首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Characterization of a glycerol kinase mutant of Aspergillus niger   总被引:3,自引:0,他引:3  
A glycerol-kinase-deficient mutant of Aspergillus niger was isolated. Genetic analysis revealed that the mutation is located on linkage group VI. The phenotype of this mutant differed from that of a glycerol kinase mutant of Aspergillus nidulans in its ability to utilize dihydroxyacetone (DHA). The weak growth on glycerol of the A. niger glycerol kinase mutant showed that glycerol phosphorylation is an important step in glycerol catabolism. The mutant could still grow normally on DHA because of the presence of a DHA kinase. This enzyme, probably in combination with an NAD(+)-dependent glycerol dehydrogenase, present only in the mutant, is responsible for the weak growth of the mutant on glycerol. Enzymic analysis of both the mutant and the parental strain showed that at least three different glycerol dehydrogenases were formed under different physiological conditions: the NAD(+)-dependent enzyme described above, a constitutive NADP(+)-dependent enzyme and a D-glyceraldehyde-specific enzyme induced on D-galacturonate. The glycerol kinase mutant showed impaired growth on D-galacturonate.  相似文献   

2.
Glycerol-specific revertants were isolated from a phosphoenolpyruvate phosphotransferase mutant lacking enzyme I activity. Sixteen of the eighteen separately derived revertants were found to synthesize a fully active glycerol kinase no longer subject to feedback inhibition by fructose 1,6-diphosphate. The suppressor mutation mapped at the known glpK locus. When the fructose, 1,6-diphosphate-insensitive kinase allele was transduced into a strain producing the glp enzymes constitutively, cells of the resultant strain were susceptible to killing by glycerol if this compound was added to a culture growing exponentially in casein hydrolysate. This phenomenon had been previously described for a strain which had a constitutive glycerol kinase refractory to feedback inhibition, but isolated by a different procedure. It is suggested that the suppression of the growth defect on glycerol in the enzyme I(-) mutant by the fructose 1,6-diphosphate-insensitive kinase is achieved by increasing the in vivo catalytic potential of glycerol kinase. This increased activity would allow more rapid conversion of glycerol to l-alpha-glycerophosphate, the true inducer of the glp system. The enzyme I defect in the parental strain impaired the inducibility of the glp system so that the normal basal catalytic activity of the kinase was insufficient to insure induction by glycerol.  相似文献   

3.
The dha regulon of Klebsiella pneumoniae specifying fermentative dissimilation of glycerol was mobilized by the broad-host-range plasmid RP4:mini Mu and introduced conjugatively into Escherichia coli. The recipient E. coli was enabled to grow anaerobically on glycerol without added hydrogen acceptors, although its cell yield was less than that of K. pneumoniae. The reduced cell yield was probably due to the lack of the coenzyme-B12-dependent glycerol dehydratase of the dha system. This enzyme initiates the first step in an auxiliary pathway for disposal of the extra reducing equivalents from glycerol. The lack of this enzyme would also account for the absence of 1,3-propanediol (a hallmark fermentation product of glycerol) in the spent culture medium. In a control experiment, a large quantity of this compound was detected in a similar culture medium following the growth of K. pneumoniae. The other three known enzymes of the dha system, glycerol dehydrogenase, dihydroxyacetone kinase and 1,3-propanediol oxidoreductase, however, were synthesized at levels comparable to those found in K. pneumoniae. Regulation of the dha system in E. coli appeared to follow the same pattern as in K. pneumoniae: the three acquired enzymes were induced by glycerol, catabolite repressed by glucose, and glycerol dehydrogenase was post-translationally inactivated during the shift from anaerobic to aerobic growth. The means by which the E. coli recipient can achieve redox balance without formation of 1,3-propanediol during anaerobic growth on glycerol remains to be discovered.  相似文献   

