首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Differently directed changes in metabolic activity of anterior hypothalamic nuclei's neurons in rats during hyperthermia, fever, and hypothermia were revealed with histochemical methods. During hyperthermia, the activity of energy metabolism enzymes increased as well as RNA content in the neurons of supraoptic, paraventricular and median preoptic anterior hypothalamic nuclei. This is shown by an increase in the metabolic activity of neurons of these nuclei. Metabolic activity in neurons of median preoptic nuclei decreased and was not changed considerably in neurons of supraoptic and paraventricular nuclei during endotoxin-induced fever. The development of hypothermia was characterised by a decrease in metabolic activity of neurons of supraoptic, paraventricular and medium preoptic nuclei. It is supposed that differently directed metabolic activity changes in neurons of anterior hypothalamic nuclei during hyperthermia are connected with the mechanisms of body temperature regulation (median preoptic nuclei) and neurosecretory processes (supraoptic and paraventricular nuclei).  相似文献   

2.
In in vivo and in vitro experiments there have been shown different mechanisms of regulation of hypothalamic vasopressinergic neurons, including regulation due to changes of activity level of brain catecholaminergic and NPY-ergic neurons innervating hypothalamic vasopressinergic cells. We demonstrated in in vitro experiments that dopamine and noradrenaline had no effects on vasopressin expression, but inhibited its release from cell perikarya in supraoptic and paraventricular nuclei of hypothalamus. Besides, activity of vasopressinergic neurons might probably be regulated via activation of synthesis of these neurotransmitters in vasopressinergic cells themselves in the supraoptic and paraventricular nuclei. To activate synthesis of various neurotransmitters, in our case, catecholamines and NPY, in vasopressinergic neurons, different stimuli adequate to trigger or activate synthesis of these substances are required. Synthesis of catecholamines in vasopressinergic cells of supraoptic and paraventricular nuclei was revealed after immobilization stress and adrenalectomy. NPY is synthesized in neurons of hypothalamic neurosecretory centers in norm, and its synthesis increases at disturbances of NPY-ergic innervation of vasopressinergic cells.  相似文献   

3.
Characteristics of antidromic action potentials of neurons of the paraventricular and supraoptic nuclei of the rat hypothalamus were studied during stimulation of the hypothalamo-hypophyseal tract by stimuli of varied amplitude and frequency. Step-like changes were found in spike latency in response to an increase in strength (up to 1.5–2.5 thresholds) or frequency (over 100 Hz) of stimulation, as well as cases with variation of the degree of division of the peak into A and B components. Injection of leu-enkephalin analog into the third ventricle or intravenous injection of NaCl solution (1 M) caused reversible changes in the level of excitability of antidromically activated neurons: leu-enkephalin mainly increased the latent period and threshold of action potential generation and reduced the reproducible frequency of stimulation to 10 Hz, whereas NaCl had the opposite effect. The results indicate that when the adopted criteria of antidromic identification of neurosecretory cells are used the level of their excitability must be taken into account.A. A. Ukhtomskii Physiological Research Institute, A. A. Zhdanov Leningrad State University. Translated from Neirofiziologiya, Vol. 14, No. 6, pp. 585–591, November–December, 1982.  相似文献   

4.
Bilateral electrolytic destruction of the paramedian zones of the caudal part of the tegmentum mesencephali caused an increase in the number of neurosecretory cells with low functional activity and the appearance of degenerating forms in the supraoptic nucleus of the hypothalamus (mainly in the medial part of the nucleus, adjacent to the optic chiasma); destruction of individual Herring's bodies was observed in the posterior lobe of the pituitary. The subnormal content of neurosecretory substance in all parts of the supraoptico-hypophyseal neurosecretory system was matched by a low plasma level of vasopressin-antidiuretic hormone. In animals with destructive lesions in the tegmentum mesencephali exposure to nociceptive stimulation activated mainly the neurosecretory cells in the lateral part of the supraoptic nucleus; the loss of neurosecretion from the posterior pituitary was partial; the plasma neurohormone level was much lower than in the control animals after nociceptive stimulation. It is postulated that changes in the response of the supraoptico-hypophyseal system to stress were probably the result of interruption of afferent pathways to the hypothalamus from the tegmentum mesencephali. The result of these experiments suggest that the paramedian zones of the tectum mesencephali exert a modulating influence on the function of this system during stress.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 9, No. 2, pp. 157–164, March–April, 1977.  相似文献   

