首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Several families of evolutionarily conserved axon guidance cues orchestrate the precise wiring of the nervous system during embryonic development. The remarkable plasticity of freshwater planarians provides the opportunity to study these molecules in the context of neural regeneration and maintenance. Here we characterize a homologue of the Slit family of guidance cues from the planarian Schmidtea mediterranea. Smed-slit is expressed along the planarian midline, in both dorsal and ventral domains. RNA interference (RNAi) targeting Smed-slit results in the collapse of many newly regenerated tissues at the midline; these include the cephalic ganglia, ventral nerve cords, photoreceptors, and the posterior digestive system. Surprisingly, Smed-slit RNAi knockdown animals also develop morphologically distinguishable, ectopic neural structures near the midline in uninjured regions of intact and regenerating planarians. These results suggest that Smed-slit acts not only as a repulsive cue required for proper midline formation during regeneration but that it may also act to regulate the behavior of neural precursors at the midline in intact planarians.  相似文献   

2.
Cell death and tissue remodeling in planarian regeneration   总被引:1,自引:0,他引:1  
Many long-lived organisms, including humans, can regenerate some adult tissues lost to physical injury or disease. Much of the previous research on mechanisms of regeneration has focused on adult stem cells, which give rise to new tissue necessary for the replacement of missing body parts. Here we report that apoptosis of differentiated cells complements stem cell division during regeneration in the planarian Schmidtea mediterranea. Specifically, we developed a whole-mount TUNEL assay that allowed us to document two dramatic increases in the rate of apoptosis following amputation—an initial localized response near the wound site and a subsequent systemic response that varies in magnitude depending on the type of fragment examined. The latter cell death response can be induced in uninjured organs, occurs in the absence of planarian stem cells, and can also be triggered by prolonged starvation. Taken together, our results implicate apoptosis in the restoration of proper anatomical scale and proportion through remodeling of existing tissues. We also report results from initial mechanistic studies of apoptosis in planarians, which revealed that a S. mediterranea homolog of the antiapoptotic gene BCL2 is required for cell survival in adult animals. We propose that apoptosis is a central mechanism working in concert with stem cell division to restore anatomical form and function during metazoan regeneration.  相似文献   

3.
Our laboratory and others have shown that overexpression of Dlx5 stimulates osteoblast differentiation. Dlx5−/−/Dlx6−/− mice have more severe craniofacial and limb defects than Dlx5−/−, some of which are potentially due to defects in osteoblast maturation. We wished to investigate the degree to which other Dlx genes compensate for the lack of Dlx5, thus allowing normal development of the majority of skeletal elements in Dlx5−/− mice. Dlx gene expression in cells from different stages of the osteoblast lineage isolated by FACS sorting showed that Dlx2, Dlx5 and Dlx6 are expressed most strongly in less mature osteoblasts, whereas Dlx3 is very highly expressed in differentiated osteoblasts and osteocytes. In situ hybridization and Northern blot analysis demonstrated the presence of endogenous Dlx3 mRNA within osteoblasts and osteocytes. Dlx3 strongly upregulates osteoblastic markers with a potency comparable to Dlx5. Cloned chick or mouse Dlx6 showed stimulatory effects on osteoblast differentiation. Our results suggest that Dlx2 and Dlx6 have the potential to stimulate osteoblastic differentiation and may compensate for the absence of Dlx5 to produce relatively normal osteoblastic differentiation in Dlx5 knockout mice, while Dlx3 may play a distinct role in late stage osteoblast differentiation and osteocyte function.  相似文献   