4.
Neves L  Lages F  Lucas C 《FEBS letters》2004,565(1-3):160-162
Previous studies evidenced in Saccharomyces cerevisiae the activity of a H(+)/glycerol symport, derepressed by growth on non-fermentable carbon sources, later associated with GUP1 and GUP2 genes. It was also demonstrated that only the combined deletion of GUP1, GUP2 together with GUT1 (glycerol kinase) abolished active transport in ethanol-induced cells. In this work, we show that a glycerol H(+)/symport, with identical characteristics to the previously described, was found in gup1gup2gut1 grown under salt-stress, particularly high in cells collected during diauxic-shift. These results suggest different roles for Gup1/2p than glycerol transport. The gene encoding for glycerol active uptake is thus yet unknown.  相似文献   

5.
Wild-type glycerol kinase of Escherichia coli is inhibited by both nonphosphorylated enzyme IIIGlc of the phosphoenolpyruvate:carbohydrate phosphotransferase system and fructose 1,6-diphosphate. Mutant glycerol kinase, resistant to inhibition by fructose 1,6-diphosphate, was much less sensitive to inhibition by enzyme IIIGlc. The difference between the wild-type and mutant enzymes was even greater when inhibition was measured in the presence of both enzyme IIIGlc and fructose 1,6-diphosphate. The binding of enzyme IIIGlc to glycerol kinase required the presence of the substrate glycerol.  相似文献   

6.
alpha-Chlorohydrin has been examined both for its ability to act as a substrate for glycerol kinase and as an inhibitor of the reaction of glycerol with glycerol kinase. Using a purified enzyme from Candida mycoderma, it was established that alpha-chlorohydrin does not act as a substrate for glycerol kinase, but does act as a competitive inhibitor (Ki of 30 mM) of purified glycerol kinase and the enzyme present in a sonicated preparation of ram spermatozoa. Neither alpha-chlorohydrin nor alpha-chlorohydrin phosphate acted as inhibitors of NAD- or flavin-linked glycerolphosphate dehydrogenase. It is concluded that alpha-chlorohydrin does not cause the impairment of sperm metabolism as a result of phosphorylation catalysed by glycerol kinase.  相似文献   

7.
Fifteen yeast strains of the genera Candida, Lodderomyces, Endomycopsis, Saccharomyces, Hansenula, Pichia and Torulopsis were investigated with respect to their ability to grow on methanol, glycerol and glucose as sole carbon and energy source. Eight of them can grow on both methanol and glycerol.Methanol is assimilated via triosephosphate (dihydroxyacetone) pathway. The dihydroxyacetone kinase is a key enzyme in methanol metabolism.The assimilation of glycerol can take place in bacteria via a phosphorylative or/and oxidative pathways. In general, the phosphorylative pathway is found in eucaryotes. In the present paper it is shown that in yeasts, which can utilize methanol and glycerol, too, glycerol is assimilated via an oxidative pathway, Dihydroxyacetone is a central intermediate in the assimilation of methanol as well as glycerol. It is metabolized by means of the dihydroxyacetone kinase.The enzyme formed during growth of Candida methylica on methanol does not differ from that of Candida valida H 122 after growing on glycerol as far as the regulatory properties are concerned.  相似文献   

8.
Yu P  Lasagna M  Pawlyk AC  Reinhart GD  Pettigrew DW 《Biochemistry》2007,46(43):12355-12365
Steady-state and time-resolved fluorescence anisotropy methods applied to an extrinsic fluorophore that is conjugated to non-native cysteine residues demonstrate that amino acids in an allosteric communication network within a protein subunit tune protein backbone motions at a distal site to enable allosteric binding and inhibition. The unphosphorylated form of the phosphocarrier protein IIAGlc is an allosteric inhibitor of Escherichia coli glycerol kinase, binding more than 25 A from the kinase active site. Crystal structures that showed a ligand-dependent conformational change and large temperature factors for the IIAGlc-binding site on E. coli glycerol kinase suggest that motions of the allosteric site have an important role in the inhibition. Three E. coli glycerol kinase amino acids that are located at least 15 A from the active site and the allosteric site were shown previously to be necessary for transplanting IIAGlc inhibition into the nonallosteric glycerol kinase from Haemophilus influenzae. These three amino acids are termed the coupling locus. The apparent allosteric site motions and the requirement for the distant coupling locus to transplant allosteric inhibition suggest that the coupling locus modulates the motions of the IIAGlc-binding site. To evaluate this possibility, variants of E. coli glycerol kinase and the chimeric, allosteric H. influenzae glycerol kinase were constructed with a non-native cysteine residue replacing one of the native residues in the IIAGlc-binding site. The extrinsic fluorophore Oregon Green 488 (2',7'-difluorofluorescein) was conjugated specifically to the non-native cysteine residue. Steady-state and time-resolved fluorescence anisotropy measurements show that the motions of the fluorophore reflect backbone motions of the IIAGlc-binding site and these motions are modulated by the amino acids at the coupling locus.  相似文献   

