首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Otavipithecus namibiensis is currently the sole representative of a Miocene hominoid radiation in subequatorial Africa. Several nondestructive techniques, such as computed tomography (CT) and confocal microscopy (CFM), can provide useful information about dental characteristics in this southern African Miocene hominoid. Our studies suggest that the molars of Otavipithecus are characterized by (1) thin enamel and (2) a predominance of pattern 1 enamel prism. Together, these findings provide little support for the recent suggestion of an Afropithecini clade consisting of Otavipithecus, Heliopithecus, and Afropithecus. Instead, they lend some (though not conclusive) support to the suggestion of an Otavipithecus/African ape clade distinct from Afropithecus. © 1995 Wiley-Liss, Inc.  相似文献   

2.
There is general agreement that the hominoid primates form a monophyletic group, that the extant great apes and humans form a second clade within that group with the gibbons as the sister group, and that the African apes and humans form a third clade. Although it has recently been proposed that humans and orang utans are sister taxa and also that the great apes form a clade to the exclusion of humans, our analysis, particularly of the molecular evidence, supports the existence of an African ape and human clade. The major problem in hominoid phylogeny at present is the relationships of the species within this clade: morphological data generally support the existence of an African ape clade which is the sister group to humans; some molecular data also support this conclusion, but most molecular evidence indicates the existence of a chimpanzee/human clade. We have cladistically re-analysed the DNA and protein sequence data for which apomorphic character states can be assessed. It is clear that there is a high degree of homoplasy whichever branching pattern is produced, with some characters supporting the existence of a chimpanzee/human clade and others supporting an African ape clade. When the cladistic analyses of morphological and molecular data are combined we believe that the most parsimonious interpretation of the data is that the African apes form a clade which is the sister taxon of the human (i.e., Australopithecus, Homo and Paranthropus) clade.This paper is not intended as a survey of all hominoid fossils but as a study of branching points in hominoid evolution and fossils are included which are relevant to this branching pattern. The analysis of fossil taxa in this study leads us to conclude that Proconsul is the sister taxon to the later Hominoidea. A number of middle Miocene forms such as Dryopithecus, Kenyapithecus, Heliopithecus and Afropithecus are shown to share derived characters with great apes and humans and provide evidence for the divergence of that clade from the gibbon lineage prior to 18 Ma. The position that Sivapithecus represents the sister group of the orang utan clade is supported here and shows that the orang utan lineage had diverged from the African ape and human lineage prior to 11·5 Ma. There is unfortunately no definitive fossil cvidence on branching sequences within the African ape and human clade, although a new specimen from Samburu, Kenya may be related to the gorilla.  相似文献   

3.
A Khoratpithecus piriyai lower jaw corresponds to a well-preserved Late Miocene hominoid fossil from northeastern Thailand. Its morphology and internal structure, using a microcomputed tomography scan, are described and compared to those of other known Miocene hominoids. It originated from fluviatile sand and gravel deposits of a large river, and was associated with many fossil tree trunks, wood fragments, and large vertebrate remains. A biochronological analysis by using associated mammal fauna gives an estimated geological age between 9-6 Ma. The flora indicates the occurrence of a riverine tropical forest and wide areas of grassland. K. piriyai displays many original characters, such as the great breadth of its anterior dentition, suggesting large incisors, large lower M3, a canine with a flat lingual wall, and symphysis structure. Several of its morphological derived characters are shared with the orangutan, indicating sister-group relationship with that extant ape. This relationship is additionally strongly supported by the absence of anterior digastric muscle scars. These shared derived characters are not present in Sivapithecus, Ankarapithecus, and Lufengpithecus, which are therefore considered more distant relatives to the orangutan than Khoratpithecus. The Middle Miocene K. chiangmuanensis is older, displays more primitive dental characters, and shares several dental characters with the Late Miocene form. It is therefore interpreted as its probable ancestor. But its less enlarged M3 and more wrinkled enamel may suggest an even closer phylogenetic position to orangutan ancestors, which cannot yet be supported because of the incomplete fossil record. Thus Khoratpithecus represents a new lineage of Southeast Asian hominoids, closely related to extant great ape ancestors.  相似文献   