4.
Wnt signaling functions in axis formation and morphogenesis in various animals and organs. Here we report that Wnt signaling is required for proper brain patterning during planarian brain regeneration. We showed here that one of the Wnt homologues in the planarian Dugesia japonica, DjwntA, was expressed in the posterior region of the brain. When DjwntA-knockdown planarians were produced by RNAi, they could regenerate their heads at the anterior ends of the fragments, but formed ectopic eyes with irregular posterior lateral branches and brain expansion. This suggests that the Wnt signal may be involved in antero-posterior (A-P) patterning of the planarian brain, as in vertebrates. We also investigated the relationship between the DjwntA and nou-darake/FGFR signal systems, as knockdown planarians of these genes showed similar phenotypes. Double-knockdown planarians of these genes did not show any synergistic effects, suggesting that the two signal systems function independently in the process of brain regeneration, which accords with the fact that nou-darake was expressed earlier than DjwntA during brain regeneration. These observations suggest that the nou-darake/FGFR signal may be involved in brain rudiment formation during the early stage of head regeneration, and subsequently the DjwntA signal may function in A-P patterning of the brain rudiment.  相似文献   

5.
Brain regeneration from pluripotent stem cells in planarian   总被引:3,自引:0,他引:3  
How can planarians regenerate their brain? Recently we have identified many genes critical for this process. Brain regeneration can be divided into five steps: (1) anterior blastema formation, (2) brain rudiment formation, (3) pattern formation, (4) neural network formation, and (5) functional recovery. Here we will describe the structure and process of regeneration of the planarian brain in the first part, and then introduce genes involved in brain regeneration in the second part. Especially, we will speculate about molecular events during the early steps of brain regeneration in this review. The finding providing the greatest insight thus far is the discovery of the nou-darake (ndk; ‘brains everywhere’ in Japanese) gene, since brain neurons are formed throughout the entire body as a result of loss of function of the ndk gene. This finding provides a clue for elucidating the molecular and cellular mechanisms underlying brain regeneration. Here we describe the molecular action of the nou-darake gene and propose a new model to explain brain regeneration and restriction in the head region of the planarians.  相似文献   

6.
Similarly to development, the process of regeneration requires that cells accurately sense and respond to their external environment. Thus, intrinsic cues must be integrated with signals from the surrounding environment to ensure appropriate temporal and spatial regulation of tissue regeneration. Identifying the signaling pathways that control these events will not only provide insights into a fascinating biological phenomenon but may also yield new molecular targets for use in regenerative medicine. Among classical models to study regeneration, freshwater planarians represent an attractive system in which to investigate the signals that regulate cell proliferation and differentiation, as well as the proper patterning of the structures being regenerated. Recent studies in planarians have begun to define the role of conserved signaling pathways during regeneration. Here, we extend these analyses to the epidermal growth factor (EGF) receptor pathway. We report the characterization of three epidermal growth factor (EGF) receptors in the planarian Schmidtea mediterranea. Silencing of these genes by RNA interference (RNAi) yielded multiple defects in intact and regenerating planarians. Smed-egfr-1(RNAi) resulted in decreased differentiation of eye pigment cells, abnormal pharynx regeneration and maintenance, and the development of dorsal outgrowths. In contrast, Smed-egfr-3(RNAi) animals produced smaller blastemas associated with abnormal differentiation of certain cell types. Our results suggest important roles for the EGFR signaling in controlling cell proliferation, differentiation and morphogenesis during planarian regeneration and homeostasis.  相似文献   

7.
The ubiquitin system plays a role in nearly every aspect of eukaryotic cell biology. The enzymes responsible for transferring ubiquitin onto specific substrates are the E3 ubiquitin ligases, a large and diverse family of proteins, for which biological roles and target substrates remain largely undefined. Studies using model organisms indicate that ubiquitin signaling mediates key steps in developmental processes and tissue regeneration. Here, we used the freshwater planarian, Schmidtea mediterranea, to investigate the role of Cullin-RING ubiquitin ligase (CRL) complexes in stem cell regulation during regeneration. We identified six S. mediterranea cullin genes, and used RNAi to uncover roles for homologs of Cullin-1, ?3 and ?4 in planarian regeneration. The cullin-1 RNAi phenotype included defects in blastema formation, organ regeneration, lesions, and lysis. To further investigate the function of cullin-1-mediated cellular processes in planarians, we examined genes encoding the adaptor protein Skp1 and F-box substrate-recognition proteins that are predicted to partner with Cullin-1. RNAi against skp1 resulted in phenotypes similar to cullin-1 RNAi, and an RNAi screen of the F-box genes identified 19 genes that recapitulated aspects of cullin-1 RNAi, including ones that in mammals are involved in stem cell regulation and cancer biology. Our data provides evidence that CRLs play discrete roles in regenerative processes and provide a platform to investigate how CRLs regulate stem cells in vivo.  相似文献   