9.
The activity of glycerol kinase is rate-limiting in the metabolism of glycerol by cells of Escherichia coli. A mutant strain producing a glycerol kinase resistant to inhibition by fructose-1,6-diphosphate grows faster than its wild-type parent on glycerol as the sole source of carbon and energy. The amount of intracellular fructose-1,6-diphosphate was determined for wild-type cells growing exponentially on glycerol. The water content of such cells was also determined, allowing calculation of the intracellular concentration of fructose-1,6-diphosphate. This value, 1.7 mm, is adequate to exert substantial inhibition on the wild-type glycerol kinase. The desensitization of glycerol kinase to feedback inhibition also enhances the power of glycerol to exert catabolite repression, both on the enzymes of the glycerol system itself and on those of the lactose system. However, desensitization of glycerol kinase alone does not eliminate the phenomenon of diauxic growth in a glucose-glycerol medium. Biphasic growth in such a medium is abolished if the altered enzyme is produced constitutively. The constitutive production of the mutant kinase at high levels, however, renders the cells vulnerable to glycerol. Thus, when the cells have been grown on a carbon source with a low power for catabolite repression, e.g., succinate, sudden exposure to glycerol leads to overconsumption of the nutrient and cell death.  相似文献   

10.
Bacillus fastidiosus was able to grow on glycerol as a carbon source when allantoin or urate was used as nitrogen source. The primary assimilatory enzyme for glycerol was glycerol kinase; glycerol dehydrogenase could not be detected. The glycerol kinase activity was increased 30-fold in allantoin/glycerol-grown cells as compared to alantoin-grown cells. Under both growth conditions high levels of glutamate dehydrogenase were found. Glutamine synthetase and glutamate synthase activities could not be demonstrated, while low levels of alanine dehydrogenase were present. It is concluded that B. fastidiosus assimilates ammonia by the NADP-dependent glutamate dehydrogenase.Abbreviations GS glutamine synthetase - GOGAT glutamate synthase - GDH glutamate dehydrogenase - ADH alanine dehydrogenase  相似文献   

11.
Extracts of Acetobacter xylinum catalyze the phosphorylation of glycerol and dihydroxyacetone (DHA) by adenosine 5'-triphosphate (ATP) to form, respectively, L-alpha-glycerophosphate and DHA phosphate. The ability to promote phosphorylation of glycerol and DHA was higher in glycerol-grown cells than in glucose- or succinate-grown cells. The activity of glycerol kinase in extracts is compatible with the overall rate of glycerol oxidation in vivo. The glycerol-DHA kinase has been purified 210-fold from extracts, and its molecular weight was determined to be 50,000 by gel filtration. The glycerol kinase to DHA kinase activity ratio remained essentially constant at 1.6 at all stages of purification. The optimal pH for both reactions was 8.4 to 9.2. Reaction rates with the purified enzyme were hyperbolic functions of glycerol, DHA, and ATP. The Km for glycerol is 0.5 mM and that for DHA is 5 mM; both are independent of the ATP concentration. The Km for ATP in both kinase reactions is 0.5 mM and is independent of glycerol and DHA concentrations. Glycerol and DHA are competitive substrates with Ki values equal to their respective Km values as substrates. D-Glyceraldehyde and l-Glyceraldehyde were not phosphorylated and did not inhibit the enzyme. Among the nucleotide triphosphates tested, only ATP was active as the phosphoryl group donor. Fructose diphosphate (FDP) inhibited both kinase activities competitively with respect to ATP (Ki= 0.02 mM) and noncompetitively with respect to glycerol and DHA. Adenosine 5'-diphosphate (ADP) and adenosine 5'-monophosphate (AMP) inhibited both enzymic activities competitively with respect to ATP (Ki (ADP) = 0.4 mM; Ki (AMP) =0.25 mM). A. xylinum cells with a high FDP content did not grow on glycerol. Depletion of cellular FDP by starvation enabled rapid growth on glycerol. It is concluded that a single enzyme from A. xylinum is responsible for the phosphorylation of both glycerol and DHA. This as well as the sensitivity of the enzyme to inhibition by FDP and AMP suggest that it has a regulatory role in glycerol metabolism.  相似文献   

