首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aims of this study were; (i) to elucidate the mechanisms involved in determining cell type-specific responses to oxidative stress and (ii) to test the hypothesis that cell types which are subjected to high oxidative burdens in vivo, have greater oxidative stress resistance. Cultures of the retinal pigment epithelium (RPE), corneal fibroblasts, alveolar type II epithelium and skin epidermal cells were studied. Cellular sensitivity to H2O2 was determined by the MTT assay. Cellular antioxidant status (CuZnSOD, MnSOD, GPX, CAT) was analyzed with enzymatic assays and the susceptibility and repair capacities of nuclear and mitochondrial genomes were assessed by QPCR. Cell type-specific responses to H2O2 were observed. The RPE had the greatest resistance to oxidative stress (P>0.05; compared to all other cell types) followed by the corneal fibroblasts (P < 0.05; compared to skin and lung cells). The oxidative tolerance of the RPE coincided with greater CuZnSOD, GPX and CAT enzymatic activity (P < 0.05; compared to other cells). The RPE and corneal fibroblasts both had up-regulated nDNA repair post-treatment (P < 0.05; compared to all other cells). In summary, variations in the synergistic interplay between enzymatic antioxidants and nDNA repair have important roles in influencing cell type-specific vulnerability to oxidative stress. Furthermore, cells located in highly oxidizing microenvironments appear to have more efficient oxidative defence and repair mechanisms.  相似文献   

2.
This study aimed to evaluate the organelle-specific antioxidant/pro-oxidant actions of clinically important dietary antioxidants against oxidative stress. An in vitro cellular model was employed to investigate the antioxidant/pro-oxidant effects of various concentrations (1, 10 and 100 microM) of ascorbic acid, alpha-tocopherol and beta-carotene during H2O2-induced oxidative stress. Damage to nuclear and mitochondrial genomes was analyzed by quantitative polymerase chain reaction and oxidation of membrane lipids was measured via colorimetric assays. The key findings were: (i) dietary antioxidants conferred a dose-dependent protective effect (with a pro-oxidant shift at higher concentrations); (ii) the protection conferred to different sub-cellular organelles is highly specific to the dietary antioxidant; (iii) the mtDNA is highly sensitive to oxidative attack compared to nDNA (P < 0.05); and (iv) mtDNA protection conferred by dietary antioxidants was required to improve protection against oxidative-induced cell death. This study shows that antioxidant-induced protection of mtDNA is an important target for future oxidative stress therapies.  相似文献   

3.
Numerous studies have revealed that a part of the cellular response to chronic oxidative stress involves increased antioxidant capacity. However, another defense mechanism that has received less attention is DNA repair. Because of the important homeostatic role of mitochondria and the exquisite sensitivity of mitochondrial DNA (mtDNA) to oxidative damage, we hypothesized that mtDNA repair plays an important role in the protection against oxidative stress. To test this hypothesis mtDNA damage and repair was evaluated in normal HA1 Chinese hamster fibroblasts and oxidative stress-resistant variants isolated following chronic exposure to H2O2 or 95% O2. Reactive oxygen species were generated enzymatically using xanthine oxidase and hypoxanthine. When treated with xanthine oxidase reduced levels of initial mtDNA damage and enhanced mtDNA repair were observed in the cells from the oxidative stress-resistant variants, relative to the parental cell line. This enhanced mtDNA repair correlated with an increase in mitochondrial apurinic/apyrimidinic endonuclease activity in both H2O2- and O2-resistant HA1 variants. This is the first report showing enhanced mtDNA repair in the cellular response to chronic oxidative stress. These results provide further evidence for the crucial role that mtDNA repair pathways play in protecting cells against the deleterious effects of reactive oxygen species.  相似文献   

4.
Abstract

This study aimed to evaluate the organelle-specific antioxidant/pro-oxidant actions of clinically important dietary antioxidants against oxidative stress. An in vitro cellular model was employed to investigate the antioxidant/pro-oxidant effects of various concentrations (1, 10 and 100 μM) of ascorbic acid, α-tocopherol and β-carotene during H2O2-induced oxidative stress. Damage to nuclear and mitochondrial genomes was analyzed by quantitative polymerase chain reaction and oxidation of membrane lipids was measured via colorimetric assays. The key findings were: (i) dietary antioxidants conferred a dose-dependent protective effect (with a pro-oxidant shift at higher concentrations); (ii) the protection conferred to different sub-cellular organelles is highly specific to the dietary antioxidant; (iii) the mtDNA is highly sensitive to oxidative attack compared to nDNA (P < 0.05); and (iv) mtDNA protection conferred by dietary antioxidants was required to improve protection against oxidative-induced cell death. This study shows that antioxidant-induced protection of mtDNA is an important target for future oxidative stress therapies.  相似文献   