8.
In Xenopus, the pronephros is the functional larval kidney and consists of two identifiable components; the glomus, the pronephric tubules, which can be divided into four separate segments, based on marker gene expression. The simplicity of this organ, coupled with the fact that it displays the same basic organization and function as more complex mesonephros and metanephros, makes this an attractive model to study vertebrate kidney formation. In this study, we have performed a functional screen specifically to identify genes involved in pronephros development in Xenopus. Gain-of-function screens are performed by injecting mRNA pools made from a non-redundant X. tropicalis full-length plasmid cDNA library into X. laevis eggs, followed by sib-selection to identify the single clone that caused abnormal phenotypes in the pronephros. Out of 768 egg and gastrula stage cDNA clones, 31 genes, approximately 4% of the screened clones, affected pronephric marker expression examined by whole mount in situ hybridization or antibody staining. Most of the positive clones had clear expression patterns in pronephros and predicted/established functions highly likely to be involved in developmental processes. In order to carry out a more detailed study, we selected Sox7, Cpeb3, P53csv, Mecr and Dnajc15, which had highly specific expression patterns in the pronephric region. The over-expression of these five selected clones indicated that they caused pronephric abnormalities with different temporal and spatial effects. These results suggest that our strategy to identify novel genes involved in pronephros development was highly successful, and that this strategy is effective for the identification of novel genes involved in late developmental events.  相似文献   

9.
 Freshwater planarians (Platyhelminthes, Turbellaria) show a great degree of morphological plasticity, making them a useful model for studying cell differentiation and pattern restoration processes during regeneration. Using confocal microscopy and a monoclonal antibody specific for muscle cells (TMUS-13), we have monitored the restoration of the body wall musculature during head regeneration in whole-mount organisms. Our results show that until the 4th day of regeneration the blastema is occupied by very disorganized muscle fibers, that from this moment become progressively organized restoring the original muscle pattern. In addition to recognizing mature muscle cells, TMUS-13 also recognizes differentiating myocytes, allowing us to trace the origin of newly formed muscle cells. We report that myocytes are detected in the postblastema region as early as day 1 of regeneration. This is the first demonstration that, in addition to serving as a proliferative zone as previously described, overt differentiation begins in the postblastema, at least for muscle cells. We also show that the TMUS13 antigen is the myosin heavy-chain gene from planarians. Received: 15 April 1997 / Accepted: 7 July 1997  相似文献   

10.
《Zoology (Jena, Germany)》2014,117(3):161-162
Planarians have strong regenerative abilities derived from their adult pluripotent stem cell (neoblast) system. However, the molecular mechanisms involved in planarian regeneration have long remained a mystery. In particular, no anterior-specifying factor(s) could be found, although Wnt family proteins had been successfully identified as posterior-specifying factors during planarian regeneration (Gurley et al., 2008, Petersen and Reddien, 2008). A recent textbook of developmental biology therefore proposes a Wnt antagonist as a putative anterior factor (Gilbert, 2013). That is, planarian regeneration was supposed to be explained by a single decreasing gradient of the β-catenin signal from tail to head. However, recently we succeeded in demonstrating that in fact the extracellular-signal regulated kinases (ERK) form a decreasing gradient from head to tail to direct the reorganization of planarian body regionality after amputation (Umesono et al., 2013).  相似文献   