12.
In vitro studies with purified glycerol kinase from Enterococcus faecalis have established that this enzyme is activated by phosphorylation of a histidyl residue in the protein, catalyzed by the phosphoenolpyruvate-dependent phosphotransferase system (PTS), but the physiological significance of this observation is not known. In the present study, the regulation of glycerol uptake was examined in a wild-type strain of E. faecalis as well as in tight and leaky ptsI mutants, altered with respect to their levels of enzyme I of the PTS. Glycerol kinase was shown to be weakly repressible by lactose and strongly repressible by glucose in the wild-type strain. Greatly reduced levels of glycerol kinase activity were also observed in the ptsI mutants. Uptake of glycerol into intact wild-type and mutant cells paralleled the glycerol kinase activities in extracts. Glycerol uptake in the leaky ptsI mutant was hypersensitive to inhibition by low concentrations of 2-deoxyglucose or glucose even though the rates and extent of 2-deoxyglucose uptake were greatly reduced. These observations provide strong support for the involvement of reversible PTS-mediated phosphorylation of glycerol kinase in the regulation of glycerol uptake in response to the presence or absence of a sugar substrate of the PTS in the medium. Glucose and 2-deoxyglucose were shown to elicit rapid efflux of cytoplasmic [14C]lactate derived from [14C]glycerol. This phenomenon was distinct from the inhibition of glycerol uptake and was due to phosphorylation of the incoming sugar by cytoplasmic phosphoenolpyruvate. Lactate appeared to be generated by sequential dephosphorylation and reduction of cytoplasmic phosphoenolpyruvate present in high concentrations in resting cells. The relevance of these findings to regulatory phenomena in other bacteria is discussed.  相似文献   

13.
Recently we reported the phosphoenolpyruvate (PEP)-dependent phosphorylation of a 55-kilodalton protein of Streptococcus faecalis catalyzed by enzyme I and histidine-containing protein (HPr) of the phosphotransferase system (J. Deutscher, FEMS Microbiol. Lett. 29:237-243, 1985). The purified 55-kilodalton protein was found to exhibit dihydroxyacetone kinase activity. Glycerol was six times more slowly phosphorylated than dihydroxyacetone. The Kms were found to be 0.7 mM for ATP, 0.45 mM for dihydroxyacetone, and 0.9 mM for glycerol. PEP-dependent phosphorylation of dihydroxyacetone kinase stimulated phosphorylation of both substrates about 10-fold. Fructose 1,6-diphosphate at concentrations higher than 2 mM inhibited the activity of phosphorylated and unphosphorylated dihydroxyacetone kinase in a noncompetitive manner. The rate of PEP-dependent phosphorylation of dihydroxyacetone kinase was about 200-fold slower than the phosphorylation rate of III proteins (also called enzyme III or factor III), which so far have been considered the only phosphoryl acceptors of histidyl-phosphorylated HPr. P-Dihydroxyacetone kinase was found to be able to transfer its phosphoryl group in a backward reaction to HPr. Following [32P]PEP-dependent phosphorylation and tryptic digestion of dihydroxyacetone kinase, we isolated a labeled peptide composed of 37 amino acids, as determined by amino acid analysis. The single histidyl residue of this peptide most likely carries the phosphoryl group in phosphorylated dihydroxyacetone kinase.  相似文献   

