首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This study evaluated the role of poly(ADP-ribose) polymerase (PARP) in systemic oxidative stress and 4-hydoxynonenal adduct accumulation in diabetic peripheral neuropathy. Control and streptozotocin-diabetic rats were maintained with or without treatment with the PARP inhibitor, 1,5-isoquinolinediol, 3 mg kg(-1) day(-1), for 10 weeks after an initial 2 weeks. Treatment efficacy was evaluated by poly(ADP-ribosyl)ated protein content in peripheral nerve and spinal cord (Western blot analysis) and dorsal root ganglion neurons and nonneuronal cells (fluorescence immunohistochemistry), as well as by indices of peripheral nerve function. Diabetic rats displayed increased urinary isoprostane and 8-hydroxy-2'-deoxyguanosine excretion (ELISA) and 4-hydroxynonenal adduct accumulation in endothelial and Schwann cells of the peripheral nerve, neurons, astrocytes, and oligodendrocytes of the spinal cord and neurons and glial cells of the dorsal root ganglia (double-label fluorescence immunohistochemistry), as well as motor and sensory nerve conduction velocity deficits, thermal hypoalgesia, and tactile allodynia. PARP inhibition counteracted diabetes-induced systemic oxidative stress and 4-hydroxynonenal adduct accumulation in peripheral nerve and spinal cord (Western blot analysis) and dorsal root ganglion neurons (perikarya, fluorescence immunohistochemistry), which correlated with improvement of large and small nerve fiber function. The findings reveal the important role of PARP activation in systemic oxidative stress and 4-hydroxynonenal adduct accumulation in diabetic peripheral neuropathy.  相似文献   

2.
Sharma SS  Kumar A  Kaundal RK 《Life sciences》2008,82(11-12):570-576
Peripheral diabetic neuropathy is a heterogeneous group of disorders, and is known to affect 50-60% of diabetic patients. Poly (ADP-ribose) polymerase (PARP) activation has been identified as one of the key components in the pathogenesis of diabetic neuropathy. In the present study we have targeted PARP overactivation in diabetic neuropathy using a known PARP inhibitor, 4 amino 1, 8-napthalimide (4-ANI). Streptozotocin induced diabetic rats developed neuropathy within 6 weeks, which was evident from significant reduction in motor nerve conduction velocity (MNCV), nerve blood flow (NBF) along with neuropathic pain and abnormal sensory perception. Six weeks after diabetes induction Sprague Dawley rats were treated with 4-ANI (3 and 10 mg/kg, p.o.) for a period of two weeks (seventh and eighth weeks). Two week treatment with 4-ANI showed improvement in nerve conduction, nerve blood flow and reduction in tail flick responses and mechanical allodynia in diabetic animals. 4-ANI also attenuated PAR immunoreactivity and NAD depletion in nerves of diabetic animals. Results of present study suggest the potential of PARP inhibitors like 4-ANI in the treatment of diabetic neuropathy.  相似文献   

3.
Tumor necrosis factor (TNF)-α is a potent proinflammatory cytokine involved in the pathogenesis of diabetic neuropathy. We inactivated TNF-α to determine if it is a valid therapeutic target for the treatment of diabetic neuropathy. We effected the inactivation in diabetic neuropathy using two approaches: by genetic inactivation of TNF-α (TNF-α(-/-) mice) or by neutralization of TNF-α protein using the monoclonal antibody infliximab. We induced diabetes using streptozotocin in wild-type and TNF-α(-/-) mice. We measured serum TNF-α concentration and the level of TNF-α mRNA in the dorsal root ganglion (DRG) and evaluated nerve function by a combination of motor (MNCV) and sensory (SNCV) nerve conduction velocities and tail flick test, as well as cytological analysis of intraepidermal nerve fiber density (IENFD) and immunostaining of DRG for NF-κB p65 serine-276 phosphorylated and cleaved caspase-3. Compared with nondiabetic mice, TNF-α(+/+) diabetic mice displayed significant impairments of MNCV, SNCV, tail flick test, and IENFD as well as increased expression of NF-κB p65 and cleaved caspase-3 in their DRG. In contrast, although nondiabetic TNF-α(-/-) mice showed mild abnormalities of IENFD under basal conditions, diabetic TNF-α(-/-) mice showed no evidence of abnormal nerve function tests compared with nondiabetic mice. A single injection of infliximab in diabetic TNF-α(+/+) mice led to suppression of the increased serum TNF-α and amelioration of the electrophysiological and biochemical deficits for at least 4 wk. Moreover, the increased TNF-α mRNA expression in diabetic DRG was also attenuated by infliximab, suggesting infliximab's effects may involve the local suppression of TNF-α. Infliximab, an agent currently in clinical use, is effective in targeting TNF-α action and expression and amelioration of diabetic neuropathy in mice.  相似文献   

