BRU; SIVagm385 is thus related to but distinct from previously described primate lentiviruses SIVmac, HIV-1, and HIV-2. Precise information on the genetic makeup of these and other SIV isolates will possibly lead to better understanding of the history and evolution of these viruses and may provide insight into the origin of viruses that cause acquired immunodeficiency syndrome in humans.  相似文献   

2.
Antigenic epitopes on the major core (gag) protein of isolates of simian and human immunodeficiency virus (SIV and HIV) were compared using a panel of eleven mouse monoclonal antibodies (Mabs) that recognized nine distinct gag epitopes. Viral isolates used for comparison were HIV-1IIIb, HIV-2ROD, and SIV isolates from macaque (SIVmac), sooty mangabey (SIVsm-UCD), African green monkey (SIVagm), and stump-tailed macaque (SIVstm-UCD). The relatedness of the various HIV and SIV isolates, as determined by Mabs to core protein epitopes, paralleled that ascertained by genetic sequencing.  相似文献   

3.
Serological surveys have revealed that 30 to 50% of wild-caught African green monkeys have antibodies reactive to simian immunodeficiency virus (SIV), a retrovirus related to human immunodeficiency virus (HIV). Although the nucleotide sequence of one SIVagm isolate, Tyo1, was recently reported, the extent of genetic variability among SIVagm isolates remains to be determined. Restriction endonuclease mapping of infectious molecular clones of two SIVagm isolates (266 and 385), described in this note, revealed conservation of only 4 of 39 sites across the genome. Partial sequence analysis of the molecular clones revealed only 80% amino acid sequence conservation in the pol gene. Although the three Kenyan SIVagm isolates, Tyo1, 385, and 266, are more closely related to each other than to other primate lentiviruses, genetic variation among these three isolates is much greater than that observed previously among individual HIV type 1 (HIV-1), HIV-2, or SIVmac isolates. Less variability among HIV-1 and HIV-2 isolates could be explained by recent entry into the human population. The extensive genetic variation in these Kenyan SIVagm isolates should prompt continued examination of SIVagm variability from dispersed geographic regions; SIVagm strains much more closely related to HIV-1, HIV-2, or SIVmac which would be reasonable candidates for recent cross-species transmission may be found.  相似文献   

4.
APOBEC3G (A3G) is a cytidine deaminase that restricts human immunodeficiency virus type 1 (HIV-1) and other lentiviruses. Most of these viruses encode a Vif protein that directly binds A3G and leads to its proteasomal degradation. Both Vif proteins of HIV-1 and African green monkey simian immunodeficiency virus (SIVagm) bind residue 128 of A3G. However, this position does not control the A3G degradation by Vif variants derived from HIV-2 and SIVmac, which both originated from SIV of sooty mangabey monkeys (SIVsmm), suggesting that the A3G binding site for Vif proteins of the SIVsmm/HIV-2 lineage differs from that of HIV-1. To map the SIVsmm Vif binding site of A3G, we performed immunoprecipitations of individual A3G domains, Vif/A3G degradation assays and a detailed mutational analysis of human A3G. We show that A3G residue 129, but not the adjacent position 128, confers susceptibility to degradation by SIVsmm Vif. An artificial A3G mutant, the P129D mutant, was resistant to degradation by diverse Vifs from HIV-1, HIV-2, SIVagm, and chimpanzee SIV (SIVcpz), suggesting a conserved lentiviral Vif binding site. Gorilla A3G naturally contains a glutamine (Q) at position 129, which makes its A3G resistant to Vifs from diverse lineages. We speculate that gorilla A3G serves as a barrier against SIVcpz strains. In summary, we show that Vif proteins from distinct lineages bind to the same A3G loop, which includes positions 128 and 129. The multiple adaptations within this loop among diverse primates underscore the importance of counteracting A3G in lentiviral evolution.  相似文献   

