首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Smads are intracellular signaling mediators for TGF-beta superfamily. Smad1 and Smad5 are activated by BMP receptors. Here, we have cloned mouse Smad8 and functionally characterized its ability to transduce signals from BMP receptors. Constitutively active BMP type I receptors, ALK-3 and ALK-6, as well as ALK-2, were phosphorylated Smad8 and induced Smad8 interaction with Smad4. Nuclear translocation of Smad8 was stimulated by constitutively active BMP type I receptors. In contrast, constitutively active TGF-beta type I receptor, ALK-5, did not exhibit any action on Smad8. Smad8 and Smad4 cooperatively induced the promoter of Xvent2, a homeobox gene that responds specifically to BMP signaling. Dominant-negative Smad8 was shown to inhibit the increase of alkaline phosphatase activity induced by BMP-2 on pluripotent mesenchymal C3H10T1/2 and myoblastic C2C12 cell lines. The presence of Smad8 mRNA in mouse calvaria cells and osteoblasts suggests a role of Smad8 in the osteoblast differentiation and maturation.  相似文献   

2.
Kamiya Y  Miyazono K  Miyazawa K 《FEBS letters》2008,582(17):2496-2500
In mammals, two inhibitory Smads (I-Smads), Smad6 and Smad7, play pivotal roles in negative regulation of TGF-beta family signaling. Smad7 ubiquitously inhibits TGF-beta family signaling, whereas Smad6 inhibits signaling from the ALK-3/6 subfamily in preference to that from the ALK-1/2 and ALK-4/5/7 subfamilies of TGF-beta family type I receptors. In Drosophila, only one I-Smad, Dad, has been identified. Here we examined inhibitory effects of Dad on type I receptors in Drosophila. Dad inhibited Saxophone (ALK-1/2 orthologue) and Thickveins (ALK-3/6 orthologue) but not Baboon (ALK-4/5/7 orthologue). The differential modes of action of I-Smads in mammals and Drosophila are discussed.  相似文献   

3.
4.
5.
The biological effects of type I serine/threonine kinase receptors and Smad proteins were examined using an adenovirus-based vector system. Constitutively active forms of bone morphogenetic protein (BMP) type I receptors (BMPR-IA and BMPR-IB; BMPR-I group) and those of activin receptor-like kinase (ALK)-1 and ALK-2 (ALK-1 group) induced alkaline phosphatase activity in C2C12 cells. Receptor-regulated Smads (R-Smads) that act in the BMP pathways, such as Smad1 and Smad5, also induced the alkaline phosphatase activity in C2C12 cells. BMP-6 dramatically enhanced alkaline phosphatase activity induced by Smad1 or Smad5, probably because of the nuclear translocation of R-Smads triggered by the ligand. Inhibitory Smads, i.e., Smad6 and Smad7, repressed the alkaline phosphatase activity induced by BMP-6 or the type I receptors. Chondrogenic differentiation of ATDC5 cells was induced by the receptors of the BMPR-I group but not by those of the ALK-1 group. However, kinase-inactive forms of the receptors of the ALK-1 and BMPR-I groups blocked chondrogenic differentiation. Although R-Smads failed to induce cartilage nodule formation, inhibitory Smads blocked it. Osteoblast differentiation induced by BMPs is thus mediated mainly via the Smad-signaling pathway, whereas chondrogenic differentiation may be transmitted by Smad-dependent and independent pathways.  相似文献   

6.
Transforming growth factor-beta1 (TGF-beta1) and BMP-7 (bone morphogenetic protein-7; OP-1) play central, antagonistic roles in kidney fibrosis, a setting in which the expression of endoglin (CD105), an accessory TGF-beta type III receptor, is increased. So far, endoglin is known as a negative regulator of TGF-beta/ALK-5 signaling. Here we analyzed the effect of BMP-7 on TGF-beta1 signaling and the role of endoglin for both pathways in endoglin-deficient L(6)E(9) cells. In this myoblastic cell line, TGF-beta1 and BMPs are opposing cytokines, interfering with myogenic differentiation. Both induce specific target genes of which Id1 (for BMPs) and collagen I (for TGF-beta1) are two examples. TGF-beta1 activated two distinct type I receptors, ALK-5 and ALK-1, in these cells. Although the ALK-5/Smad3 signaling pathway mediated collagen I expression, ALK-1/Smad1/Smad5 signaling mediated a transient Id1 up-regulation. In contrast, BMP-7 exclusively activated Smad1/Smad5 resulting in a more prolonged Id1 expression. Although BMP-7 had no impact on collagen I abundance, it antagonized TGF-beta1-induced collagen I expression and (CAGA)(12)-MLP-Luc activity, effects that are mediated by the ALK-5/Smad3 pathway. Finally, we found that the transient overexpression of endoglin, previously shown to inhibit TGF-beta1-induced ALK-5/Smad3 signaling, enhanced the BMP-7/Smad1/Smad5 pathway.  相似文献   