4.
Diabetic neuropathy is the most common diabetic complication. The pathogenetic pathways include oxidative stress, advanced glycation end product (AGE) formation, protein kinase C, and NF-κB activation, as well as increased polyol flux. These metabolic perturbations affect neurons, Schwann cells, and vasa nervorum, which are held to be the primary cell types involved. We hypothesize that diabetes induces the appearance of abnormal bone marrow-derived cells (BMDCs) that fuse with neurons in the dorsal root ganglia (DRG) of mice, leading to diabetic neuropathy. Neuronal poly(ADP-ribose) polymerase-1 (PARP-1) activation in diabetes is known to generate free radical and oxidant-induced injury and poly(ADP-ribose) polymer formation, resulting in neuronal death and dysfunction, culminating in neuropathy. We further hypothesize that BM-specific PARP expression plays a determining role in disease pathogenesis. Here we show that bone marrow transplantation (BMT) of PARP-knockout (PARPKO) cells to wild-type mice protects against, whereas BMT of wild-type cells to PARPKO mice, which are normally "neuropathy-resistant," confers susceptibility to, diabetic neuropathy. The pathogenetic process involving hyperglycemia, BMDCs, and BMDC-neuron fusion can be recapitulated in vitro. Incubation in high, but not low, glucose confers fusogenicity to BMDCs, which are characterized by proinsulin (PI) and TNF-α coexpression; coincubation of isolated DRG neurons with PI-BMDCs in high glucose leads to spontaneous fusion between the 2 cell types, while the presence of a PARP inhibitor or use of PARPKO BMDCs in the incubation protects against BMDC-neuron fusion. These complementary in vivo and in vitro experiments indicate that BMDC-PARP expression promotes diabetic neuropathy via BMDC-neuron fusion.  相似文献   

5.
Relief from painful diabetic neuropathy is an important clinical issue. We have previously shown that the transplantation of cultured endothelial progenitor cells or mesenchymal stem cells ameliorated diabetic neuropathy in rats. In this study, we investigated whether transplantation of freshly isolated bone marrow-derived mononuclear cells (BM-MNCs) alleviates neuropathic pain in the early stage of streptozotocin-induced diabetic rats. Two weeks after STZ injection, BM-MNCs or vehicle saline were injected into the unilateral hind limb muscles. Mechanical hyperalgesia and cold allodynia in SD rats were measured as the number of foot withdrawals to von Frey hair stimulation and acetone application, respectively. Two weeks after the BM-MNC transplantation, sciatic motor nerve conduction velocity (MNCV), sensory nerve conduction velocity (SNCV), sciatic nerve blood flow (SNBF), mRNA expressions and histology were assessed. The BM-MNC transplantation significantly ameliorated mechanical hyperalgesia and cold allodynia in the BM-MNC-injected side. Furthermore, the slowed MNCV/SNCV and decreased SNBF in diabetic rats were improved in the BM-MNC-injected side. BM-MNC transplantation improved the decreased mRNA expression of NT-3 and number of microvessels in the hind limb muscles. There was no distinct effect of BM-MNC transplantation on the intraepidermal nerve fiber density. These results suggest that autologous transplantation of BM-MNCs could be a novel strategy for the treatment of painful diabetic neuropathy.  相似文献   