5.
A distinct African lentivirus from Sykes' monkeys.   总被引:12,自引:8,他引:4       下载免费PDF全文
Asymptomatic infection with simian immunodeficiency virus (SIV) has been demonstrated in African Sykes' monkeys (Cercopithecus mitis albogularis), and virus isolation confirmed infection with a novel SIV from Sykes' monkeys (SIVsyk). Macaques inoculated with SIVsyk became persistently infected but remained clinically healthy. We utilized polymerase chain reaction amplification to generate a full-length, infectious molecular clone of SIVsyk. The genome organization of SIVsyk is similar to that of the other primate lentiviruses, consisting of gag, pol, vif, vpr, tat, rev, env, and nef. A unique feature is the absence of the highly conserved NF-kappa B binding site in the long terminal repeat. SIVsyk is genetically equidistant from other primate lentiviruses. Thus, SIVsyk represents a new group that is distinct from the four previously recognized primate lentivirus groups: human immunodeficiency virus type 1 (HIV-1), SIV from sooty mangabeys (SIVsmm) and HIV-2, SIV from African green monkeys (SIVagm), and SIV from mandrills (SIVmnd). The genetic differences between SIVsyk and SIVagm, isolates derived from monkeys of the same genus, underscore the potential for other distinct SIVs which have yet to be isolated and characterized.  相似文献   

6.
The TRIM5alpha proteins of humans and some Old World monkeys have been shown to block infection of particular retroviruses following virus entry into the host cell. Infection of most New World monkey cells by the simian immunodeficiency virus of macaques (SIVmac) is restricted at a similar point. Here we examine the antiretroviral activity of TRIM5alpha orthologs from humans, apes, Old World monkeys, and New World monkeys. Chimpanzee and orangutan TRIM5alpha proteins functionally resembled human TRIM5alpha, potently restricting infection by N-tropic murine leukemia virus (N-MLV) and moderately restricting human immunodeficiency virus type 1 (HIV-1) infection. Notably, TRIM5alpha proteins from several New World monkey species restricted infection by SIVmac and the SIV of African green monkeys, SIVagm. Spider monkey TRIM5alpha, which has an expanded B30.2 domain v3 region due to a tandem triplication, potently blocked infection by a range of retroviruses, including SIVmac, SIVagm, HIV-1, and N-MLV. Tandem duplications in the TRIM5alpha B30.2 domain v1 region of African green monkeys are also associated with broader antiretroviral activity. Thus, variation in TRIM5alpha proteins among primate species accounts for the observed patterns of postentry restrictions in cells from these animals. The TRIM5alpha proteins of some monkey species exhibit dramatic lengthening of particular B30.2 variable regions and an expanded range of susceptible retroviruses.  相似文献   

7.
Simian immunodeficiency virus (SIV) infection of rhesus macaques causes immune depletion and disease closely resembling human AIDS and is well recognized as the most relevant animal model for the human disease. Experimental investigations of viral pathogenesis and vaccine protection primarily involve a limited set of related viruses originating in sooty mangabeys (SIVsmm). The diversity of human immunodeficiency virus type 1 (HIV-1) has evolved in humans in about a century; in contrast, SIV isolates used in the macaque model evolved in sooty mangabeys over millennia. To investigate the possible consequences of such different evolutionary histories for selection pressures and observed diversity in SIVsmm and HIV-1, we isolated, sequenced, and analyzed 20 independent isolates of SIVsmm, including representatives of 7 distinct clades of viruses isolated from natural infection. We found SIVsmm diversity to be lower overall than HIV-1 M group diversity. Reduced positive selection (i.e., less diversifying evolution) was evident in extended regions of SIVsmm proteins, most notably in Gag p27 and Env gp120. In addition, the relative diversities of proteins in the two lineages were distinct: SIVsmm Env and Gag were much less diverse than their HIV-1 counterparts. This may be explained by lower SIV-directed immune activity in mangabeys relative to HIV-1-directed immunity in humans. These findings add an additional layer of complexity to the interpretation and, potentially, to the predictive utility of the SIV/macaque model, and they highlight the unique features of human and simian lentiviral evolution that inform studies of pathogenesis and strategies for AIDS vaccine design.  相似文献   

8.
Two of 25 healthy pet sooty mangabey (SM) monkeys (Cercocebus atys) living in West Africa were seropositive by immunoblot when surveyed for antibody to simian immunodeficiency virus of macaques (SIVmac). SIVsmLIB1 was isolated from one of the pet sooty mangabeys. Nucleotide sequence data showed that this isolate is a member of the SIVsm/human immunodeficiecy virus type 2 (HIV-2)/SIVmac group of primate lentiviruses. Furthermore, sequence comparisons revealed extensive genetic diversity among SIVsm isolates similar to that observed previously in SIV isolates from naturally infected African green monkeys. These observations provide additional evidence for monkey-human cross-species transmission of SIVsm as the source of HIV-2 infection of human.  相似文献   