5.
6.
Mitochondrial DNA (mtDNA) is located in close proximity of the respiratory chains, which are the main cellular source of reactive oxygen species (ROS). ROS can induce oxidative base lesions in mtDNA and are believed to be an important cause of the mtDNA mutations, which accumulate with aging and in diseased states. However, recent studies indicate that cumulative levels of base substitutions in mtDNA can be very low even in old individuals. Considering the reduced complement of DNA repair pathways available in mitochondria and higher susceptibility of mtDNA to oxidative damage than nDNA, it is presently unclear how mitochondria manage to maintain the integrity of their genetic information in the face of the permanent exposure to ROS. Here we show that oxidative stress can lead to the degradation of mtDNA and that strand breaks and abasic sites prevail over mutagenic base lesions in ROS-damaged mtDNA. Furthermore, we found that inhibition of base excision repair enhanced mtDNA degradation in response to both oxidative and alkylating damage. These observations suggest a novel mechanism for the protection of mtDNA against oxidative insults whereby a higher incidence of lesions to the sugar–phosphate backbone induces degradation of damaged mtDNA and prevents the accumulation of mutagenic base lesions.  相似文献   

7.
Oxidative damage to retinal pigmented epithelial (RPE) cells and photoreceptors has been implicated in the pathogenesis of age-related macular degeneration (AMD). In order to develop new treatments, it is necessary to characterize the antioxidant defense system in RPE cells to better define their vulnerabilities and how they can be remedied. In this study, we sought to investigate the effects of three different types of oxidative stress on cultured RPE cells. Carbonyl content in RPE cells increased with increasing concentrations of oxidants or increasing duration of exposure with high reproducibility, validating ELISA for carbonyl content as a valuable quantitative measure of oxidative damage. Compared to other cell types, RPE cells were able to survive exposure to H2O2 quite well and exposure to paraquat extremely well. Comparison of the total amount of oxidative damage at the IC50 for each type of stress showed a rank order of hyperoxia > paraquat > H2O2, and since these stressors primarily target different cellular compartments, it suggests that the endogenous defense system against oxidative damage in RPE cells protects well against damage to mitochondria and endoplasmic reticulum, and is less able to handle oxidative damage at the cell surface. Supplementation of media with ascorbic acid provided significant protection from H2O2-induced oxidative damage, but not that induced by paraquat or hyperoxia. Supplementation with docosahexaenoic acid or alpha-tocopherol significantly reduced oxidative damage from H2O2 or hyperoxia, but not that induced by paraquat. We conclude that exposure to different types of oxidative stress results in different patterns of accrual of oxidative damage to proteins in RPE cells, different patterns of loss of viability, and is differentially countered by antioxidants. This study suggests that multiple types of oxidant stress should be used to probe the vulnerabilities of the retina and RPE in vivo, and that ELISA for carbonyl content provides a valuable tool for quantitative assessment of oxidative damage for such studies.  相似文献   

8.
Alkaline gel electrophoresis, pulsed field gel electrophoresis, and quantitative PCR analyses (QPCR) of the nuclear (nDNA) and mitochondrial (mtDNA) genomes were used to assess DNA integrity in the spermatozoa of three species exposed to oxidative stress. In human and murine spermatozoa, the mtDNA was significantly more susceptible to H2O2-mediated damage than nDNA. In both eutherian species, exposure to 250 microM H2O2 induced around 0.6 lesions/10 kb of mtDNA. The mtDNA of human spermatozoa was particularly vulnerable to oxidative stress; 0.25, 1, and 5 mM H2O2 inducing DNA damage equivalent to 0.62, 1.34, and 1.42 lesions/10 kb, respectively. Such results emphasize the diagnostic significance of mtDNA as a biomarker of oxidative stress in the male germ line. In contrast, no damage could be detected by QPCR in the nDNA of either eutherian species, on exposure to H2O2 at doses as high as 5 mM. However, electrophoretic analysis indicated that severe oxidative stress could induce detectable nDNA fragmentation in human, but not murine spermatozoa. The mtDNA of tammar wallaby spermatozoa was relatively resistant to oxidative stress, only exhibiting damage (0.6 lesions/10 kb DNA) on exposure to 5 mM H2O2. By contrast, the nDNA of wallaby spermatozoa was significantly more susceptible to this oxidant than the other species. Such vulnerability is consistent with the lack of disulfide cross-linking in marsupial sperm chromatin and suggests that chromatin condensation during epididymal maturation may be important in establishing the resistance of these cells to the genotoxic effects of reactive oxygen species.  相似文献   

