首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Both phosphointermediate- and vacuolar-type (P- and V-type, respectively) ATPase activities found in cholinergic synaptic vesicles isolated from electric organ are immunoprecipitated by a monoclonal antibody to the SV2 epitope characteristic of synaptic vesicles. The two activities can be distinguished by assay in the absence and presence of vanadate, an inhibitor of the P-type ATPase. Each ATPase has two overlapping activity maxima between pH 5.5 and 9.5 and is inhibited by fluoride and fluorescein isothiocyanate. The P-type ATPase hydrolyzes ATP and dATP best among common nucleotides, and activity is supported well by Mg2+, Mn2+, or Co2+ but not by Ca2+, Cd2+, or Zn2+. It is stimulated by hyposmotic lysis, detergent solubilization, and some mitochondrial uncouplers. Kinetic analysis revealed two Michaelis constants for MgATP of 28 microM and 3.1 mM, and the native enzyme is proposed to be a dimer of 110-kDa subunits. The V-type ATPase hydrolyzes all common nucleoside triphosphates, and Mg2+, Ca2+, Cd2+, Mn2+, and Zn2+ all support activity effectively. Active transport of acetylcholine (ACh) also is supported by various nucleoside triphosphates in the presence of Ca2+ or Mg2+, and the Km for MgATP is 170 microM. The V-type ATPase is stimulated by mitochondrial uncouplers, but only at concentrations significantly above those required to inhibit ACh active uptake. Kinetic analysis of the V-type ATPase revealed two Michaelis constants for MgATP of approximately 26 microM and 2.0 mM. The V-type ATPase and ACh active transport were inhibited by 84 and 160 pmol of bafilomycin A1/mg of vesicle protein, respectively, from which it is estimated that only one or two V-type ATPase proton pumps are present per synaptic vesicle. The presence of presumably contaminating Na+,K(+)-ATPase in the synaptic vesicle preparation is demonstrated.  相似文献   

2.
Cholinergic Synaptic Vesicles Contain a V-Type and a P-Type ATPase   总被引:6,自引:4,他引:2  
Fifty to eighty-five percent of the ATPase activity in different preparations of cholinergic synaptic vesicles isolated from Torpedo electric organ was half-inhibited by 7 microM vanadate. This activity is due to a recently purified phosphointermediate, or P-type, ATPase, Acetylcholine (ACh) active transport by the vesicles was stimulated about 35% by vanadate, demonstrating that the P-type enzyme is not the proton pump responsible for ACh active transport. Nearly all of the vesicle ATPase activity was inhibited by N-ethylmaleimide. The P-type ATPase could be protected from N-ethylmaleimide inactivation by vanadate, and subsequently reactivated by complexation of vanadate with deferoxamine. The inactivation-protection pattern suggests the presence of a vanadate-insensitive, N-ethylmaleimide-sensitive ATPase consistent with a vacuolar, or V-type, activity expected to drive ACh active transport. ACh active transport was half-inhibited by 5 microM N-ethylmaleimide, even in the presence of vanadate. The presence of a V-type ATPase was confirmed by Western blots using antisera raised against three separate subunits of chromaffin granule vacuolar ATPase I. Both ATPase activities, the P-type polypeptides, and the 38-kilodalton polypeptide of the V-type ATPase precisely copurify with the synaptic vesicles. Solubilization of synaptic vesicles in octaethyleneglycol dodecyl ether detergent results in several-fold stimulation of the P-type activity and inactivation of the V-type activity, thus explaining why the V-type activity was not detected previously during purification of the P-type ATPase. It is concluded that cholinergic vesicles contain a P-type ATPase of unknown function and a V-type ATPase which is the proton pump.  相似文献   