9.
The prevalence, natural history, and genetic characteristics of simian immunodeficiency virus (SIV) infections in most feral African monkey species are presently unknown, yet this information is essential to elucidate their origin and relationship to other simian and human immunodeficiency viruses. In this study, a combination of classical and molecular approaches were used to identify and characterize SIV isolates from West African green monkeys (Cercopithecus sabaeus) (SIVagm isolates). Four SIVagm viruses from wild-caught West African green monkeys were isolated and analyzed biologically and molecularly. Amplification, cloning, and sequencing of a 279-bp polymerase fragment directly from uncultured peripheral blood mononuclear cells was facilitated by the use of nested polymerase chain reaction. The results indicated that West African green monkeys are naturally infected with SIVs which are closely related to East African SIVagm isolates. However, structural, antigenic, and genetic differences were observed which strongly suggest that the West African green monkey viruses comprise a phylogenetically distinct subgroup of SIVagm. These findings support our previous hypothesis that SIVagm viruses may have evolved and diverged coincident with the evolution and divergence of their African green monkey host. In addition, this study describes a polymerase chain reaction-based approach that allows the identification and molecular analysis of divergent SIV strains directly from primary monkey tissue. This approach, which does not depend on virus isolation methods, should facilitate future studies aimed at elucidating the origins and natural history of SIVs in feral African green monkey populations.  相似文献   

10.
We previously reported that expression of human immunodeficiency virus type 1 strain NL4-3 (HIV-1(NL4-3))vpr causes cells to arrest in the G2 phase of the cell cycle. We examined the induction of cell cycle arrest by other HIV-1 isolates and by primary lentiviruses other than HIV-1. We demonstrate that the vpr genes from tissue culture-adapted or primary isolates of HIV-1 are capable of inducing G2 arrest. In addition, we demonstrate that induction of cell cycle arrest is a conserved function of members of two other groups of primate lentiviruses, HIV-2/simian immunodeficiency virus strain sm (SIVsm)/SIVmac and SIVagm. vpr from HIV-1, HIV-2, and SIVmac induced cell cycle arrest when transfected in human (HeLa) and monkey (CV-1) cells. vpx from HIV-2 and SIVmac did not induce detectable cell cycle arrest in either cell type, and SIVagm vpx was capable of inducing arrest in CV-1 but not HeLa cells. These results indicate that induction of cell cycle perturbation is a general property of lentiviruses that infect primates. The conservation of this viral function throughout evolution suggests that it plays a key role in virus-host relationships, and elucidation of its mechanism may reveal important clues about pathology induced by primary lentiviruses.  相似文献   

11.
We have examined the viral load in the peripheral blood of simian immunodeficiency virus (SIV)-infected African green monkeys with a view to the unexplained apathogenicity of African green monkey SIV (SIVagm) in its natural host. By using polymerase chain reaction, viral DNA was detected in fresh peripheral blood mononuclear cells (PBMC) of each of nine seropositive animals. The virus DNA load was variable among the monkeys tested, ranging from 5 to 50 (mean = 15) copies per 10(5) PBMC, which is comparable to that of human immunodeficiency virus type 1 (HIV-1) in humans. The level of infectious SIVagm in PBMC was measured by endpoint dilution cultures. SIVagm was recovered from PBMC from 14 of 17 antibody-positive monkeys (82%), and the mean SIVagm titer in PBMC of seropositive African green monkeys was 10 tissue culture infectious doses per 10(6) cells, similar to the titer shown for HIV in asymptomatic carriers. Free infectious virus was isolated from the plasma of 4 of 17 monkeys (24%), and SIVagm expression in peripheral blood in vivo, as demonstrated by in situ hybridization, was detectable only in those animals which were viremic. SIVagm replication is therefore not totally suppressed in vivo, and SIVagm has a viral load equivalent to that seen for HIV-1 in asymptomatic humans.  相似文献   