4.
5.
The earliest record of fossil apes outside Africa is in the latest early Miocene of Turkey and eastern Europe. There were at least 2, and perhaps 4, species of ape, which were found associated with subtropical mixed environments of forest and more open woodland. Postcranial morphology is similar to that of early Miocene primates and indicates mainly generalized arboreal quadrupedal behaviours similar to those of less specialized New World monkeys such as Cebus. Robust jaws and thick enamelled teeth indicate a hard fruit diet. The 2 best known species of fossil ape are known from the site of Pa?alar in Turkey. They have almost identical molar and jaw morphology. Molar morphology is also similar to that of specimens from Germany and Slovakia, but there are significant differences in the anterior teeth of the 2 Pa?alar species. The more common species, Griphopithecus alpani, shares mainly primitive characters with early and middle Miocene apes in Africa, and it is most similar phenetically to Equatorius africanus from Maboko Island and Kipsaramon. The second species is assigned to a new species of Kenyapithecus, an African genus from Fort Ternan in Kenya, on the basis of a number of shared derived characters of the anterior dentition, and it is considered likely that there is a phylogenetic link between them. The African sites all date from the middle Miocene, similar in age to the Turkish and European ones, and the earliest emigration of apes from Africa coincides with the closure of the Tethys Sea preceding the Langhian transgression. Environments indicated for the African sites are mixtures of seasonal woodlands with some forest vegetation. The postcrania of both African taxa again indicate generalized arboreal adaptation but lacking specialized arboreal function. This middle Miocene radiation of both African and non-African apes was preceded by a radiation of arboreal catarrhine primates in the early Miocene, among which were the earliest apes. The earliest Miocene apes in the genus Proconsul and Rangwapithecus were arboreal, and because of their association with the fruits of evergreen rain forest plants at Mfwangano Island, it would appear that they were forest adapted, i.e. were living in multi-storied evergreen forest. The same or similar species of the same genera from Rusinga Island, together with other genera such as Nyanzapithecus and the small ape Limnopithecus, were associated with plants and animals indicating seasonal woodland environments, probably with gallery forest forming corridors alongside rivers. While the stem ancestors of the Hominoidea were almost certainly forest adapted, the evidence of environments associated with apes in the later part of the early Miocene and the middle Miocene of East Africa indicates more seasonal woodlands, similar to those reconstructed for the middle Miocene of Pa?alar in Turkey. This environmental shift was probably a requisite for the successful emigration of apes out of Africa and made possible later movement between the continents for much of the middle Miocene, including possible re-entry of at least one ape lineage back into Africa.  相似文献   

6.
A new species of fossil hominoid is described from the middle Miocene deposits at Pa?alar, Turkey. It is the less common of the two Pa?alar species discussed by Martin and Andrews (1993), making up approximately 10% of the individuals in the Pa?alar hominoid sample according to analyses of the minimum number of individuals. To the diagnostic features of I(1) described by Alpagut et al. (1990) and Martin and Andrews (1993) can now be added further diagnostic features of all the anterior teeth, as well as both upper premolars and P(3). These include discrete, nonmetric features and metric differences at all the noted tooth positions. Attempts to distinguish the upper and lower molars of the two species have so far been unsuccessful, with the possible exception of M(3). The morphology of the new species is similar in most respects to that of Kenyapithecus wickeri from Fort Ternan, especially concerning maxillary morphology. They share robust and moderately deep maxillary alveolar processes, a restricted maxillary sinus with an elevated and uncomplicated floor, lacking the compartmentalization evident to varying degrees in many other taxa, and a zygomatic process that originates and turns laterally fairly high above the alveolar margin. There are also a number of distinctive similarities in the dentition, particularly for I(1), C(1), P(4) and P(3). The I(1) morphology in particular, with greatly hypertrophied lingual marginal ridges bounding a uniformly thickened basal crown area, is distinctive among Miocene hominoids. All of these similarities serve to reinforce the differences noted by others between the derived morphology of K. wickeri and the more primitive morphology of Equatorius africanus from Maboko and Kipsaramon. The new species differs from K. wickeri in morphological details of most of the anterior and premolar teeth that are known for both species, despite the general morphological similarity, and in the size of I(1) versus I(2). One striking feature of the new species is a relatively large incisive fossa, although it cannot be determined if this is associated with an open palatine fenestra, as in many early Miocene hominoids, or a minimally overlapping palate and nasoalveolar clivus, as in some middle and late Miocene hominoids.  相似文献   