11.
We have previously shown that the Xenopus homologue of cold-inducible RNA binding protein, XCIRP-1, is required for the morphogenetic migration of the pronephros during embryonic development. However, the underlying molecular mechanisms remain elusive. Here, we report that XCIRP is essential for embryonic cell movement, as suppression of XCIRP by microinjection of anti-sense mRNA and morpholino antisense oligonucleotides (MOs) significantly reduced protein expression, inhibited the cell migration rate, and inhibited eFGF and activin-induced animal cap elongation. By immunoprecipitation and RT-PCR, we further showed that the mRNA of a panel of adhesion molecules, including alphaE- and beta-catenin, C- and E-cadherin, and paraxial proto-cadherin, are the targets of XCIRP. Consistently, in animal cap explant studies, suppression of XCIRP by MOs inhibited the expression of these adhesion molecules, while over-expression of sense XCIRP-1 mRNA fully rescued this inhibition. Taken together, these results suggest for the first time that XCIRP is required to maintain the expression of adhesion molecules and cell movement during embryonic development.  相似文献   

12.
13.
Xiong Y  Santini CL  Kan B  Xu J  Filloux A  Wu LF 《Biochimie》2007,89(5):676-685
The Tat system has the remarkable capacity of exporting proteins in folded conformation across the cytoplasmic membrane. The functional Tat translocase from Gram-negative bacteria consists of TatA, TatB and TatC proteins. To gain information about the species specificity of the Tat translocase, we cloned tat genes from Gram-negative pathogens Shigella flexneri 2a str. 301, Vibrio cholerae El Tor N16961, Pseudomonas aeruginosa PAO1, thermophilic Sulfolobus solfataricus P2, Thermus thermophilus HB8 and from three Magnetospirillum species (AMB-1, MS-1 and MSR-1), and assessed the capacity of these Tat systems to restore the Tat-dependent growth defect of Escherichia coli tat mutants. We found that whereas the tat genes from the thermophilic bacterial and archaeal species were not functional in E. coli, other tat genes could all complement the phenotype of the E. coli tat mutants. In addition, a chimera composed of the N-terminus of V. cholerae TatE and C-terminus of M. magneticum TatA was functional. Whereas the expression of the tatABC genes from P. aeruginosa and Magnetospirillum strains must be induced to obtain a functional Tat system, overproduction of the V. cholerae TatABC proteins abolished the complementation. The complementation impairment seemed to be correlated with increasing level of slow-migrating TatC isoforms. In vitro studies showed that slow-migrating TatC isoforms in the purified V. cholerae TatABC complex increased with storage time. Together these results showed that the Tat translocases from the Gram-negative bacteria are generally functional in E. coli and the expression level is crucial for in vivo reconstitution of a functional Tat translocase.  相似文献   

14.
15.
16.
In the Drosophila segmentation hierarchy, periodic expression of pair-rule genes translates gradients of regional information from maternal and gap genes into the segmental expression of segment polarity genes. In Tribolium, homologs of almost all the eight canonical Drosophila pair-rule genes are expressed in pair-rule domains, but only five have pair-rule functions. even-skipped, runt and odd-skipped act as primary pair-rule genes, while the functions of paired (prd) and sloppy-paired (slp) are secondary. Since secondary pair-rule genes directly regulate segment polarity genes in Drosophila, we analyzed Tc-prd and Tc-slp to determine the extent to which this paradigm is conserved in Tribolium. We found that the role of prd is conserved between Drosophila and Tribolium; it is required in both insects to activate engrailed in odd-numbered parasegments and wingless (wg) in even-numbered parasegments. Similarly, slp is required to activate wg in alternate parasegments and to maintain the remaining wg stripes in both insects. However, the parasegmental register for Tc-slp is opposite that of Drosophila slp1. Thus, while prd is functionally conserved, the fact that the register of slp function has evolved differently in the lineages leading to Drosophila and Tribolium reveals an unprecedented flexibility in pair-rule patterning.  相似文献   