12.
African green monkeys are asymptomatic carriers of simian immunodeficiency viruses (SIV), commonly called SIVagm. As many as 50% of African green monkeys in the wild may be SIV seropositive. This high seroprevalence rate and the potential for genetic variation of lentiviruses suggested to us that African green monkeys may harbor widely differing genotypes of SIVagm. To investigate this hypothesis, we determined the entire nucleotide sequence of an infectious proviral molecular clone of SIVagm (155-4) and partial sequences (long terminal repeat and Gag) of three other distinct SIVagm isolates (90, gri-1, and ver-1). Comparisons among the SIVagm isolates revealed extreme diversity at the nucleotide and amino acid levels. Long terminal repeat nucleotide sequences varied up to 35% and Gag protein sequences varied up to 30%. The variability among SIVagm isolates exceeded the variability among any other group of primate lentiviruses. Our data suggest that SIVagm has been in the African green monkey population for a long time and may be the oldest primate lentivirus group in existence.  相似文献   

13.
Asymptomatic infection with simian lentiviruses (also called simian immunodeficiency viruses, or SIV) is common among feral African green monkeys. To characterize the range of SIV genetic diversity among infected African green monkeys, we have determined nucleotide sequences from complete or partial molecular clones of four distinct SIVagm isolates from Kenya and Ethiopia. The nucleotide and amino acid variability we observed among the SIVagm isolates was greater than the variability within any other group of primate lentiviruses. These data suggest that: a) African green monkeys have been infected with simian lentiviruses for many years; and b) novel and uncharacterized primate lentiviruses may exist in the feral African green monkey population in other parts of Africa.  相似文献   

14.
Although up to 50% of African green monkeys (AGMs) are infected by simian immunodeficiency viruses (SIV) in their natural habitat, they remain asymptomatic carriers of these lentiviruses. They provide an attractive model to study not only the origin but also the link among genetic variation, host-virus adaptation, and pathogenicity of primate lentiviruses. SIVagm have been isolated from three species of AGM: the vervet (Cercopithecus pygerythrus), the grivet (Cercopithecus aethiops), and the sabaeus (Cercopithecus sabaeus) monkey. We studied four new SIVagm isolates from a fourth AGM species, the tantalus monkey (Cercopithecus tantalus), caught in the Central African Republic, and four new isolates from feral sabaeus monkeys from Senegal. Antigenic properties and partial env sequences were used to evaluate the diversity among these isolates. Alignment of env sequences in SIVagm isolated from tantalus and sabaeus monkeys permitted detailed mapping of the variable and conserved domains in the external glycoprotein. Genetic distances indicated that SIVagm isolates from tantalus monkeys are the most divergent among SIVagm in feral AGMs in Africa. The fact that AGMs are infected by four distinct lentiviruses, each specific for a single AGM species, supports the hypothesis of a coevolution of these viruses and their natural hosts and suggests that SIV transmission is a rare event among separated AGM species in the wild.  相似文献   

15.
Human immunodeficiency virus type 1 (HIV-1) Vif is essential for viral evasion of the host antiviral protein APOBEC3G (APO3G). The Vif protein from a distantly related African green monkey (Agm) simian immunodeficiency virus (SIVagm) is unable to suppress the antiviral activity of human APO3G but is active against Agm APO3G. SIVmac Vif on the other hand, possesses antiviral activity against both human and Agm APO3G. In this study, we were interested in mapping domains in SIVmac Vif that are responsible for its dual activity against human and Agm APO3G. We constructed a series of Vif chimeras by swapping domains in SIVmac Vif with equivalent regions from SIVagm Vif and determined their activity against human and Agm APO3G. We found that replacing any region in SIVmac Vif by corresponding fragments from SIVagm Vif only moderately reduced the activity of the chimeras against Agm APO3G but in all cases resulted in a severe loss of activity against human APO3G. These results suggest that the domains in SIVmac Vif required for targeting human and Agm APO3G are distinct and cannot be defined as linear amino acid motifs but rather appear to depend on the overall structure of full-length SIVmac Vif.  相似文献   

