首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Undifferentiated human epidermal keratinocytes are self‐renewing stem cells that can be induced to undergo a program of differentiation by varying the calcium chloride concentration in the culture media. We utilize this model of cell differentiation and a 3D chromosome painting technique to document significant changes in the radial arrangement, morphology, and interchromosomal associations between the gene poor chromosome 18 and the gene rich chromosome 19 territories at discrete stages during keratinocyte differentiation. We suggest that changes observed in chromosomal territorial organization provides an architectural basis for genomic function during cell differentiation and provide further support for a chromosome territory code that contributes to gene expression at the global level. J. Cell. Physiol. J. Cell. Physiol. 221: 139–146, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

3.
4.
E Fuchs  H Green 《Cell》1980,19(4):1033-1042
Cells of the inner layers of the epidermis contain small keratins (46-58K), whereas the cells of the outer layers contain large keratins (63-67K) in addition to small ones. The changes in keratin composition that take place within each cell during the course of its terminal differentiation result largely from changes in synthesis. Cultured epidermal cells resemble cells of the inner layers of the epidermis in synthesizing only small keratins. The cultured cells possess translatable mRNA only for small keratins, whereas mRNA extracted from whole epidermis can be translated into both large and small keratins. As no synthesis takes place in the outermost layer of the epidermis (stratum corneum), the keratins of this layer must be synthesized earlier, but in some cases they then become smaller: this presumably occurs by post-translational processing of the molecules during the final stages of differentiation. Stratified squamous epithelia of internal organs do not form a typical stratum corneum and do not make the large keratins characteristic of epidermis. Their keratins are also different from those of cultured keratinocytes, implying that they have embarked on an alternate route of terminal keratin synthesis.  相似文献   

5.
6.
Recently, two groups of cDNA clones have been isolated from human epidermal keratinocytes; the clones correspond to genes whose expression is stimulated by exposure of the cells to UV light or treatment with 4-nitroquinoline 1-oxide or 12-O-tetradecanoylphorbol 13-acetate (T. Kartasova and P. van de Putte, Mol. Cell. Biol. 8:2195-2203, 1988). The proteins predicted by the nucleotide sequence of both groups of cDNAs are small (8 to 10 kilodaltons), are exceptionally rich in proline, glutamine, and cysteine, and contain repeating elements with a common sequence, PK PEPC. These proteins were designated sprI and sprII (small, proline rich). Here we describe the characterization of the sprIa protein, which is encoded by one of the group 1 cDNAs. The expression of this protein during keratinocyte differentiation in vitro and the distribution of the sprIa protein in some human tissues was studied by using a specific rabbit antiserum directed against a synthetic polypeptide corresponding to the 30 amino acids of the C-terminal region of the sprIa gene product. The results indicate that the expression of the sprIa protein is stimulated during keratinocyte differentiation both in vitro and in vivo.  相似文献   

7.
8.
9.
10.
When serially cultivated human epidermal keratinocytes are placed in suspension culture they stop growing and form, beneath the plasma membrane, an insoluble envelope consisting of protein cross-linked by ε- (γ-glutamyl)lysine. The formation of envelopes in suspended cells is preceded by a sharp decline in the rate of protein synthesis, and most envelopes appear only after the average rate of protein synthesis has fallen to a very low level. If protein synthesis is reduced over 98 percent with cycloheximide or emetine at the time that surface-grown cells are placed in suspension culture, cross-linked envelopes form in most of the cells. This shows that the precursor of the envelope and the cross-linking enzyme are already in the cytoplasm in most cells of growing surface cultures. The process of envelope formation by suspension cultures is actually accelerated by the inhibitors of protein synthesis; an increased number of cells with cross-linked envelopes is observable within 4-6 h after the addition of cycloheximide. The inhibitor also induces a large fraction of the cells of surface cultures to form enveloped within a few days. These findings suggest that arrest of protein synthesis leads to activation of the cross-linking process. Agents known to inhibit transglutaminase-mediated protein cross-linking-putrescine, iodoacetamide, and ethylene glycol-bis(beta-aminoethyl ether)N,N,N',N'-tetraacetate (EGTA)- also prevent envelope formation. Though the activity of the cross-linking transglutaminase depends on the presence of cellular Ca++, we have not been able to activate the cross-linking process by high external Ca++ concentration or ionophores.  相似文献   

11.
Cultured epithelial cells are used to generate extensive patches of autologous skin equivalent for patients with burns or wounds and to investigate the growth and differentiation of epithelia in vitro. We have undertaken a comprehensive study of the morphological and molecular events that occur during culturing of human foreskin keratinocytes at the liquid-air interface on a dermal equivalent consisting of a collagen matrix containing fibroblasts. Using radioactively labeled RNA probes for mRNAs and monoclonal antibodies for proteins, we found that the expression of a comprehensive set of differentiation stage-specific genes was affected by the type of fibroblasts included in the matrix as well as by the age of the culture. The expression of these genes was not always coordinated and could not be predicted from the histological appearance of the stratified epithelium. Surprisingly, the mouse fibroblasts promoted epithelial differentiation much more closely resembling foreskin than did the homologous primary foreskin fibroblasts.  相似文献   