17.
Bayascas  J. R.  Castillo  E.  Muñoz-Mármol  A.M.  Baguñà  J.  Saló  E. 《Hydrobiologia》1998,383(1-3):125-130
Seven Hox cluster-related genes (Dthox-A to -G) have been isolated from the freshwater triclad Dugesia (G.) tigrina, their sequence compared to other Hox genes and their expression in intact and regenerating organisms analyzed by whole mount in situ hybridization. Sequence comparison analyses show high similarities of D. tigrina Hox genes to anterior and medial groups of coelomate Hox genes. Expression analyses show very early, synchronous, and overlapping expression of Dthox -A, -E, -G and -F in anterior, posterior and lateral regenerative tissues. At one hour of regeneration all Dthox genes studied showed a neat, clear expression at the wound boundary. Later, as the blastema grows, the expression area expands to more proximal regions covering the blastema and the distal postblastema regions. Blastemas formed by intercalary regeneration also show a synchronous expression of the same Hox genes though the onset of activation is much delayed. The finding that the same set of Hox genes is synchronously activated in anterior, posterior, intercalary and lateral regeneration is in sharp contrast to its well established role in specifying antero-posterior pattern during embryonic development. The implications of these results as regards ancestral versus co-opted roles of Hox genes in development and regeneration are discussed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
We have previously identified 60 predicted ABC transporter genes in the Caenorhabditis elegans genome and classified them into eight groups. As an initial step towards understanding how these putative ABC genes work in worms, we generated promoter-fluorescent protein fusions for the entire family to address when and where these genes are turned on in vivo. Both Aequoria green fluorescent protein (GFP) and Discosoma red fluorescent protein (RFP) were used as reporters in our transgenic assay. Observable expression is more frequently seen from fusions to genes in subfamilies B, C, D and E than those in subfamilies A and G. Sixteen worm ABC genes are found in tandem duplications, forming two four-gene clusters and four two-gene clusters. Fifteen out of the 16 duplicated gene promoters drove different or partially overlapping expression patterns, suggesting active functions for these duplicated genes. Furthermore, our results suggest that an internal promoter can cause differential expression of genes within an operon. Finally, our observations suggest that it is possible for coding sequences to function as a regulatory region for a neighbouring gene.  相似文献   

19.
Information on the functional genomics of Caenorhabditis elegans has increased significantly in the last few years with the development of RNA interference. In parasitic nematodes, RNA interference has shown some success in gene knockdown but optimisation of this technique will be required before it can be adopted as a reliable functional genomics tool. Comparative studies in C. elegans remain an appropriate alternative for studying the function and regulation of some parasite genes and will be extremely useful for fully exploiting the increasing parasite genome sequence data becoming available.  相似文献   

20.
In adult organisms, stem cells are crucial to homeostasis and regeneration of damaged tissues. In planarians, adult stem cells (neoblasts) are endowed with an extraordinary replicative potential that guarantees unlimited replacement of all differentiated cell types and extraordinary regenerative ability. The molecular mechanisms by which neoblasts combine long-term stability and constant proliferative activity, overcoming the impact of time, remain by far unknown. Here we investigate the role of Djmot, a planarian orthologue that encodes a peculiar member of the HSP70 family, named Mortalin, on the dynamics of stem cells of Dugesia japonica. Planarian stem cells and progenitors constitutively express Djmot. Transient Djmot expression in differentiated tissues is only observed after X-ray irradiation. DjmotRNA interference causes inability to regenerate and death of the animals, as a result of permanent growth arrest of stem cells. These results provide the first evidence that an hsp-related gene is essential for neoblast viability and suggest the possibility that high levels of Djmot serve to keep a p53-like protein signaling under control, thus allowing neoblasts to escape cell death programs. Further studies are needed to unravel the molecular pathways involved in these processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号