9.
10.
As a signaling hub, p62/sequestosome plays important roles in cell signaling and degradation of misfolded proteins. p62 has been implicated as an adaptor protein to mediate autophagic clearance of insoluble protein aggregates in age-related diseases, including age-related macular degeneration (AMD), which is characterized by dysfunction of the retinal pigment epithelium (RPE). Our previous studies have shown that cigarette smoke (CS) induces oxidative stress and inhibits the proteasome pathway in cultured human RPE cells, suggesting that p62-mediated autophagy may become the major route to remove impaired proteins under such circumstances. In the present studies, we found that all p62 mRNA variants are abundantly expressed and upregulated by CS induced stress in cultured human RPE cells, yet isoform1 is the major translated form. We also show that p62 silencing exacerbated the CS induced accumulation of damaged proteins, both by suppressing autophagy and by inhibiting the Nrf2 antioxidant response, which in turn, increased protein oxidation. These effects of CS and p62 reduction were further confirmed in mice exposed to CS. We found that over-expression of p62 isoform1, but not its S403A mutant, which lacks affinity for ubiquitinated proteins, reduced misfolded proteins, yet simultaneously promoted an Nrf2-mediated antioxidant response. Thus, p62 provides dual, reciprocal enhancing protection to RPE cells from environmental stress induced protein misfolding and aggregation, by facilitating autophagy and the Nrf2 mediated antioxidant response, which might be a potential therapeutic target against AMD.  相似文献   

11.
The cellular defense system against harmful levels of reactive oxygen species consists of antioxidant enzymatic activities and small nonenzymatic molecules. l-Ergothioneine has long been recognized as a potent and stable low-molecular-weight antioxidant that humans consume with diet and that accumulates in cells normally subjected to high levels of oxidative stress. As l-ergothioneine is plasma membrane-impermeative, its protective function is restricted to cells that express the l-ergothioneine-specific receptor/transporter OCTN1. Here we report for the first time that both as resident skin cells and in culture, epidermal keratinocytes synthesize OCTN1, which enables them to internalize and accumulate l-ergothioneine. This accumulation confers upon the cells an increased antioxidant potential. Consequently, it reduces the levels of reactive oxygen species and DNA, protein, and lipid damage in keratinocytes subjected to solar-simulating UV oxidative stress. Our results suggest that l-ergothioneine not only prevents oxidative damage but also may enable DNA repair in the UV-irradiated cells. The diminished oxidative damage to cellular constituents limits the apoptotic response and results in increased cell viability. The cells' ability to take up, accumulate, and utilize the potent antioxidant l-ergothioneine positions this naturally occurring amino acid and its receptor/transporter as an integral part of the antioxidative defense system of the skin.  相似文献   

12.
Singlet oxygen ((1)O(2)) is a highly reactive form of molecular oxygen that may harm living systems by oxidizing critical cellular macromolecules. The oxyR gene product regulates the expression of the enzymes and proteins that are needed for cellular protection against oxidative stress. In this study, the role of oxyR in cellular defense against a singlet oxygen was investigated using Escherichia coli oxyR mutant strains. Upon exposure to methylene blue and visible light, which generates singlet oxygen, the oxyR overexpression mutant was much more resistant to singlet oxygen-mediated cellular damage when compared to the oxyR deletion mutant in regard to growth kinetics, viability and protein oxidation. Induction and inactivation of major antioxidant enzymes, such as superoxide dismutase and catalase, were observed after their exposure to a singlet oxygen generating system in both oxyR strains. However, the oxyR overexpression mutant maintained significantly higher activities of antioxidant enzymes than did the oxyR deletion mutant. These results suggest that the oxyR regulon plays an important protective role in singlet oxygen-mediated cellular damage, presumably through the protection of antioxidant enzymes.  相似文献   