3.
Nitrite reduces cytoplasmic acidosis under anoxia   总被引:1,自引:0,他引:1       下载免费PDF全文
The ameliorating effect of nitrate on the acidification of the cytoplasm during short-term anoxia was investigated in maize (Zea mays) root segments. Seedlings were grown in the presence or absence of nitrate, and changes in the cytoplasmic and vacuolar pH in response to the imposition of anoxia were measured by in vivo (31)P nuclear magnetic resonance spectroscopy. Soluble ions and metabolites released to the suspending medium by the anoxic root segments were measured by high-performance liquid chromatography and (1)H nuclear magnetic resonance spectroscopy, and volatile metabolites were measured by gas chromatography and gas chromatography-mass spectrometry. The beneficial effect of nitrate on cytoplasmic pH regulation under anoxia occurred despite limited metabolism of nitrate under anoxia, and modest effects on the ions and metabolites, including fermentation end products, released from the anoxic root segments. Interestingly, exposing roots grown and treated in the absence of nitrate to micromolar levels of nitrite during anoxia had a beneficial effect on the cytoplasmic pH that was comparable to the effect observed for roots grown and treated in the presence of nitrate. It is argued that nitrate itself is not directly responsible for improved pH regulation under anoxia, contrary to the usual assumption, and that nitrite rather than nitrate should be the focus for further work on the beneficial effect of nitrate on flooding tolerance.  相似文献   

4.
The cytoplasmic pH and the vacuolar pH in root-tip cells ofintact mung bean seedlings under high-NaCl stress were measuredby in vivo 31P-nuclear magnetic resonance (31P-NMR) spectroscopy.When roots were incubated with high levels (100 mM) of NaClat the control external concentration (0.5 mM) of Ca2+ ions,the vacuolar pH increased rapidly from 5.6 to 6.2 within 3 h,while the cytoplasmic pH only decreased by a mere 0.1 pH uniteven after a 24-h incubation under high-NaCl conditions. Theincrease in vacuolar pH induced by the high-NaCl stress wasdiminished by an increase in the external concentration of Ca2+ions from 0.5 mM to 5 mM. The intracellular concentration ofNa+ ions in the root-tip cells increased dramatically upon perfusionof the root cells with 100 mM NaCl, and high external levelsof Ca2+ ions also suppressed the in flow of Na+ ions into thecells. The vacuolar alkalization observed in salt-stressed rootsmay be related to the inhibition of an H+-translocating pyrophosphatasein the tonoplast, caused by the increase in the cytoplasmicconcentration of Na+ ions. It is suggested that, although thevacuolar pH increased markedly under salt stress, the cytoplasmicpH was tightly regulated by some unidentified mechanisms, suchas stimulation of the H+-translocating ATPase of the plasmalemma,in roots of mung bean under salt stress. (Received April 18, 1992; Accepted July 6, 1992)  相似文献   

5.
Understanding the regulatory properties of the activities of the V-type adenosine triphosphatase (ATPase) on tonoplast membranes is important in determining the mechanisms by which this enzyme controls cytoplasmic and vacuolar pH. The possible existence of a regulatory site for adenine nucleotides was examined by comparing the effects of ADP, adenylylimidodiphosphate (AMP-PNP) and 3'- o -(4-benzoyl) benzoyladenine 5'-triphosphate (BzATP) to those of the 2',3'-dialdehyde derivative of AMP (oAMP) and ATP by using highly purified tonoplast vesicles from maize ( Zea mays L. cv. FRB 73) roots. The addition of either AMP-PNP or BzATP reversibly inhibited the initial rate of proton transport catalyzed by the H+-ATPase in a concentration-dependent manner. Less than 20 μ M AMP-PNP or 50 μ M BzATP was sufficient to inhibit half the initial rate of proton transport in the presence of 2 m M ATP and an excess of Mg. Both analogs increased the Km for ATP and reduced the maximum enzyme velocity. The presence of ADP also inhibited proton transport. The characteristics of ADP-induced inhibition were similar to those of BzATP and AMP-PNP. The addition of the periodated derivative of AMP (oAMP) irreversibly inhibited the ATPase in a concentration and time-dependent manner similar to that reported previously (Chow et al. 1992, Plant Physiology 98: 44–52). Irreversible inhibition by oAMP reduced the maximum velocity of the tonoplast ATPase and was prevented by the addition of ATP. The presence of ADP, AMP-PNP or BzATP had no effect on irreversible inhibition by oAMP. The effects of ADP, AMP-PNP and BzATP on the kinetics of ATP utilization and the lack of protection against inhibition by oAMP argue in favor of at least two types of nucleotide binding sites on the V-type ATPase from maize root tonoplast membranes.  相似文献   