7.
The evolutionary history of the living hominoids has remained elusive despite years of exploration and the discovery of numerous Miocene fossil ape species. Part of the difficulty can be attributed to the changing nature of our views about the course of hominoid evolution. In the 1950s and 1960s, individual Miocene taxa were commonly viewed as the direct ancestors of specific living ape species, suggesting an early divergence of the modern lineages.1–5 However, in most cases, the Miocene forms were essentially “dental apes,” resembling extant species in dental and a few cranial features, but possessing more primitive postcranial features that suggested arboreal quadrupedalism rather than suspensory habits. With the introduction of molecular methods of phylogenetic reconstruction and the increasing use of cladistic analysis, it has become apparent that the radiation leading to the modern hominoids was somewhat more recent than had been believed, and that most of the Miocene hominoid species had little to do with the evolutionary history of the living apes. © 1998 Wiley-Liss, Inc.  相似文献   

8.
Morphology of Afropithecus turkanensis from Kenya   总被引:2,自引:0,他引:2  
Forty-six specimens of a large Miocene hominoid, Afropithecus turkanensis, recently recovered from northern Kenya preserve many morphological details that are described. The specimens include cranial, mandibular, and postcranial parts. They are compared briefly with other Miocene hominoids. It is suggested that Afropithecus may have affinities with Heliopithecus, Kenyapithecus, and the large hominoid from Moroto and Napak, although it is noted that the comparative material is limited in the number of common anatomical parts preserved.  相似文献   

9.
Recent paleontological collections at the middle Miocene locality of Maboko Island in Kenya, dated at 15-16 million years, have yielded numerous new specimens belonging to at least five species of fossil anthropoids. The most common species of ape at the site, a medium-sized primate with a very distinctive dental morphology, clearly represents a previously undescribed taxon. When compared with other Miocene anthropoids from East Africa, it has its closest affinities with the poorly known species Rangwapithecus vancouveringi from the early Miocene locality of Rusinga Island. The species from Maboko Island is described here as belonging to a new genus of fossil anthropoid, to which "Rangwapithecus" vancouveringi is also referred. The new genus has a highly distinctive suite of derived characters of its molars and premolars, which it shares with Oreopithecus bambolii from the late Miocene of Europe. These synapomorphies indicate a close phyletic relationship between the East African species and Oreopithecus and form the basis for the inclusion of these taxa in a single family, the Oreopithecidae Schwalbe, 1915. In many respects, however, the East African forms are more conservative than Oreopithecus, and in a general sense they can be regarded as an intermediate grade between Oreopithecus and the more generalized early Miocene catarrhines, the proconsuloids. There is, therefore, good fossil evidence to indicate that the origins of the Oreopithecidae can be traced back to the early Miocene of Africa.  相似文献   

10.
Comparative analyses of molar shape figure prominently in Miocene hominoid evolutionary studies, and incomplete understanding of functional and phylogenetic influences on molar shape variation can have direct consequences for the interpretation of fossil taxa. Molar flare is a shape trait whose polarity, phylogenetic distribution, and functional significance have been sources of contention. To clarify the determinants of molar flare variation in the hominoid radiation, a combination of statistical methods was employed to investigate the effects of diet, phylogeny, and geologic age upon several measures of molar shape, to identify interactions among these factors, and to estimate their relative influence. Classic indices of molar crown shape and cusp relief are highly significantly associated with diet and show no clear phylogenetic or temporal patterning. Correlations with diet are insignificant when phylogenetic effects are controlled, a result which is interpreted as an artifact of the distribution of folivory in the Miocene hominoid radiation. Possession of pronounced molar flare was found to be the primitive condition for Miocene hominoids, but molar flare reduction cannot be considered a crown hominoid synapomorphy. Molar flare is strongly correlated with geologic age but differs significantly among dietary categories when the effects of time are controlled. Among contemporaneous taxa, hard-object feeders consistently show the highest levels of flare. Molar flare reduction is hypothesized to arise from realignment of cusp positions to maximize molar shearing and increase working occlusal surface area, while variation in flare among contemporaneous taxa may be due, at least in part, to enamel thickness variation. The pronounced molar flare of Otavipithecus is interpreted as a primitive retention, although alternative dietary and phylogenetic interpretations cannot be excluded. A dramatic reversal of molar flare reduction in Mio-Pliocene hominins is interpreted as a synapomorphy of the crown hominin clade, thus supporting the hominin status of the Lukeino hominine. The last common ancestor of the Pan-Homo clade is predicted to have possessed relatively non-flaring molars, and implications of this hypothesis for early hominin recognition are discussed.  相似文献   