12.
We investigated the expression levels of four cellular "housekeeping" genes during epithelial differentiation. Differentiation is a dynamic process and various cellular RNAs have been targeted for use as internal controls during differentiation of human keratinocytes, but the consistent expression of such standards has not been previously validated. We used the organotypic (raft) culture system to grow stratified and differentiated epithelium in vitro. We compared cellular RNAs from epithelial tissues of both normal human keratinocytes and keratinocytes whose differentiation scheme is altered by the replication of human papillomavirus. Using ribonuclease protection assays to quantify RNA expression levels, we found that beta-actin and glyceraldehyde-3-phosphate dehydrogenase levels fluctuated during epithelial differentiation, whereas cyclophilin RNA and 28S-ribosomal RNA were the most consistently expressed during epithelial differentiation. These stably expressed cellular RNAs can be targeted as controls to permit quantitative expression analyses of cellular and pathogen RNAs during epithelial differentiation under various experimental conditions.  相似文献   

13.
14.
Loss of the nucleus is a critical step in keratinocyte terminal differentiation. To elucidate the mechanisms involved, we focused on two characteristic events: nuclear translocation of N-terminal fragment of profilaggrin and caspase-14-dependent degradation of the inhibitor of caspase-activated DNase (ICAD). First, we demonstrated that epidermal mesotrypsin liberated a 55-kDa N-terminal fragment of profilaggrin (FLG-N) and FLG-N was translocated into the nucleus. Interestingly, these cells became TUNEL positive. Mutation in the mesotrypsin-susceptible Arg-rich region between FLG-N and the first filaggrin domain abolished these changes. Furthermore, caspase-14 caused limited proteolysis of ICAD, followed by accumulation of caspase-activated DNase (CAD) in TUNEL-positive nuclei. Knockdown of both proteases resulted in a significant increase of remnant nuclei in a skin equivalent model. Immunohistochemical study revealed that both caspase-14 and mesotrypsin were markedly downregulated in parakeratotic areas of lesional skin from patients with atopic dermatitis and psoriasis. Collectively, our results indicate that at least two pathways are involved in the DNA degradation process during keratinocyte terminal differentiation.  相似文献   

15.
Lipin-1 is an Mg2+-dependent phosphatidate phosphatase that facilitates the dephosphorylation of phosphatidic acid to generate diacylglycerol. Little is known about the expression and function of lipin-1 in normal human epidermal keratinocytes (NHEKs). Here, we demonstrate that lipin-1 is present in basal and spinous layers of the normal human epidermis, and lipin-1 expression is gradually downregulated during NHEK differentiation. Interestingly, lipin-1 knockdown (KD) inhibited keratinocyte differentiation and caused G1 arrest by upregulating p21 expression. Cell cycle arrest by p21 is required for commitment of keratinocytes to differentiation, but must be downregulated for the progress of keratinocyte differentiation. Therefore, reduced keratinocyte differentiation results from sustained upregulation of p21 by lipin-1 KD. Lipin-1 KD also decreased the phosphorylation/activation of protein kinase C (PKC)α, whereas lipin-1 overexpression increased PKCα phosphorylation. Treatment with PKCα inhibitors, like lipin-1 KD, stimulated p21 expression, while lipin-1 overexpression reduced p21 expression, implicating PKCα in lipin-1-induced regulation of p21 expression. Taken together, these results suggest that lipin-1-mediated downregulation of p21 is critical for the progress of keratinocyte differentiation after the initial commitment of keratinocytes to differentiation induced by p21, and that PKCα is involved in p21 expression regulation by lipin-1.  相似文献   

16.
The epidermis is a multilayered squamous epithelium in which dividing basal cells withdraw from the cell cycle and progressively differentiate as they are displaced toward the skin surface. Eventually, the cells lose their nucleus and other organelles to become flattened squames, which are finally shed from the surface as bags of cross-linked keratin filaments enclosed in a cornified envelope [1]. Although keratinocytes can undergo apoptosis when stimulated by a variety of agents [2], it is not known whether their normal differentiation programme uses any components of the apoptotic biochemical machinery to produce the cornified cell. Differentiating keratinocytes have been reported to share some features with apoptotic cells, such as DNA fragmentation, but these features have not been seen consistently [3]. Apoptosis involves an intracellular proteolytic cascade, mainly mediated by members of the caspase family of cysteine proteases, which cleave one another and various key intracellular target proteins to kill the cell neatly and quickly [4]. Here, we show for the first time that caspases are activated during normal human keratinocyte differentiation and that this activation is apparently required for the normal loss of the nucleus.  相似文献   

17.
18.
19.
Plasminogen activator inhibitor 2 (PAI-2) is an enzyme inhibitor which is involved in cell differentiation, tissue growth and regeneration. In this study, immunocytochemistry, in situ hybridization and confocal laser scanning microscopy were used to investigate the expression and role of PAI-2 in differentiation of keratinocytes in vitro. The result showed that in the mono-layer differentiated keratinocytes induced by high calcium concentration, the expression of PAI-2 and its mRNA increased significantly, accompanied by expression increase of the differentiation marker keratin 10; and in the multi-layer differentiated keratinocytes induced by high calcium, PAI-2 expressed strongly mainly in the keratinocytes of middle as well as upper stratified layers, while K10 expressed in the keratinocytes of all stratified layers. Furthermore, the changes of the parameters related to keratinocyte differentiation were detected after inhibition of PAI-2 functions by its antibody, and the data showed that when treated by PAI-2 antibody, involucrin in the keratinocytes envelope expressed increasingly with an altering distribution from part to the whole envelope area. Our results indicate that during differentiation of epidermal keratinocyte, PAI-2 expresses mainly in the more differentiated keratinocytes and may protect the terminal differentiated keratinocytes from prematuration through inhibiting involucrin expression in cornified envelope.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号