16.
We derived two infectious molecular clones of SIV from sooty mangabey monkeys (Cercocebus atys) and compared them by restriction enzyme mapping and limited DNA sequencing to other known primate lentiviruses. These analyses show that SIVsmm is closely related to, but distinct from, SIVmac and HIV-2. Our data suggest that SIVmac may have been derived from SIVsmm by cross-species transmission in captivity.  相似文献   

17.
18.
African green monkeys (AGMs) infected by simian immunodeficiency virus (SIV) SIVagm are resistant to AIDS. SIVagm-infected AGMs exhibit levels of viremia similar to those described during pathogenic human immunodeficiency virus type 1 (HIV-1) and SIVmac infections in humans and macaques, respectively, but contain lower viral loads in their lymph nodes. We addressed the potential role of dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin (DC-SIGN; CD209) in viral dissemination. In previous studies, it has been shown that human DC-SIGN and macaque DC-SIGN allow transmission of HIV and SIVmac to T cells. Here, we looked at the ability of DC-SIGN derived from AGM lymph nodes to interact with SIVagm. We show that DC-SIGN-expressing cells are present mainly in the medulla and often within the cortex and/or paracortex of AGM lymph nodes. We describe the isolation and characterization of at least three isoforms of dc-sign mRNA in lymph nodes of AGMs. The predicted amino acid sequence from the predominant mRNA isoform, DC-SIGNagm1, is 92 and 99% identical to the corresponding human and rhesus macaque DC-SIGN amino acid sequences, respectively. DC-SIGNagm1 is characterized by the lack of the fourth motif in the repeat domain. This deletion was also detected in the dc-sign gene derived from thirteen animals belonging to five other African monkey species and from four macaques (Macaca fascicularis and M. mulatta). Despite three- to seven-amino-acid modifications compared to DC-SIGNmac, DC-SIGNagm1 allows transmission of SIVagm to T cells. Furthermore, AGM monocyte-derived dendritic cells (MDDC) expressed at least 100,000 DC-SIGN molecules and were able to transmit SIVagm to T cells. At a low multiplicity of infection (10(-5) 50% tissue culture infective doses/cell), viral transmission by AGM MDDC was mainly DC-SIGN dependent. The present study reveals that DC-SIGN from a natural host species of SIV has the ability to act as an efficient attachment and transmission factor for SIVagm and suggests the absence of a direct link between this ability and viral load levels in lymph nodes.  相似文献   

19.
CEMx174- and C8166-45-based cell lines which contain a secreted alkaline phosphatase (SEAP) reporter gene under the control of a tat-responsive promoter derived from either SIVmac239 or HIV-1(NL4-3) were constructed. Basal levels of SEAP activity from these cell lines were low but were greatly stimulated upon transfection of tat expression plasmids. Infection of these cell lines with simian immunodeficiency virus (SIV) or human immunodeficiency virus type 1 (HIV-1) resulted in a dramatic increase in SEAP production within 48 to 72 h that directly correlated with the amount of infecting virus. When combined with chemiluminescent measurement of SEAP activity in the cell-free supernatant, these cells formed the basis of a rapid, sensitive, and quantitative assay for SIV and HIV infectivity and neutralization. Eight of eight primary isolates of HIV-1 that were tested induced readily measurable SEAP activity in this system. While serum neutralization of cloned SIVmac239 was difficult to detect with other assays, neutralization of SIVmac239 was readily detected at low titers with this new assay system. The neutralization sensitivities of two stocks of SIVmac251 with different cell culture passage histories were tested by using sera from SIV-infected monkeys. The primary stock of SIVmac251 had been passaged only twice through primary cultures of rhesus monkey peripheral blood mononuclear cells, while the laboratory-adapted stock had been extensively passaged through the MT4 immortalized T-cell line. The primary stock of SIVmac251 was much more resistant to neutralization by a battery of polyclonal sera from SIV-infected monkeys than was the laboratory-adapted virus. Thus, SIVmac appears to be similar to HIV-1 in that extensive laboratory passage through T-cell lines resulted in a virus that is much more sensitive to serum neutralization.  相似文献   

20.
To characterize isolates further within the SIVagm subtype, we studied four SIVagm isolates by cross-hybridization, molecular cloning, and nucleotide sequencing. Our results indicate an unexpected degree of genetic variation among isolates within the SIVagm subtype comparable to the variation between SIVmac and HIV-2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号