6.
The functional viability of cells can be evaluated using a number of different assay determinants. One common assay involves exposing cells to 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), which is converted intracellularly to a colored formazan precipitate and often used to assess amyloid peptide-induced cytotoxic effects. The MTT assay was employed to evaluate the role of endosomal uptake and lysosomal acidification in amyloid peptide-treated differentiated PC12 cell cultures using selective vacuolar-type (V-type) ATPase inhibitors. The macrolides bafilomycin A1 (BAF) and concanamycin A (CON) block lysosomal acidification through selective inhibition of the V-type ATPase. Treating nerve growth factor-differentiated PC12 cells with nanomolar concentrations of BAF or CON provides complete protection against the effects of beta-amyloid peptides Abeta(1-42), Abeta(1-40), and Abeta(25-35) and of amylin on MTT dye conversion. These macrolides do not inhibit peptide aggregation, act as antioxidants, or inhibit Abeta uptake by cells. Measurements of lysosomal acidification reveal that the concentrations of BAF and CON effective in reversing Abeta-mediated MTT dye conversion also reverse lysosomal pH. These results suggest that lysosomal acidification is necessary for Abeta effects on MTT dye conversion.  相似文献   

7.
Gibberellic Acid Induces Vacuolar Acidification in Barley Aleurone   总被引:4,自引:0,他引:4       下载免费PDF全文
Swanson SJ  Jones RL 《The Plant cell》1996,8(12):2211-2221
The roles of gibberellic acid (GA3) and abscisic acid (ABA) in the regulation of vacuolar pH (pHv) in aleurone cells of barley were investigated using the pH-sensitive fluorescent dye 2[prime],7[prime]-bis(2-carboxyethyl)-5(6)-carboxyfluorescein (BCECF). BCECF accumulated in vacuoles of aleurone cells, but sequestration of the dye did not affect its sensitivity to pH. BCECF-loaded aleurone cells retained their ability to respond to both GA3 and ABA. The pHv of freshly isolated aleurone cells is 6.6, but after incubation in GA3, the pHv fell to 5.8. The pHv of cells not incubated in hormones or in the presence of ABA showed little or no acidification. The aleurone tonoplast contains both vacuolar ATPase and vacuolar pyrophosphatase, but the levels of pump proteins were not affected by incubation in the presence or absence of hormones. We conclude that GA3 affects the pHv in aleurone cells by altering the activities of tonoplast H+ pumps but not the amounts of pump proteins.  相似文献   

8.
Archaebacterial plasma membranes contain an ATPase acting in vivo as a delta mu H(+)-driven ATP synthase. While functional features and their general structural design are resembling F-type ATPases, primary sequences of the two large polypeptides from the catalytic part are closely related to V-type ATPases from eucaryotic vacuolar membranes. The chimeric nature of archaebacterial ATPase from Sulfolobus was investigated in terms of nucleotide interactions and related to specific sequence parameters in a comparison to well known F- and V-type ATPases. The study disclosed a general difference of F- and V-type ATPases at one class of the nucleotide binding sites.  相似文献   

9.
The release of inorganic phosphate from ATP by mitochondriaisolated from endosperms of castor bean (Ricinus communis) wasstimulated by Mg++, but not by Ca++. EDTA, succinate, NADH2or oligomycin depressed the reaction. The depression by succinatewas removed by KCN, antimycin A or anoxia. DNP alone did notaffect activity but did stimulate the Pi release in the presenceof succinate under aerobic conditions. Enhanced Pi release inthe presence of succinate and DNP was cancelled by KCN, antimycinA, oligomycin or anoxia. On the basis of these results, themechanism of ATPase action in castor bean endosperm mitochondriais discussed. (Received January 27, 1969; )  相似文献   