6.
Evidence for important roles of the highly reactive oxidant peroxynitrite in diabetic complications is emerging. We evaluated the role of peroxynitrite in early peripheral neuropathy and vascular dysfunction in STZ-diabetic rats. In the first dose-finding study, control and STZ-diabetic rats were maintained with or without the potent peroxynitrite decomposition catalyst Fe(III)tetrakis-2-(N-triethylene glycol monomethyl ether) pyridyl porphyrin (FP15) at 3, 5, or 10 mg.kg(-1).day(-1) in the drinking water for 4 wk after an initial 2 wk without treatment for assessment of early neuropathy. In the second study with similar experimental design, control and STZ-diabetic rats were maintained with or without FP15, 5 mg.kg(-1).day(-1), for vascular studies. Rats with 6-wk duration of diabetes developed motor and sensory nerve conduction velocity deficits, mechanical hyperalgesia, and tactile allodynia in the absence of small sensory nerve fiber degeneration. They also had increased nitrotyrosine and poly(ADP-ribose) immunofluorescence in the sciatic nerve and dorsal root ganglia. All these variables were dose-dependently corrected by FP15, with minimal differences between the 5 and 10 mg.kg(-1).day(-1) doses. FP15, 5 mg.kg(-1).day(-1), also corrected endoneurial nutritive blood flow and nitrotyrosine, but not superoxide, fluorescence in aorta and epineurial arterioles. Diabetes-induced decreases in acetylcholine-mediated relaxation by epineurial arterioles and coronary and mesenteric arteries, as well as bradykinin-induced relaxation by coronary and mesenteric arteries, were alleviated by FP15 treatment. The findings reveal the important role of nitrosative stress in early neuropathy and vasculopathy and provide the rationale for further studies of peroxynitrite decomposition catalysts in long-term diabetic models.  相似文献   

7.
Recent work has demonstrated that hyperglycemia-induced overproduction of superoxide by the mitochondrial electron-transport chain triggers several pathways of injury [(protein kinase C (PKC), hexosamine and polyol pathway fluxes, advanced glycation end product formation (AGE)] involved in the pathogenesis of diabetic complications by inhibiting glyceraldehyde-3-phosphate dehydrogenase (GAPDH) activity. Increased oxidative and nitrosative stress activates the nuclear enzyme, poly(ADP-ribose) polymerase-1 (PARP). PARP activation, on one hand, depletes its substrate, NAD+, slowing the rate of glycolysis, electron transport and ATP formation. On the other hand, PARP activation results in inhibition of GAPDH by poly-ADP-ribosylation. These processes result in acute endothelial dysfunction in diabetic blood vessels, which importantly contributes to the development of various diabetic complications. Accordingly, hyperglycemia-induced activation of PKC and AGE formation are prevented by inhibition of PARP activity. Furthermore, inhibition of PARP protects against diabetic cardiovascular dysfunction in rodent models of cardiomyopathy, nephropathy, neuropathy, and retinopathy. PARP activation is also present in microvasculature of human diabetic subjects. The present review focuses on the role of PARP in diabetic complications and emphasizes the therapeutic potential of PARP inhibition in the prevention or reversal of diabetic complications.  相似文献   

8.
Oxidative stress has been implicated to play an important role in the pathogenesis of diabetic neuropathy, which is the most common complication of diabetes mellitus affecting more than 50% of diabetic patients. In the present study, we have investigated the effect of U83836E [(-)-2-((4-(2,6-Di-1-pyrrolidinyl-4-pyrimidinyl)-1-piperazinyl)methyl)-3,4-dihydro-2,3,7,8-tetramethyl-2H-1-benzopyran-6-ol, 2HCl], a potent free radical scavenger in streptozotocin (STZ)-induced diabetic neuropathy in rats. STZ-induced diabetic rats showed significant deficit in motor nerve conduction velocity (MNCV), nerve blood flow (NBF) and thermal hyperalgesia after 8 weeks of diabetes induction, indicating development of diabetic neuropathy. Antioxidant enzyme (superoxide dismutase and catalase) levels were reduced and malondialdehyde (MDA) levels were significantly increased in diabetic rats as compared to the age-matched control rats, this indicates the involvement of oxidative stress in diabetic neuropathy. The 2-week treatment with U83836E (3 and 9 mg/kg, i.p.) started 6 weeks after diabetes induction significantly ameliorated the alterations in MNCV, NBF, hyperalgesia, MDA levels and antioxidant enzymes in diabetic rats. Results of the present study suggest the potential of U83836E in treatment of diabetic neuropathy.  相似文献   