5.
Abstract—
  • 1 Acute morphine treatment of rats increased the concentration of neuro-secretory material in the posterior pituitary. These changes were accompanied by the presence of more neurosecretory materials in the axons of the hypothalamic supraoptic and paraventricular neurons and in the hypothalamic capillaries and sinuses. In the perikarya of the hypothalamic supraoptic and paraventricular neurons, the neurosecretory material is in a dispersed state.
  • 2 Following chronic morphine treatment, neurosecretory material was almost absent from the posterior pituitary, whereas in the perikarya of the supraoptic and paraventricular neurons, congestion of neurosecretory material is observed which is accompanied by the absence of the neurosecretory material from the axons arising from the supraoptic and paraventricular nuclei and from the hypothalamic capillaries and sinuses.
  • 3 During nalorphine-induced abstinence, there was sudden reappearance of the neurosecretory material in the posterior pituitary along with the appearance of neurosecretory material in the hypothalamic neurosecretory neuronal tracts, blood capillaries and sinuses together with the dispersion of the neurosecretory materials from the hypothalamic neurosecretory neurons.
  相似文献   

6.
Summary The hypothalamic region and the neural lobe of rats from the 16th foetal day to adult animals have been studied for acetylcholinesterase and cholinesterase activity after Karnovsky. The attention was focused on the magnocellular nuclei-supraoptic and paraventricular, the median eminence and the neural lobe. Acetylcholinesterase activity appears in the paraventricular nucleus on the 18th foetal day, i.e. prior to that in the supraoptic nucleus. Heterochronic development and heteromorphism of paraventricular neurosecretory cells have been noticed. The median eminence shows no clear acetylcholinesterase activity. There are acetylthiocholine and butyrylthiocholine positive structures in the posterior pituitary. These structures are especially pronounced in 30–47-day rats. The cholinergic mechanism of release of neurohormones from the neural lobe is suggested. The results are discussed in functional and phylogenetic aspects.  相似文献   

7.
Adult male rats were intraperitoneally administered aqueous solution of lithium chloride (LiCl). Studies, including neurosecretory and microstructural changes within particular neurocytes in supraoptic (NSO) and paraventricular nuclei (NPV) were performed on hypothalamic sections. In the experimental rats the administered LiCl increased the level of GOMORI-positive neurosecretory material both in supraoptic and paraventricular nuclei. Great amounts of the neurosecretory material were markedly conspicuous in the above areas after 20 days of LiCl administration. Investigations carried out on cellular nuclei of particular neurocytes showed a significant enlargement of the nuclei, and statistical calculations revealed that, in comparison with the basic control, the difference was essentially significant (p less than 0.001). 3H-thymidin administration to the rats which had previously been on LiCl for 20 days demonstrated also that within supraoptic nuclei the incorporation of the isotope in cellular nuclei took a faster course than in control animals.  相似文献   

8.
The reaction of the hypothalamo-hypophysial neurosecretory system (HHNS) of lemmings to cold (+4 degrees C) was studied by the method of electron microscopy. The animals were kept in cages with nest, but with no wheel to allow running; in cages with a wheel, but with no nest; in cages with no nest and no wheel. No changes in the HHNS reaction were revealed under cold stimulation, if the animals were not deprived of motor activity (running in a wheel), or could hide in a nest. In case of no nest and restricted motor activity exposition to low temperature led to a progressive activation of neurosecretory cells of the supraoptic and paraventricular nuclei, and finally to their exhaustion and degeneration. The intensity of the HHNS reaction to cold is shown to depend on the initial state of the system which varies according to the stages of population cycle. The present study gives grounds to put forward the hypothesis that the adaptation of the Dicrostonyx torquatus Pallas to cold is made possible due to maximal utilization of ecological conditions and behavioral reactions.  相似文献   