10.
H. Löppert 《Planta》1981,151(3):293-297
The vacuolar electrical potential of Lemna paucicostata 6746 has an active component of about-130 mV. This hyperpolarization above the diffusion potential was maintained when dicyclohexyl carbodiimide (DCCD) or arsenate (0.1 mM or 5 mM final concentrations, respectively) were added in the light or after the plants had been kept in darkness for 1 h. The ATP level was reduced to 11±3% by DCCD and to 56±6% by arsenate under conditions identical to those during the potential measurements. In this report, it is discussed whether these results could be interpreted in terms of a putative electrogenic ATPase in the plasma membrane of Lemna. Rb+-influx in illuminated plants was 12.5% or 52% of the control when ATP generation was inhibited by DCCD or arsenate. This finding is regarded as justifying the assumption that the availability of ATP at plasmalemma-located transport sites is drastically decreased by these inhibitors.A passive proton-permeability in the cell membrane was induced with different concentrations of carbonyl cyanide m-chlorophenyl hydrazone (CCCP). The potential decrease, caused by the current through this shunt, was not affected by DCCD. It therefore seems less conceivable that the cell membrane remains hyperpolarized because of an increase of membrane resistance concomitant to the inhibition of the pump.The significance of respiratory processes for membrane hyperpolarization is displayed by the depolarizing action of anoxia or KCN. As ATP was found to be non-limiting under these conditions, the inhibition of the electrogenic pump is regarded as being in discord with the concept of an electrogenic ATPase, which is solely responsible for membrane hyperpolarization.Abbreviations CCCP carbonyl cyanide m-chlorophenyl hydrazone - DCCD N, N-dicyclohexyl carbodiimide - DES diethylstilbestro - DNP 2,4-dinitrophenol - POPOP 1,4-bis (2-(5-phenyloxazolyl))-benzene - PPO 2,5-diphenyloxazole  相似文献   

11.
Using a vacuolar preparation virtually free of contamination by other organelles, we isolated vacuolar membranes and demonstrated that they contain an ATPase. Sucrose density gradient profiles of vacuolar membranes show a single peak of ATPase activity at a density of 1.11 g/cm3. Comparison of this enzyme with the two well-studied proton-pumping ATPases of Neurospora plasma membranes and mitochondria shows that it is clearly distinct. The vacuolar membrane ATPase is insensitive to the inhibitors oligomycin, azide, and vanadate, but sensitive to N,N'-dicyclohexylcarbodiimide (Ki = 2 microM). It has a pH optimum of 7.5, requires a divalent cation (Mg2+ or Mn2+) for activity, and is remarkably unaffected (+/- 20%) by a number of monovalent cations, anions, and buffers. In its substrate affinity (Km for ATP = 0.2 mM), substrate preference (ATP greater than GTP, ITP greater than UTP greater than CTP), and loss of activity with repeated 1 mM ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid washes, the vacuolar membrane ATPase resembles the F1F0 type of ATPase found in mitochondria and differs from the integral membrane type of ATPase in plasma membranes.  相似文献   

12.
The bafilomycin A(1) and N-ethylmaleimide (NEM)-sensitive (V-type) ATPase was partially purified from the apical membrane-rich fractions of excretory system (Malpighian tubules and hind gut) of P. bufonius. Enzymatic activity was inhibited by bafilomycin A(1) (IC(50) = 1.3 nM) and NEM (IC(50) = 10.1 microM). The V-type ATPase activity is confined to the apical membrane fraction, while the activity of Na(+)/K(+) -ATPase forms the major part of the basal membrane fraction. The optimal pH required for maximal activity of V-type ATPase was pH 7.5. The effect of 30 mM of various salts on ATPase activity was investigated. NaCl and KCl caused increases of 175% and 184%, respectively. Other chloride salts also caused an increase in activity in the following ascending order: RbCl, LiCI, choline Cl, NaCI, KCl and tris-HCl. The activity of V-type ATPase was stimulated by a variety of different anions and cations, and HCO(3)(-) was found to be the most potent cationic activator of ATPase activity. The present results show that the properties of V-type ATPase of P. bufonius are similar to those reported for other insect tissues.  相似文献   