14.
Wild-type Escherichia coli utilizes glycerol aerobically through an inducible pathway mediated by an ATP-dependent kinase and a glycerol 3-phosphate dehydrogenase which is a flavoprotein. A mutant, strain ECL424, employing a novel pathway for glycerol utilization was isolated. The novel pathway is mediated by an NAD-linked dehydrogenase and a dihydroxyacetone specific enzyme II of the phosphoenolpyruvate phosphotransferase system. This study describes the selection from strain ECL424, a derivative which grows more rapidly on glycerol. The derivative, strain ECL428, produces twice the parental levels of both the dehydrogenase and the enzyme II during growth on glycerol. The function of the dehydrogenase in wild-type cells is unknown, although hydroxyacetone (acetol), 3-hydroxy-2-butanone (acetoin), and 1-amino-2-propanone are gratuitous inducers. The induction can be prevented by glucose whose effect can be cancelled by external cyclic AMP. The effects of hydroxyacetone, glucose, and cyclic AMP are attenuated in the two mutants in which the dehydrogenase is produced at high basal levels. The dihydroxyacetone specific enzyme II is inducible by the substrate in both wild-type and mutant strains and serves for growth on the triose.  相似文献   

15.
In Escherichia coli K-12, the conversion of glycerol to triose phosphate is regulated by two types of control mechanism: the rate of synthesis of glycerol kinase and the feedback inhibition of its activity by fructose-1,6-diphosphate. A strain which has lost both control mechanisms by successive mutations, resulting in the constitutive synthesis of a glycerol kinase no longer sensitive to feedback inhibition, can produce a bactericidal factor from glycerol. This toxic factor has been identified by chemical and enzymological tests as methylglyoxal. Methylglyoxal can be derived from dihydroxyacetone phosphate through the action of an enzyme which is present at high constitutive levels in the extracts of the mutant as well as that of the wild-type strain. Nine spontaneous mutants resistant to 1 mm exogenous methylglyoxal have been isolated. In all cases the resistance is associated with increased levels of a glutathione-dependent enzymatic activity for the removal of methylglyoxal. Methylglyoxal-resistant mutants derived from the glycerol-sensitive parental strain also became immune to glycerol.  相似文献   

16.
Malaria pathology is caused by multiplication of asexual parasites within erythrocytes, whereas mosquito transmission of malaria is mediated by sexual precursor cells (gametocytes). Microarray analysis identified glycerol kinase (GK) as the second most highly upregulated gene in Plasmodium falciparum gametocytes with no expression detectable in asexual blood stage parasites. Phosphorylation of glycerol by GK is the rate-limiting step in glycerol utilization. Deletion of this gene from P. falciparum had no effect on asexual parasite growth, but surprisingly also had no effect on gametocyte development or exflagellation, suggesting that these life cycle stages do not utilize host-derived glycerol as a carbon source. Kinetic studies of purified PfGK showed that the enzyme is not regulated by fructose 1,6 bisphosphate. The high-resolution crystal structure of P. falciparum GK, the first of a eukaryotic GK, reveals two domains embracing a capacious ligand-binding groove. In the complexes of PfGK with glycerol and ADP, we observed closed and open forms of the active site respectively. The 27° domain opening is larger than in orthologous systems and exposes an extensive surface with potential for exploitation in selective inhibitor design should the enzyme prove to be essential in vivo either in the human or in the mosquito.  相似文献   

17.
The tyrosine-specific src kinase and the catalytic subunit of bovine heart adenosine 3',5'-cyclic monophosphate-dependent protein kinase phosphorylated glycerol when incubated with [gamma-32P]Mg-ATP. The product was detected by thin layer chromatography. The formation of glycerol phosphate by both enzymes was independent of the presence of a protein substrate (casein). The results show that glycerol phosphorylation is not a unique property of the src transforming protein. Because the product was only detected when high glycerol concentrations (approximately 0.1 M) were used, it is unlikely that either enzyme functions as a glycerol kinase in vivo.  相似文献   