9.
Diabetic peripheral neuropathy is a common complication of long-standing diabetes mellitus. To mimic clinical trials in which patients with diabetes enrolled have advanced peripheral neuropathy, we investigated the effect of sildenafil, a specific inhibitor of phosphodiesterase type 5 enzyme, on long term peripheral neuropathy in middle aged male mice with type II diabetes. Treatment of diabetic mice (BKS.Cg-m+/+Leprdb/J, db/db) at age 36 weeks with sildenafil significantly increased functional blood vessels and regional blood flow in the sciatic nerve, concurrently with augmentation of intra-epidermal nerve fiber density in the skin and myelinated axons in the sciatic nerve. Functional analysis showed that the sildenafil treatment considerably improved motor and sensory conduction velocities in the sciatic nerve and peripheral thermal stimulus sensitivity compared with the saline treatment. In vitro studies showed that mouse dermal endothelial cells (MDE) cultured under high glucose levels exhibited significant down regulation of angiopoietin 1 (Ang1) expression and reduction of capillary-like tube formation, which were completely reversed by sildenafil. In addition, incubation of dorsal root ganglia (DRG) neurons with conditioned medium harvested from MDE under high glucose levels suppressed neurite outgrowth, where as conditional medium harvested from MDE treated with sildenafil under high glucose levels did not inhibit neurite outgrowth of DRG neurons. Moreover, blockage of the Ang1 receptor, Tie2, with a neutralized antibody against Tie2 abolished the beneficial effect of sildenafil on tube formation and neurite outgrowth. Collectively, our data indicate that sildenafil has a therapeutic effect on long term peripheral neuropathy of middle aged diabetic mice and that improvement of neurovascular dysfunction by sildenafil likely contributes to the amelioration of nerve function. The Ang1/Tie2 signaling pathway may play an important role in these restorative processes.  相似文献   

10.
Diabetes mellitus compromises nitric oxide (NO)-mediated endothelium-dependent relaxation of blood vessels, which has been linked to the excessive generation of reactive oxygen species. There are also deleterious effect on nitrergic innervation, contributing to autonomic neuropathy symptoms such as impotence and gastroporesis. Poly(ADP-ribose) polymerase (PARP) is a nuclear protein stimulated by DNA damage, caused, for example, by oxidative stress. Activation has been linked to impaired endothelial nitric oxide synthase (eNOS)-mediated vasodilation in experimental diabetes. There is no information on the potential role of PARP in nitrergic nerve dysfunction, therefore, the aim was to examine the effects of PARP inhibition, using 3-aminobenzamide (3-AB) on neurally mediated gastric fundus relaxation in streptozotocin-induced diabetic rats. Eight weeks of diabetes caused a 42.5% deficit in maximum relaxation of in vitro gastric fundus strips to electrical stimulation of the non-adrenergic non-cholinergic innervation. This was largely prevented or corrected (4 weeks of treatment following 4 weeks of untreated diabetes) by 3-AB. Diabetes also markedly attenuated the maintenance of relaxation responses to prolonged stimulation, and this was partially corrected by 3-AB treatment. Experiments in the presence of the NOS inhibitor, N(G)-nitro-L-arginine, and/or blockade of the co-transmitter, vasoactive intestinal polypeptide, by alpha-chymotrypsin, showed that the beneficial effects of 3-AB were primarily due to improved nitrergic neurotransmission. Thus, PARP plays an important role in defective nitrergic neurotransmission in experimental diabetes, which may have therapeutic implications for treatment of aspects of diabetic autonomic neuropathy.  相似文献   

11.
Neural vascular insufficiency plays an important role in diabetic peripheral neuropathy (DPN). Peroxisome proliferative-activated receptor (PPAR)α has an endothelial protective effect related to activation of PPARγ coactivator (PGC)-1α and vascular endothelial growth factor (VEGF), but its role in DPN is unknown. We investigated whether fenofibrate would improve DPN associated with endothelial survival through AMPK-PGC-1α-eNOS pathway. Fenofibrate was given to db/db mice in combination with anti-flt-1 hexamer and anti-flk-1 heptamer (VEGFR inhibition) for 12 weeks. The db/db mice displayed sensory-motor impairment, nerve fibrosis and inflammation, increased apoptotic cells, disorganized myelin with axonal shrinkage and degeneration, fewer unmyelinated fibers, and endoneural vascular rarefaction in the sciatic nerve compared to db/m mice. These findings were exacerbated with VEGFR inhibition in db/db mice. Increased apoptotic cell death and endothelial dysfunction via inactivation of the PPARα-AMPK-PGC-1α pathway and their downstream PI3K-Akt-eNOS-NO pathway were noted in db/db mice, human umbilical vein endothelial cells (HUVECs) and human Schwann cells (HSCs) in high-glucose media. The effects were more prominent in response to VEGFR inhibition. In contrast, fenofibrate treatment ameliorated neural and endothelial damage by activating the PPARα-AMPK-PGC-1α-eNOS pathway in db/db mice, HUVECs and HSCs. Fenofibrate could be a promising therapy to prevent DPN by protecting endothelial cells through VEGF-independent activation of the PPARα-AMPK-PGC-1α-eNOS-NO pathway.  相似文献   