13.
Several diseases such as proximal and distal renal tubular acidosis and osteoporosis are related to intracellular pH dysregulation resulting from mutations in genes coding for ion channels, including proteins comprising the proton-pumping V-type ATPase. V-type ATPase is a multi-subunit protein complex expressed in enamel forming cells. V-type ATPase plays a key role in enamel development, specifically lysosomal acidification, yet our understanding of the relationship between the endocytotic activities and dental health and disease is limited. The objective of this study is to better understand the ameloblast-associated pH regulatory networks essential for amelogenesis. Quantitative RT-PCR was performed on tissues from secretory-stage and maturation-stage enamel organs to determine which of the V-type ATPase subunits are most highly upregulated during maturation-stage amelogenesis: a time when ameloblast endocytotic activity is highest. Western blot analyses, using specific antibodies to four of the V-type ATPase subunits (Atp6v0d2, Atp6v1b2, Atp6v1c1 and Atp6v1e1), were then applied to validate much of the qPCR data. Immunohistochemistry using these same four antibodies was also performed to identify the spatiotemporal expression profiles of individual V-type ATPase subunits. Our data show that cytoplasmic V-type ATPase is significantly upregulated in enamel organ cells during maturation-stage when compared to secretory-stage. These data likely relate to the higher endocytotic activities, and the greater need for lysosomal acidification, during maturation-stage amelogenesis. It is also apparent from our immunolocalization data, using antibodies against two of the V-type ATPase subunits (Atp6v1c1 and Atp6v1e1), that significant expression is seen at the apical membrane of maturation-stage ameloblasts. Others have also identified this V-type ATPase expression profile at the apical membrane of maturation ameloblasts. Collectively, these data better define the expression and role of the V-type ATPase proton pump in the enamel organ during amelogenesis.  相似文献   

14.
A comparison was made between the oxygen uptake of roots and leaves and of mitochondria isolated from the same tissues. Ten species were included in this study: three legumes, one C3-monocotyledon, one C4-monocotyledon, the rest non-leguminous C3-dicotyledons. Root and leaf respiration in all species examined displayed substantial resistance to KCN (0.1–1.0 mM) and the cyanide-resistant respiration was completely inhibited by salicylhydroxamic acid (SHAM; 10–20 mM). SHAM alone inhibited oxygen uptake to varying degrees, depending on the species. Mitochondria were isolated from roots and leaves of many of the species examined and also displayed cyanide-resistant oxygen uptake, which was sensitive to both SHAM and tetraethylthiuram disulfide (disulfiram). Concentrations of SHAM greater than 2 mM caused inhibition of the cytochrome path as well as of the alternative path in isolated mitochondria. Respiration rates of intact roots and leaves in the presence of varying concentrations of SHAM alone were plotted against those obtained in the presence of both SHAM and KCN. This plot showed that in vivo the cytochrome pathway was not affected by 10 or 20 mM SHAM in the external solution. We conclude that the activity of the alternative pathway in intact roots and leaves can be reliably estimated by comparing SHAM-sensitivity and cyanide-resistance of respiration.  相似文献   

15.
The effect of salinity on vacuolar pH was studied in carrot (Daucus carota L.) cells grown in liquid suspension culture either in the absence or presence of 150 mM NaCl. Both vacuolar and cytoplasmic pH were determined by several independent techniques. These techniques were NMR spectrometry, distribution of radioactive probes and spectrophotometric measurement of the absorbance changes of a naturally occurring vacuolar pH indicator. There was no difference in the cytoplasmic pH between cells grown in the presence or the absence of NaCl, but the vacuolar pH of cells grown in the presence of NaCl was higher by 0.38 to 1.05 pH units (depending on the technique that was used) than the vacuolar pH of cells grown in the absence of NaCl.  相似文献   