7.
Germ line mutations in one of two distinct genes, endoglin or ALK-1, cause hereditary hemorrhagic telangiectasia (HHT), an autosomal dominant disorder of localized angiodysplasia. Both genes encode endothelial cell receptors for the transforming growth factor beta (TGF-beta) ligand superfamily. Endoglin has homology to the type III receptor, betaglycan, although its exact role in TGF-beta signaling is unclear. Activin receptor-like kinase 1 (ALK-1) has homology to the type I receptor family, but its ligand and corresponding type II receptor are unknown. In order to identify the ligand and type II receptor for ALK-1 and to investigate the role of endoglin in ALK-1 signaling, we devised a chimeric receptor signaling assay by exchanging the kinase domain of ALK-1 with either the TGF-beta type I receptor or the activin type IB receptor, both of which can activate an inducible PAI-1 promoter. We show that TGF-beta1 and TGF-beta3, as well as a third unknown ligand present in serum, can activate chimeric ALK-1. HHT-associated missense mutations in the ALK-1 extracellular domain abrogate signaling. The ALK-1/ligand interaction is mediated by the type II TGF-beta receptor for TGF-beta and most likely through the activin type II or type IIB receptors for the serum ligand. Endoglin is a bifunctional receptor partner since it can bind to ALK-1 as well as to type I TGF-beta receptor. These data suggest that HHT pathogenesis involves disruption of a complex network of positive and negative angiogenic factors, involving TGF-beta, a new unknown ligand, and their corresponding receptors.  相似文献   

8.
Articular chondrocytes progressively undergo dedifferentiation into a spindle-shaped mesenchymal cellular phenotype in monolayers. Chondrocyte dedifferentiation is stimulated by retinoic acid. On the other hand, bone morphogenic proteins (BMPs) stimulate differentiation of chondrocytes. We examined the mechanism of effects of BMP in chondrocyte differentiation with use of a recombinant adenovirus vector system. Constitutively active forms of BMP type I receptors (BMPR-IA and BMPR-IB) and those of activin receptor-like kinase (ALK)-1 and ALK-2 maintained differentiation of chondrocytes in the presence of retinoic acid. The BMP receptor-regulated signaling substrates, Smad1/5, weakly induced chondrocyte differentiation; the effects of Smad1/5 were enhanced by BMP-7 treatment. Inhibitory Smad, Smad6, blocked increase of expression of chondrocyte markers by BMP-7 in a dose-dependent manner. SB202190, a p38 mitogen-activated protein kinase inhibitor, inhibited this effect of BMP-7; however, since SB202190 suppressed phosphorylation of Smad1/5, this may be due to blockade of BMP receptor activation. These results together strongly suggest that induction of chondrocyte differentiation by BMP-7 is regulated by Smad pathways.  相似文献   

9.
Divergence and convergence of TGF-beta/BMP signaling   总被引:41,自引:0,他引:41  
The transforming growth factor-beta (TGF-beta) superfamily includes more than 30 members which have a broad array of biological activities. TGF-beta superfamily ligands bind to type II and type I serine/threonine kinase receptors and transduce signals via Smad proteins. Receptor-regulated Smads (R-Smads) can be classified into two subclasses, i.e. those activated by activin and TGF-beta signaling pathways (AR-Smads), and those activated by bone morphogenetic protein (BMP) pathways (BR-Smads). The numbers of type II and type I receptors and Smad proteins are limited. Thus, signaling of the TGF-beta superfamily converges at the receptor and Smad levels. In the intracellular signaling pathways, Smads interact with various partner proteins and thereby exhibit a wide variety of biological activities. Moreover, signaling by Smads is modulated by various other signaling pathways allowing TGF-beta superfamily ligands to elicit diverse effects on target cells. Perturbations of the TGF-beta/BMP signaling pathways result in various clinical disorders including cancers, vascular diseases, and bone disorders.  相似文献   