12.
Chronic diabetic neuropathy is associated with peripheral demyelination and degeneration of nerve fibers. The mechanism(s) underlying neuronal injury in diabetic sensory neuropathy remain poorly understood. Recently, we reported increased expression and function of transient receptor potential vanilloid 1 (TRPV1) in large dorsal root ganglion (DRG) neurons in diabetic sensory neuropathy. In this study, we examined the effects of TRPV1 activation on cell injury pathways in this subpopulation of neurons in the streptozotocin-induced diabetic rat model. Large DRG neurons from diabetic (6–8 weeks) rats displayed increased oxidative stress and activation of cell injury markers compared with healthy controls. Capsaicin (CAP) treatment induced decreased labeling of MitoTracker Red and increased cytosolic cytochrome c and activation of caspase 3 in large neurons isolated from diabetic rats. CAP treatment also induced oxidative stress in large diabetic DRG neurons, which was blocked by pre-treatment with caspase or calpain inhibitor. In addition, both μ-calpain expression and calpain activity were significantly increased in DRG neurons from diabetic rats after CAP treatment. Treatment with capsazepine, a competitive TRPV1 antagonist, markedly reduced these abnormalities in vitro and prevented activation of cell injury in large DRG neurons in diabetic rats in vivo . These results suggest that activation of the TRPV1 receptor activates pathways associated with caspase-dependent and calpain-dependent stress in large DRG neurons in STZ-diabetic rats. Activation of the TRPV1 receptor may contribute to preferential neuronal stress in large DRG neurons relatively early in diabetic sensory neuropathy.  相似文献   

13.
In this study, we sought to determine the efficacy of tempol on multiple neuropathic endpoints in a diet-induced obese mouse, a model of pre-diabetes, and a high-fat fed low-dose streptozotocin treated mouse, a model of type 2 diabetes. Tempol (4-hydroxy-2,2,6,6-tetramethylpiperdine -1-oxyl) is a low molecular weight, water soluble, membrane permeable, and metal-independent superoxide dismutase mimetic that has been widely used in cellular studies for the removal of intracellular and extracellular superoxide. This in vivo study was designed to be an early intervention. Fourteen weeks post-high-fat diet (6 weeks post-hyperglycemia) control, obese, and diabetic mice were divided into no treatment and treatment groups. The treated mice received tempol by gavage (150?mg/kg in water), while the untreated mice received vehicle. The diet-induced obese and the diabetic mice were maintained on the high-fat diet for the duration of the study, while the control group was maintained on the standard diet. Obesity and diabetes caused slowing of motor and sensory nerve conduction, reduction in intraepidermal nerve fiber density, thermal hypoalgesia, and mechanical allodynia. Treatment with tempol partially or completely protected obese and diabetic mice from these deficits. These studies suggest that tempol or other effective scavengers of reactive oxygen species may be a viable option for treating neural complications associated with obesity or type 2 diabetes.  相似文献   

14.
Peroxynitrite mediated nitrosative stress, an indisputable initiator of DNA damage and overactivation of poly(ADP-ribose) polymerase (PARP), a nuclear enzyme activated after sensing DNA damage, are two crucial pathogenetic mechanisms in diabetic neuropathy. The intent of the present study was to investigate the effect of combination of a peroxynitrite decomposition catalyst (PDC), FeTMPyP and a PARP inhibitor, 4-ANI against diabetic peripheral neuropathy. The end points of evaluation of the study included motor nerve conduction velocity (MNCV) and nerve blood flow (NBF) for evaluating nerve functions; thermal hyperalgesia and mechanical allodynia for assessing nociceptive alterations, malondialdehyde and peroxynitrite levels to detect oxidative stress-nitrosative stress; NAD concentration in sciatic nerve to assess overactivation of PARP. Additionally immunohistochemical studies for nitrotyrosine and Poly(ADP-ribose) (PAR) was also performed. Treatment with the combination of FeTMPyP and 4-ANI led to significant improvement in nerve functions and pain parameters and also attenuated the oxidative-nitrosative stress markers. Further, the combination also reduced the overactivation of PARP as evident from increased NAD levels and decreased PAR immunopositivity in sciatic nerve microsections. Thus, it can be concluded that treatment with the combination of a PDC and PARP inhibitor attenuates alteration in peripheral nerves in diabetic neuropathy (DN).  相似文献   