9.
The effects of water deprivation were investigated in the pattern of response produced by subiculum stimulation in antidromically identified hypothalamic supraoptic neurosecretory cells of lactating rats. In dehydrated animals as compared with the controls, the percentage of neurons responding to subiculum stimulation with an inhibitory action (blockade of antidromic action potential) remained unchanged, although the proportion of differing inhibitory response did alter: numbers of cells with gradually developing inhibitory response increased significantly and fewer cells showed transitory development of inhibition. Inhibitory response emerging as depression of background spike activity showed a quantitative increase, moreover. Plasticity was found to be one distinguishing feature of afferent input from the subiculum to supraoptic nucleus neurosecretory cells and, in particular, a capacity for reorganization under water deprivation.A. A. Ukhtomskii Institute of Physiology, State University, Leningrad. Translated from Neirofiziologiya, Vol. 22, No. 2, pp. 243–249, March–April, 1990.  相似文献   

10.
Summary Following the bilateral implantation of puromycin into the paraventricular nuclei of rats, the neurosecretory cells became atrophic and the amount of aldehyde-fuchsin (AF) positive material in the neural lobe decreased. In these rats, urine excretion and water intake increased remarkably. The supraoptic nuclei of the rats were not affected by this treatment. After the unilateral implantation of puromycin in the paraventricular nucleus, the neurosecretory cells of the implanted side became atrophic, while those of the unimplanted side hypertrophied. The neural lobe contained similar amounts of AF-positive material to those of the control rats with unilateral cholesterol implants. In the rats implanted bilaterally with puromycin immediately above the supraoptic nucleus, the neurosecretory cells of this nucleus contained little or no AF-positive material, and urine excretion and water intake increased greatly. The cells of the paraventricular nucleus remained unchanged in these rats.  相似文献   

11.
Summary In the rostral hypothalamus of the domestic fowl, the magnocellular neurosecretory nuclei show a peculiar differentiation. Golgi studies of the supraoptic and paraventricular nuclei of the fowl reveal at least two major cell types: 1) large multipolar neurons, and 2) small interneurons. Golgi impregnations provide a detailed cytoarchitectural picture of the large-sized cells; the latter may well correspond to the neurosecretory cells demonstrated in the same regions by selective staining, and immunocytochemical and electron microscopical techniques.Electron microscopically, neuronal perikarya are observed to contain variable amounts of neurosecretory granules (100–200 nm in diameter; mean diameter of 160 nm) scattered throughout the cytoplasm. The diameters of these granules do not differ statistically in the two principal nuclear areas examined. The perikarya of these neurons display only a few axosomatic synapses containing electron-lucent and dense-cored vesicles (70–90 nm in diameter). Numerous nerve terminals of this type also end on the dendritic ramifications in the surrounding neuropil.  相似文献   

12.
In 10--81-day and adult Wistar rats, neurosecretory cells were revealed which react with antisera to corticoliberin and vasopressin. Morphometric analysis of these cells in the supraoptic, paraventricular and anterior commissural nuclei shows that in the latter vasopressinergic cells develop somewhat later than in the supraoptic and paraventricular nuclei. Complete differentiation of neurosecretory cells in all the centres investigated is observed in 2-month animals. Studies were also made on the amount of corticoliberin- and vasopressinergic terminals in the external zone of the median eminence. Vasopressin-immunoreactive fibers are more numerous in young rats than in adult ones. Corticoliberin-positive neurosecretory fibers are more abundant in adult animals. Earlier development of vasopressinergic elements corresponds to a hypothesis of a more ancient origin of nonapeptidergic structures as compared to those producing liberins and statins.  相似文献   