10.
We uncovered a new regulation of thyrocyte function by bone morphogenetic protein (BMP) under the influence of thyrotropin (TSH) using primary culture of porcine thyrocytes. The BMP type I receptors, ALK-2 (ActRIA), -3 (BMPRIA), and -6 (BMPRIB), were expressed in porcine thyrocytes, while ALK-6 was not detected in human thyroid. Treatment with BMP-2, -4, -6, -7, and TGF-beta1 exhibited a dose-dependent suppression of DNA synthesis by porcine thyrocytes. BMP-2, -4, -6, -7, and TGF-beta1 suppressed TSH receptor mRNA expression on thyrocytes, which was consistent with their suppressive effect on TSH-induced cAMP synthesis and TSH-induced insulin-like growth factor-1 expression. Activin exhibited minimal suppression of thyrocyte DNA synthesis and did not exhibit suppressive effects on TSH receptor mRNA expression. Phosphorylated Smad1/5/8 was detected in the lysates of porcine thyrocytes treated with BMP-2, -4, -6, and -7. However, in the presence of TSH, BMP-6 and -7 failed to activate Smad1/5/8 phosphorylation and 3TP-reporter activity, whereas BMP-2 and -4 maintained clear activation of the BMP signaling regardless of the presence of TSH. This diverged regulation of thyroid BMP system by TSH is most likely due to the reduction of ALK-6 expression caused by TSH. Thus, the thyroid BMP system is functionally linked to TSH actions through modulating TSH receptor expression and TSH, in turn, selectively inhibits BMP signaling. Given that BMP system is present in human thyroid and the expression pattern of ALK-2 and BMPRII is different between follicular adenomas and normal thyroid tissues, the endogenous BMP system may be involved in regulating thyrocyte growth and TSH sensitivity of human thyroid adenomas.  相似文献   

11.
The transforming growth factor beta (TGF-beta) superfamily, including the bone morphogenetic protein (BMP) and TGF-beta/activin A subfamilies, is regulated by secreted proteins able to sequester or present ligands to receptors. KCP is a secreted, cysteine-rich (CR) protein with similarity to mouse Chordin and Xenopus laevis Kielin. KCP is an enhancer of BMP signaling in vertebrates and interacts with BMPs and the BMP type I receptor to promote receptor-ligand interactions. Mice homozygous for a KCP null allele are hypersensitive to developing renal interstitial fibrosis, a disease stimulated by TGF-beta but inhibited by BMP7. In this report, the effects of KCP on TGF-beta/activin A signaling are examined. In contrast to the enhancing effect on BMPs, KCP inhibits both activin A- and TGF-beta1-mediated signaling through the Smad2/3 pathway. These inhibitory effects of KCP are mediated in a paracrine manner, suggesting that direct binding of KCP to TGF-beta1 or activin A can block the interactions with prospective receptors. Consistent with this inhibitory effect, primary renal epithelial cells from KCP mutant cells are hypersensitive to TGF-beta and exhibit increased apoptosis, dissociation of cadherin-based cell junctions, and expression of smooth muscle actin. Furthermore, KCP null animals show elevated levels of phosphorylated Smad2 after renal injury. The ability to enhance BMP signaling while suppressing TGF-beta activation indicates a critical role for KCP in modulating the responses between these anti- and profibrotic cytokines in the initiation and progression of renal interstitial fibrosis.  相似文献   

12.
13.
14.
15.
16.
17.
18.
19.
20.
Activin, a member of the transforming growth factor beta (TGF-beta) superfamily, signals through a heteromeric complex of type I and type II serine-threonine kinase receptors. The two activin type I receptors previously identified, ALK-2 (ActR-I) and ALK-4 (ActR-IB), have distinct effects on gene expression, differentiation and morphogenesis in the Xenopus animal cap assay. ALK-4 reproduces the effects of activin treatment including the dose-dependent induction of progressively more dorso-anterior mesodermal and endodermal markers, whereas ALK-2 induces only ventral mesodermal markers and counteracts the effects of ALK-4. To identify regions of the receptors that determine signaling specificity we have generated chimeras of the constitutively active ALK-2 and ALK-4 receptors (termed ALK-2* and ALK-4*). The effects of these chimeric receptors on gene expression and morphogenetic movements implicate the loop between kinase subdomains IV and V in mediating the strong dorsal gene-inducing properties of ALK-4*; when the seven amino acids comprising this loop are transferred from ALK-4* to ALK-2*, the resulting chimeric receptor is capable of inducing the expression of dorsal-specific genes. In contrast, when the equivalent region of ALK-2* is transferred to the ALK-4* backbone it cannot effectively counteract the dorsalizing effects of ALK-4*, suggesting that other regions of type I receptors are also involved in determining signal specificity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号