15.
《Endocrine practice》2007,13(5):550-566
ObjectiveTo review the clinical manifestations and current treatment options for diabetic neuropathies, one of the most common complications of diabetes mellitus.MethodsWe performed a MEDLINE search of the English-language literature using a combination of words (diabetic neuropathy, diabetic autonomic neuropathy, diagnosis and treatment) to identify original studies, consensus statements, and reviews on diabetic neuropathies published in the past 25 years. Emphasis was placed on clinical manifestations of distal polyneuropathy and its treatment, especially new therapies.ResultsDistal symmetric polyneuropathy, the most common form of diabetic neuropathy, usually involves small and large nerve fibers. Small-nerve fiber neuropathy often presents with pain and loss of intraepidermal nerve fibers, but without objective signs or electrophysiologic evidence of nerve damage. This type of neuropathy is a component of impaired glucose tolerance and the metabolic syndrome. The greatest risk from small-fiber neuropathy is foot ulceration and subsequent gangrene and amputation. Large-nerve fiber neuropathy produces numbness, ataxia, and incoordination, thus impairing activities of daily living and causing falls and fractures. Successfully treating diabetic neuropathy requires addressing the underlying pathogenic mechanisms, treating symptoms to improve quality of life, and preventing progression and complications of diabetes mellitus. Two new drugs, duloxetine hydrochloride and pregabalin, have recently been approved for treatment of neuropathic pain associated with diabetes mellitus.ConclusionSymptomatic therapy has become available and newer and better treatment modalities, based on etiologic factors, are being explored with potential for clinically significant reduction of morbidity and mortality. Preventive strategies and patient and physician education still remain key factors in reducing complication rates and mortality. (Endocr Pract. 2007;13:550-566)  相似文献   

16.
Apoptosis signal-regulating kinase-1 (ASK1) is a mitogen-activated protein 3 kinase (MAPKKK/MAP3K) which lies upstream of the stress-activated MAPKs, JNK and p38. ASK1 may be activated by a variety of extracellular and intracellular stimuli. MAP kinase activation in the sensory nervous system as a result of diabetes has been shown in numerous preclinical and clinical studies. As a common upstream activator of both p38 and JNK, we hypothesised that activation of ASK1 contributes to nerve dysfunction in diabetic neuropathy. We therefore wanted to characterize the expression of ASK1 in sensory neurons, and determine whether the absence of functional ASK1 would protect against the development of neuropathy in a mouse model of experimental diabetes. ASK1 mRNA and protein is constitutively expressed by multiple populations of sensory neurons of the adult mouse lumbar DRG. Diabetes was induced in male C57BL/6 and transgenic ASK1 kinase-inactive (ASK1n) mice using streptozotocin. Levels of ASK1 do not change in the DRG, spinal cord, or sciatic nerve following induction of diabetes. However, levels of ASK2 mRNA increase in the spinal cord at 4 weeks of diabetes, which could represent a future target for this field. Neither motor nerve conduction velocity deficits, nor thermal or mechanical hypoalgesia were prevented or ameliorated in diabetic ASK1n mice. These results suggest that activation of ASK1 is not responsible for the nerve deficits observed in this mouse model of diabetic neuropathy.  相似文献   