16.
Intact hair cells of young rice (Oryza sativa L.) and maize roots (Zea mays L.), grown without external nitrogen, were specifically loaded with 2[prime],7[prime]-bis-(2-carboxyethyl)-5 (and -6)-carboxyfluorescein acetoxymethyl ester to monitor fluorescence ratio cytosolic pH changes in response to external ammonia (NH4+/NH3) application. In neutral media, cytosolic pH of root hairs was 7.15 [plus or minus] 0.13 (O. sativa) and 7.08 [plus or minus] 0.11 (Z. mays). Application of 2 mM ammonia at external pH 7.0 caused a transient cytosolic alkalization (7.5 [plus or minus] 0.15 in rice; 7.23 [plus or minus] 0.13 in maize). Alkalization increased with an increase of external pH; no pH changes occurred at external pH 5.0. The influx of 13N-labeled ammonia in both plant species did not differ between external pH 5.0 and 7.0 but increased significantly with higher pH. Pretreatment with 1 mM 1-methionine sulfoximine significantly reduced the ammonia-elicited pH increase in rice but not in maize. Application of 2 mM methylammonia only caused a cytosolic pH increase at high external pH; the increase in both species compared with the ammonia-elicited alkalization in 1-methionine sulfoximine-treated roots. The differential effects indicate that cytosolic alkalization derived from (a) NH3 protonation after passive permeation of the plasma membrane and, particularly in rice, (b) additional proton consumption via the glutamine synthetase/glutamate synthase cycle.  相似文献   

17.
The effect of a protonophoric uncoupler (CCCP) on the different cellular compartments was investigated in yeast grown aerobically on lactate. These cells were incubated in a resting cell medium under three conditions; in aerobiosis with lactate or glucose or in anaerobiosis with glucose as energetic substrate. For each condition, in vivo 31P NMR was used to measure pH gradients across vacuolar and plasma membrane and phosphorylated compound levels. Respiratory rate (aerobic conditions) and TPP+ uptake were measured independently. Concerning the polyphosphate metabolism, spontaneous NMR-detected polyphosphate breakdown occurred, in anaerobiosis and in the absence of CCCP. In contrast, in aerobiosis, polyphosphate hydrolysis was induced by addition of either CCCP or a vacuolar membrane ATPase-specific inhibitor, bafilomycin A1. Moreover, polyphosphates were totally absent in a null vacuolar ATPase activity mutant. The vacuolar polyphosphate content depended on two factors: vacuolar pH value, strictly linked to the vacuolar H(+)-ATPase activity, and inorganic phosphate concentration. CCCP was more efficient in dissipating the proton electrochemical gradient across vacuolar and mitochondrial membranes than across the plasma membrane. This discrepancy can be essentially explained by a difference of stimulability of each proton pump involved. As long as the energetic state (measured by NDP + NTP content) remains high, the plasma membrane proton ATPase is able to compensate the proton leak. Moreover, this ATPase contributes only partially to the generation of delta pH. The maintenance of the delta pH across the plasma membrane, that of the energetic state, and the cellular TPP+ uptake depend on the nature of the ATP-producing process.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Proton pumping of the vacuolar-type H(+)-ATPase into the lumen of the central plant organelle generates a proton gradient of often 1-2 pH units or more. Although structural aspects of the V-type ATPase have been studied in great detail, the question of whether and how the proton pump action is controlled by the proton concentration on both sides of the membrane is not understood. Applying the patch clamp technique to isolated vacuoles from Arabidopsis mesophyll cells in the whole-vacuole mode, we studied the response of the V-ATPase to protons, voltage, and ATP. Current-voltage relationships at different luminal pH values indicated decreasing coupling ratios with acidification. A detailed study of ATP-dependent H(+)-pump currents at a variety of different pH conditions showed a complex regulation of V-ATPase activity by both cytosolic and vacuolar pH. At cytosolic pH 7.5, vacuolar pH changes had relative little effects. Yet, at cytosolic pH 5.5, a 100-fold increase in vacuolar proton concentration resulted in a 70-fold increase of the affinity for ATP binding on the cytosolic side. Changes in pH on either side of the membrane seem to be transferred by the V-ATPase to the other side. A mathematical model was developed that indicates a feedback of proton concentration on peak H(+) current amplitude (v(max)) and ATP consumption (K(m)) of the V-ATPase. It proposes that for efficient V-ATPase function dissociation of transported protons from the pump protein might become higher with increasing pH. This feature results in an optimization of H(+) pumping by the V-ATPase according to existing H(+) concentrations.  相似文献   