13.
It is well recognized that acute strenuous exercise is accompanied by an increase in free-radical production and subsequent oxidative stress, in addition to changes in blood antioxidant status. Chronic exercise provides protection against exercise-induced oxidative stress by upregulating endogenous antioxidant defense systems. Little is known regarding the protective effect afforded by judo exercise. Therefore, we determined antioxidant and oxidative stress biomarkers at rest and in response to acute exercise in 10 competitive judokas and 10 sedentary subjects after mixed exercise (anaerobic followed by aerobic). The subjects performed a Wingate test, followed by 30 minutes of aerobic exercise performed at 60% of maximal aerobic power. Blood samples were taken, by an intravenous catheter, at rest (R), immediately after the physical exercise (P0), and at 5 (P5), 10 (P10), and 20 (P20) minutes postexercise. The measured parameters included the activity of the antioxidant enzymes superoxide dismutase, glutathione peroxidase, and glutathione reductase, in addition to α-tocopherol, and total antioxidant status. Malondialdehyde was measured as a representation of lipid peroxidation. At rest, the judokas had higher values for all antioxidant and oxidative stress markers as compared to the sedentary subjects (p < 0.05). Plasma concentrations of all parameters except for α-tocopherol increased significantly above resting values for both the judokas and sedentary subjects (p < 0.05) and remained elevated at 20 minutes postexercise. A significant postexercise decrease was observed for α-tocopherol (p < 0.05) at P20 for judokas and at P5 for sedentary subjects. These data indicate that competitive judo athletes have higher endogenous antioxidant protection compared to sedentary subjects. However, both groups of subjects experience an increase in exercise-induced oxidative stress that is not different.  相似文献   

14.
15.
Oxidative stress occurs when antioxidant defenses are overwhelmed by oxygen-reactive species and can lead to cellular damage, as seen in several neurodegenerative disorders. Microglia are specialized cells in the central nervous system that act as the first and main form of active immune defense in the response to pathological events. Autotaxin (ATX) plays an important role in the modulation of critical cellular functions, through its enzymatic production of lysophosphatidic acid (LPA). In this study, we investigated the potential role of ATX in the response of microglial cells to oxidative stress. We show that treatment of a microglial BV2 cell line with hydrogen peroxide (H(2)O(2)) stimulates ATX expression and LPA production. Stable overexpression of ATX inhibits microglial activation (CD11b expression) and protects against H(2)O(2)-treatment-induced cellular damage. This protective effect of ATX was partially reduced in the presence of the LPA-receptor antagonist Ki16425. ATX overexpression was also associated with a reduction in intracellular ROS formation, carbonylated protein accumulation, proteasomal activity, and catalase expression. Our results suggest that up-regulation of ATX expression in microglia could be a mechanism for protection against oxidative stress, thereby reducing inflammation in the nervous system.  相似文献   

16.
Nuclear and mitochondrial DNA repair: similar pathways?   总被引:7,自引:0,他引:7  
Mitochondrial DNA (mtDNA) alterations are implicated in a broad range of human diseases and alterations of the mitochondrial genome are assumed to be a result of its high susceptibility to oxidative damage and its limited DNA repair compared to nuclear DNA (nDNA). Characterization of DNA repair mechanisms has generally focused on these processes in nDNA but increasing interest and research effort have contributed to our knowledge of the mechanisms underlying DNA repair in mitochondria. In this review, we make comparisons between nDNA and mtDNA repair pathways and propose a model for how these pathways interact in mitochondria.  相似文献   