13.
Previously by immunohistochemical technique the distribution of immunophilin 1–15 fragment (IphF) isolated from bovine hypothalamus was examined in various tissues (heart, lung), including immune system organs (spleen and thymus) of intact rats. IphF-like immunoreactivity (IphF-LI) was revealed in several cell types: lymphocytes, monocytes, macrophages and mast cells. In the present study the immunohistochemical localization of IphF was examined in intact rat and frog brains. In rat brain several cell groups concentrated particularly in the supraoptic nucleus (SON) of hypothalamus, medulla oblongata (reticular formation, olives, hypoglossal and facial motor nuclei) and cerebellum (lateral cerebellar nucleus) demonstrated IphF-LI. In frog hypothalamus (SON) the same working dilution (1:5000) of IphF-antiserum revealed very strong immunoreactivity. In the paraventricular nucleus (PVN) IphF-LI varicosities were scattered around the immunonegative cells. The second cell groups showing IphF-LI in the frog brain were gliocytes (mainly the astrocytes). Besides, IphF distribution was investigated in rats subjected to hemisection of spinal cord (SC) with and without administration of proline-rich polypeptide (PRP). PRP was isolated from bovine neurohypophysis neurosecretory granules, produced by magnocellular nuclei of hypothalamus. Hemisection of SC led to changes of IphF distribution in the hypothalamus. In PRP treated animals IphF showed no immunoreactivity. PRP is suggested to act as a neurotransmitter and neuroregulator.  相似文献   

14.
Summary The distribution of cholinesterases in hypothalamo-hypophysial neurosecretory system of the White-crowned Sparrow has been examined histochemically. The perikarya of the neurosecretory cells of the paraventricular and supraoptic nuclei have a high acetylcholinesterase activity. Acetylcholinesterase activity also occurs in the cells of the infundibular nucleus. The proximal parts of the axons of the cells of the neurosecretory and infundibular nuclei have strong acetylcholinesterase activity and weak non-specific cholinesterase activity. In the median eminence, the activity of acetylcholinesterase is strongest in the palisade layer. In the pars nervosa, there is definite, although weak, acetylcholinesterase activity.This investigation was supported by grants from the National Institutes of Health to Professor Farner (B-1353) and to Dr. Kobayashi (A-3678).  相似文献   

15.
Summary Detailed histochemical studies have been made on the distribution of various enzymes such as phosphatases, cholinesterases, glycolytic enzymes and respiratory enzymes in various components of the hypothalamus with special reference to the supraoptic and paraventricular nuclei of the Squirrel Monkey. Cytological studies have also been made by the McManus, Einarson, Gomori and Bargmann methods.A few neurons of these nuclei showed scanty Gomori-positive material in the cytoplasm for the Gomori and Bargmann methods. Nissl granules were located in the peripheral cytoplasm of most neurons. No glycogen granules were observed in these neurons. For these reasons, the Squirrel Monkey, like the rat, may not be a suitable species for the study of neurosecretory phenomena.The axons of these neurons were negative for the specific cholinesterase test, though the perikaryon and some parts of the processes gave a moderately positive reaction. These neurons may be non-cholinergic and the cholinergic fibers from an unknown nucleus may end in synapses on their cell bodies. Blood vessels and glial cells in the neurosecretory nuclei showed non-specific cholinesterase activity. This enzyme may hydrolyze the acetylcholine which has escaped splitting by specific cholinesterase. Alkaline phosphatase and acid phosphatase in these neurons may be involved in the metabolism concerned with the production of neurosecretory material. The neurons may be physicochemical receptors and may get enough energy and raw material to synthesize the neurosecretory material from the rich blood supply. Neurons of the supraoptic and paraventricular nuclei as well as other hypothalamic neurons, like neurons of other regions of the brain, are well equipped with the enzymes of the glycolytic pathways and the tricarboxylic acid cycle. Since the glial cells of these nuclei have amylophosphorylase activity and glycolytic pathways, they may work as energy donators to the neurons of the neurosecretory nuclei. T. R. Shanthaveerappa in previous publications.  相似文献   