17.
Retinitis pigmentosa (RP) is a group of inherited neurodegenerative diseases affecting photoreceptors and causing blindness in humans. Previously, excessive activation of enzymes belonging to the poly-ADP-ribose polymerase (PARP) group was shown to be involved in photoreceptor degeneration in the human homologous rd1 mouse model for RP. Since there are at least 16 different PARP isoforms, we investigated the exact relevance of the predominant isoform - PARP1 - for photoreceptor cell death using PARP1 knock-out (KO) mice. In vivo and ex vivo morphological analysis using optic coherence tomography (OCT) and conventional histology revealed no major alterations of retinal phenotype when compared to wild-type (wt). Likewise, retinal function as assessed by electroretinography (ERG) was normal in PARP1 KO animals. We then used retinal explant cultures derived from wt, rd1, and PARP1 KO animals to test their susceptibility to chemically induced photoreceptor degeneration. Since photoreceptor degeneration in the rd1 retina is triggered by a loss-of-function in phosphodiesterase-6 (PDE6), we used selective PDE6 inhibition to emulate the rd1 situation on non-rd1 genotypes. While wt retina subjected to PDE6 inhibition showed massive photoreceptor degeneration comparable to rd1 retina, in the PARP1 KO situation, cell death was robustly reduced. Together, these findings demonstrate that PARP1 activity is in principle dispensable for normal retinal function, but is of major importance for photoreceptor degeneration under pathological conditions. Moreover, our results suggest that PARP dependent cell death or PARthanatos may play a major role in retinal degeneration and highlight the possibility to use specific PARP inhibitors for the treatment of RP.  相似文献   

18.
Diabetic patients frequently suffer from retinopathy, nephropathy, neuropathy and accelerated atherosclerosis. The loss of endothelial function precedes these vascular alterations. Here we report that activation of poly(ADP-ribose) polymerase (PARP) is an important factor in the pathogenesis of endothelial dysfunction in diabetes. Destruction of islet cells with streptozotocin in mice induced hyperglycemia, intravascular oxidant production, DNA strand breakage, PARP activation and a selective loss of endothelium-dependent vasodilation. Treatment with a novel potent PARP inhibitor, starting after the time of islet destruction, maintained normal vascular responsiveness, despite the persistence of severe hyperglycemia. Endothelial cells incubated in high glucose exhibited production of reactive nitrogen and oxygen species, consequent single-strand DNA breakage, PARP activation and associated metabolic and functional impairment. Basal and high-glucose-induced nuclear factor-kappaB activation were suppressed in the PARP-deficient cells. Our results indicate that PARP may be a novel drug target for the therapy of diabetic endothelial dysfunction.  相似文献   

19.
To address the role of nerve growth factor (NGF) in diabetes mellitus (DM)-induced cardiac autonomic neuropathy, we quantitated and compared the expression of NGF mRNA in the cardiac and the skeletal muscle in experimental DM mice with the RT-PCR-HPLC method, which we have developed previously, using a NGF deletion mutant RNA as an internal standard. DM was induced in ICR mice via intraperitoneal injection of streptozotocin. RT-PCR was performed using total RNA extracted from left ventricle and soleus muscle, and the levels of NGF mRNA were quantitated by HPLC analysis. NGF mRNA content of the cardiac muscle was 17-fold higher than the skeletal muscles in control mice. NGF mRNA content of the cardiac muscle in diabetic mice at 6 weeks was 4.0-fold higher than that in the control mice, while that of the skeletal muscle in diabetic mice was not different from the controls. These results indicated that the DM-induced increase in NGF mRNA content was higher in cardiac muscle than skeletal muscle, and that NGF might play an important role in cardiac autonomic neuropathy.  相似文献   

20.
Diabetic neuropathy is commonly observed complication in more than 50 % of type 2 diabetic patients. Histone deacetylases including SIRT1 have significant role to protect neuron from hyperglycemia induced damage. Formononetin (FMNT) is known for its effect to control hyperglycemia and also activate SIRT1. In present study, we evaluated effect of FMNT as SIRT1 activator in type 2 diabetic neuropathy. Type 2 diabetic neuropathy was induced in rats by modification of diet for 15 days using high fat diet and administration of streptozotocin (35 mg/kg/day, i. p.). FMNT treatment was initiated after confirmation of type 2 diabetes. Treatment was given for 16 weeks at 10, 20 and 40 mg/kg/day dose orally. FMNT treatment‐controlled hypoglycemia and reduced insulin resistance significantly in diabetic animals. FMNT treatment reduced oxidative stress in sciatic nerve tissue. FMNT treatment also reduced thermal hyperalgesia and mechanical allodynia significantly. It improved conduction velocity in nerve and unregulated SIRT1 and NGF expression in sciatic nerve tissue. Results of present study indicate that continuous administration of FMNT protected diabetic animals from hyperglycemia induced neuronal damage by controlling hyperglycemia and increasing SIRT1 and NGF expression in nerve tissue. Thus, FMNT can be an effective candidate for treatment of type 2 diabetic neuropathy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号