18.
Growth of biodiesel industries resulted in increased coproduction of crude glycerol which is therefore becoming a waste product instead of a valuable ‘coproduct’. Glycerol can be used for the production of valuable chemicals, e.g. biofuels, to reduce glycerol waste disposal. In this study, a novel bacterial strain is described which converts glycerol mainly to ethanol and hydrogen with very little amounts of acetate, formate and 1,2‐propanediol as coproducts. The bacterium offers certain advantages over previously studied glycerol‐fermenting microorganisms. Anaerobium acetethylicum during growth with glycerol produces very little side products and grows in the presence of maximum glycerol concentrations up to 1500 mM and in the complete absence of complex organic supplements such as yeast extract or tryptone. The highest observed growth rate of 0.116 h?1 is similar to that of other glycerol degraders, and the maximum concentration of ethanol that can be tolerated was found to be about 60 mM (2.8 g l?1) and further growth was likely inhibited due to ethanol toxicity. Proteome analysis as well as enzyme assays performed in cell‐free extracts demonstrated that glycerol is degraded via glyceraldehyde‐3‐phosphate, which is further metabolized through the lower part of glycolysis leading to formation of mainly ethanol and hydrogen. In conclusion, fermentation of glycerol to ethanol and hydrogen by this bacterium represents a remarkable option to add value to the biodiesel industries by utilization of surplus glycerol.  相似文献   

19.
In Klebsiella pneumoniae NCIB 418, the pathways normally responsible for aerobic growth on glycerol and sn-glycerol 3-phosphate (the glp system) are superrepressed. However, aerobic growth on glycerol can take place by the intervention of the NAD-linked glycerol dehydrogenase and the ATP-dependent dihydroxyacetone kinase of the dha system normally inducible only anaerobically by glycerol or dihydroxyacetone. Conclusive evidence that the dha system is responsible for both aerobic and anaerobic dissimilation of glycerol was provided by a Tn5 insertion mutant lacking dihydroxyacetone kinase. An enzymatically coupled assay specific for this enzyme was devised. Spontaneous reactivation of the glp system was achieved by selection for aerobic growth on sn-glycerol 3-phosphate or on limiting glycerol as the sole carbon and energy source. However, the expression of this system became constitutive. Aerobic operation of the glp system highly represses synthesis of the dha system enzymes by catabolite repression.  相似文献   

20.
Escherichia coli glycerol kinase (EC 2.7.1.30; ATP:glycerol 3-phosphotransferase) is a key element in glucose control of glycerol metabolism. Its catalytic activity is inhibited allosterically by the glycolytic intermediate, fructose 1,6-biphosphate, and by the phosphotransferase system phosphocarrier protein, IIIGlc (also known as IIAGlc). These inhibitors provide mechanisms by which glucose blocks glycerol utilization in vivo. We report here the cloning and sequencing of the glpK22 gene isolated from E. C. C. Lin strain 43, a strain that shows the loss of glucose control of glycerol utilization. DNA sequencing shows a single missense mutation that translates to the amino acid change Gly-304 to Ser (G-304-S) in glycerol kinase. The effects of this substitution on the functional and physical properties of the purified mutant enzyme were determined. Neither of the allosteric ligands inhibits it under conditions that produce strong inhibition of the wild-type enzyme, which is sufficient to explain the phenotype of strain 43. However, IIIGlc activates the mutant enzyme, which could not be predicted from the phenotype. In the wild-type enzyme, G-304 is located 1.3 nm from the active site and 2.5 nm from the IIIGlc binding site (M. Feese, D. W. Pettigrew, N. D. Meadow, S. Roseman, and S. J. Remington, Proc. Natl. Acad. Sci. USA 91:3544-3548, 1994). It is located in the same region as amino acid substitutions in the related protein DnaK which alter its catalytic and regulatory properties and which are postulated to interfere with a domain closure motion (A. S. Kamath-Loeb, C. Z. Lu, W.-C. Suh, M. A. Lonetto, and C. A. Gross, J. Biol. Chem. 270:30051-30059, 1995). The global effect of the G-304-S substitution on the conformation and catalytic and regulatory properties of glycerol kinase is consistent with a role for the domain closure motion in the molecular mechanism for glucose control of glycerol utilization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号