16.
Data are presented on the functional morphology of the hypothalamo-hypophysial neurosecretory system of cats in stimulation of the cervical sympathetic nerve and of the afferent fibers of the vagus. Stimulation of the sympathetic nerve selectively activated the supraoptic nucleus and caused the discharge of the neurohormones from the posterior lobe of the hypophysis, whereas its infundibular portion contained much neurosecretory material. In response to the stimulation of the vagus all the portions of the neurohypophysis were released of the Gomori-positive substance; both the supraoptic and the paraventricular nucleus were activated.  相似文献   

17.
The effects of subiculum stimulation were investigated in 80 antidromically identified hypothalamic supraoptic neurons in lactating rats. Inhibition manifesting as suppression of antidromic action potentials (or of their somatodendritic component) was revealed in 26% of cells, induced by applying conditioned and test stimuli to the subiculum and neurohypophysial stalk. In some instances inhibition arose following a latency of 5–25 msec after each subicular stimulus and lasted only briefly; it set in gradually in other cases, leading to stable long-term changes in the excitability of neurosecretory cells. No activation was produced by this stimulation. It is deduced that subicular inhibitory inputs follow different patterns, thus reflecting morphological organizational aspects of synaptic inhibitory inputs to neurosecretory cells.A. A. Ukhtomskii, Institute of Physiology, A. A. Zhdanov State University, Leningrad. Translated from Neirofiziologiya, Vol. 20, No. 4, pp. 431–437, July–August, 1988.  相似文献   

18.
Summary The time and place of occurrence of the neurosecretory substance in the hypothalamo-neurohypophysial system of the guinea pig during embryogenesis have been investigated. Use is made of the luminiscence of neurosecretion stained with paraldehydefuchsin when observed in a dark field. It is established that the neurosecretory material occurs first in some cells of the supraoptic nucleus about the 39th–40th day of intrauterine development. In the paraventricular nucleus it is observed about the 44th–45th day. At that time it is seen also in Eminentia mediana and in the neurohypophysis. In the latter, however, it is in a smaller amount than in the areas situated above it. These results are discussed in connection with the transport theory of Bargmann and Scharrer.  相似文献   

19.
The supraoptic, paraventricular, and postoptic nuclei (SON, PVN, and PON, respectively) of the hypothalamus were studied under conditions of 3 months training of rats to hypoxia (exposure for 6 h daily in a low pressure chamber under 7600m of simulated altitude). All the three nuclei were activated during the first 5 days, and then the state of the SON cells normalized. Functional activity of the PVN and PON decreased (the nucleolar volume of the neurosecretory cells diminished to 70--80%, the amount of the neurosecretory substance in the cells and the posterior lobe of the hypophysis was reduced). Such a decreased activity of the PVN and PON persisted till the end of the experiment. A positive correlation of the thyroid epithelium height and the nucleolar volume of the PVN and PON cells was established for both the PVN (r=0.81, P less than 0.05) and the PON (r=0.82; P less than 0.05); no significant correlation was revealed for the SON (r=0.51; P less than 0.05). Thus, functional similarity of the PVN and the PON, and some peculiarities in the SON reaction under conditions of the experiment described was demonstrated.  相似文献   

20.
Morphofunctional state of the hypothalamo-hypophyseal neurosecretory system was studied in rats at late stages of pregnancy. No special differences both in function of the supraoptical and praventricular nuclei, and in the hypophysis of intact and pregnant rats at administration of progesterone were noted. When estrogenes were administered to pregnant animals, a sharp increase in functioning of the supraoptic and especially of the paraventricular nuclei was noted. The greatest activity of the supraoptic nucleus was observed at delivery that could be resulted from a stress reaction to pain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号