17.
18.
Summary: Deinococcus radiodurans is a robust bacterium best known for its capacity to repair massive DNA damage efficiently and accurately. It is extremely resistant to many DNA-damaging agents, including ionizing radiation and UV radiation (100 to 295 nm), desiccation, and mitomycin C, which induce oxidative damage not only to DNA but also to all cellular macromolecules via the production of reactive oxygen species. The extreme resilience of D. radiodurans to oxidative stress is imparted synergistically by an efficient protection of proteins against oxidative stress and an efficient DNA repair mechanism, enhanced by functional redundancies in both systems. D. radiodurans assets for the prevention of and recovery from oxidative stress are extensively reviewed here. Radiation- and desiccation-resistant bacteria such as D. radiodurans have substantially lower protein oxidation levels than do sensitive bacteria but have similar yields of DNA double-strand breaks. These findings challenge the concept of DNA as the primary target of radiation toxicity while advancing protein damage, and the protection of proteins against oxidative damage, as a new paradigm of radiation toxicity and survival. The protection of DNA repair and other proteins against oxidative damage is imparted by enzymatic and nonenzymatic antioxidant defense systems dominated by divalent manganese complexes. Given that oxidative stress caused by the accumulation of reactive oxygen species is associated with aging and cancer, a comprehensive outlook on D. radiodurans strategies of combating oxidative stress may open new avenues for antiaging and anticancer treatments. The study of the antioxidation protection in D. radiodurans is therefore of considerable potential interest for medicine and public health.  相似文献   

19.
Mitochondria contain their own genome, the integrity of which is required for normal cellular energy metabolism. Reactive oxygen species (ROS) produced by normal mitochondrial respiration can damage cellular macromolecules, including mitochondrial DNA (mtDNA), and have been implicated in degenerative diseases, cancer, and aging. We developed strategies to elevate mitochondrial oxidative stress by exposure to antimycin and H(2)O(2) or utilizing mutants lacking mitochondrial superoxide dismutase (sod2Delta). Experiments were conducted with strains compromised in mitochondrial base excision repair (ntg1Delta) and oxidative damage resistance (pif1Delta) in order to delineate the relationship between these pathways. We observed enhanced ROS production, resulting in a direct increase in oxidative mtDNA damage and mutagenesis. Repair-deficient mutants exposed to oxidative stress conditions exhibited profound genomic instability. Elimination of Ntg1p and Pif1p resulted in a synergistic corruption of respiratory competency upon exposure to antimycin and H(2)O(2). Mitochondrial genomic integrity was substantially compromised in ntg1Delta pif1Delta sod2Delta strains, since these cells exhibit a total loss of mtDNA. A stable respiration-defective strain, possessing a normal complement of mtDNA damage resistance pathways, exhibited a complete loss of mtDNA upon exposure to antimycin and H(2)O(2). This loss was preventable by Sod2p overexpression. These results provide direct evidence that oxidative mtDNA damage can be a major contributor to mitochondrial genomic instability and demonstrate cooperation of Ntg1p and Pif1p to resist the introduction of lesions into the mitochondrial genome.  相似文献   

20.
Mammalian cells are able to sense environmental oxidative and genotoxic conditions such as the environmental low-dose ionizing radiation (LDIR) present naturally on the earth’s surface. The stressed cells then can induce a so-called radioadaptive response with an enhanced cellular homeostasis and repair capacity against subsequent similar genotoxic conditions such as a high dose radiation. Manganese superoxide dismutase (MnSOD), a primary mitochondrial antioxidant in mammals, has long been known to play a crucial role in radioadaptive protection by detoxifying O2•− generated by mitochondrial oxidative phosphorylation. In contrast to the well-studied mechanisms of SOD2 gene regulation, the mechanisms underlying posttranslational regulation of MnSOD for radioprotection remain to be defined. Herein, we demonstrate that cyclin D1/cyclin-dependent kinase 4 (CDK4) serves as the messenger to deliver the stress signal to mitochondria to boost mitochondrial homeostasis in human skin keratinocytes under LDIR-adaptive radioprotection. Cyclin D1/CDK4 relocates to mitochondria at the same time as MnSOD enzymatic activation peaks without significant changes in total MnSOD protein level. The mitochondrial-localized CDK4 directly phosphorylates MnSOD at serine-106 (S106), causing enhanced MnSOD enzymatic activity and mitochondrial respiration. Expression of mitochondria-targeted dominant negative CDK4 or the MnSOD-S106 mutant reverses LDIR-induced mitochondrial enhancement and adaptive protection. The CDK4-mediated MnSOD activation and mitochondrial metabolism boost are also detected in skin tissues of mice receiving in vivo whole-body LDIR. These results demonstrate a unique CDK4-mediated mitochondrial communication that allows cells to sense environmental genotoxic stress and boost mitochondrial homeostasis by enhancing phosphorylation and activation of MnSOD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号