19.
 Vacuolar ATPase (EC 3.6.1.3) and PPase (EC 3.6.1.1) were studied in suspension cells and seedlings from spruce [Picea abies (L.) Karst. Proton transport activity and uncoupler (1 μM nigericin) stimulated substrate hydrolysis were measured in tonoplast enriched membrane vesicles. In suspension cells the vacuolar PPase exhibited 1.8-fold activity of the ATPase. In roots and needles from 12-week-old spruce seedlings the vacuolar PPase was inactive, whereas the ATPase was active. Therefore, we investigated whether the preparation of spruce tonoplast vesicles from roots and needles inactivates the vacuolar PPase but not the ATPase. For this purpose, maize (Zea mays L.) tonoplast membranes exhibiting vacuolar PPase as well as ATPase activity were used as a probe and added to the homogenization medium prior to the preparation of spruce vesicles. The preparation of spruce vesicles was more inhibitory to the vacuolar ATPase than to the PPase. The comparison of vacuolar PPases from spruce suspension cells and maize roots revealed similar enzymatic properties. After isopycnic centrifugation on continuous sucrose gradients the vacuolar PPase from spruce suspension cells co-purified with the vacuolar ATPase. Together, these data show: (1) vacuolar PPases from spruce suspension cells and maize roots are similar, (2) the preparation of tonoplast vesicles from spruce roots and needles does not inactivate the vacuolar PPase, (3) tonoplasts of suspension cultured cells and seedlings from spruce are differentially energized by the vacuolar pyrophosphatase that may indicate a difference in pyrophosphate metabolism between embryogenic and differentiated spruce cells, and (4) tonoplast vesicles from spruce seedlings may allow investigations of the effect of pyrophosphate on the vacuolar ATPase in the absence of vacuolar PPase activity. Received: 2 July 1998 / Accepted: 14 September 1998  相似文献   

20.
Glial cell line-derived neurotrophic factor (GDNF) was reported to be effective for treating subjects with neurodegenerative diseases such as Parkinson's disease. In search of finding a compound which promotes GDNF secretion, we found that concanamycin A (ConA), a vacuolar ATPase (V-type ATPase) inhibitor purified from Streptomyces diastatochromogens, enhanced GDNF secretion from glioma cells. The rat glioma cell line, C6, and the human glioma cell lines, U87MG and T98G, abundantly expressed GDNF mRNA, and secreted GDNF into culture media, and this event was potently enhanced by a Ca(2+) ionophore and by phorbol ester, as noted in other cells. ConA concentration dependently and potently increased GDNF release from C6, U87MG and T98G cells into culture media. In addition, ConA enhanced GDNF secretion from astrocyte primary cultures prepared from the human fetus with the same potency seen in glioma cell lines. Likewise, another V-type ATPase inhibitor, bafilomycinA1 facilitated GDNF release from C6, U87MG and T98G glioma cells, in a concentration-dependent manner. The potencies of these V-type ATPase inhibitors in enhancing GDNF secretion were consistent with those which inhibited V-type ATPase activity. These results suggest that blockade of V-type ATPase potently stimulates the secretion of GDNF from glial cells. The V-type ATPase inhibitors may be beneficial to use for the treatment of diseases in which increase in GDNF could be effective.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号