11.
Isometric scaling of maxillary sinus volume in hominoids   总被引:4,自引:0,他引:4  
Previous hypotheses of maxillary sinus size evolution have proposed one or more changes in the volume of the structure across hominoid phylogeny. These hypotheses have been used subsequently to support the phylogenetic placement of fossil taxa relative to the living Hominoidea. The null hypothesis, that no change in sinus volume independent of size has occurred in ape evolution, is evaluated here by scaling analysis. Mixed sex samples of adult dry crania for the extant ape genera were examined by computer tomography imaging and the volume of the maxillary sinus was obtained. Sinus volume was then regressed, using both least squares and reduced major axis models, against cranial size variables.The results clearly demonstrate that the null hypothesis of no change in relative sinus volume cannot be rejected; thus, there is no support for hypotheses that maxillary sinus volume, independent of cranial size, has changed in the course of hominoid evolution. This result, in turn, has implications for the phylogenetic placement of fossil taxa and highlights the need for the careful delineation of character states in studies of hominoid systematics.  相似文献   

12.
The evolutionary history of humans comprises an important but small branch on the larger tree of ape evolution. Today’s hominoids—gibbons, orangutans, gorillas, chimpanzees, and humans—are a meager representation of the ape diversity that characterized the Old World from 23–5 million years ago. In this paper, I briefly review this evolutionary history focusing on features important for understanding modern ape and human origins. As the full complexity of ape evolution is beyond this review, I characterize major geographic, temporal, and phylogenetic groups using a few flagship taxa. Improving our knowledge of hominoid evolution both complicates and clarifies studies of human origins. On one hand, features thought to be unique to the human lineage find parallels in some fossil ape species, reducing their usefulness for identifying fossil humans. On the other hand, the Miocene record of fossil apes provides an important source for generating hypotheses about the ancestral human condition; this is particularly true given the dearth of fossils representing our closest living relatives: chimpanzees and gorillas.  相似文献   

13.
Clarifying morphological variation among African and Eurasian hominoids during the Miocene is of particular importance for inferring the evolutionary history of humans and great apes. Among Miocene hominoids, Nakalipithecus and Ouranopithecus play an important role because of their similar dates on different continents. Here, we quantify the lower fourth deciduous premolar (dp4) inner morphology of extant and extinct hominoids using a method of morphometric mapping and examine the phylogenetic relationships between these two fossil taxa. Our data indicate that early Late Miocene apes represent a primitive state in general, whereas modern great apes and humans represent derived states. While Nakalipithecus and Ouranopithecus show similarity in dp4 morphology to a certain degree, the dp4 of Nakalipithecus retains primitive features and that of Ouranopithecus exhibits derived features. Phenotypic continuity among African ape fossils from Miocene to Plio-Pleistocene would support the African origin of African apes and humans (AAH). The results also suggest that Nakalipithecus could have belonged to a lineage from which the lineage of Ouranopithecus and the common ancestor of AAH subsequently derived.  相似文献   

14.
Recent discoveries of new fossil hominid species have been accompanied by several phylogenetic hypotheses. All of these hypotheses are based on a consideration of hominid craniodental morphology. However, Collard and Wood (2000) suggested that cladograms derived from craniodental data are inconsistent with the prevailing hypothesis of ape phylogeny based on molecular data. The implication of their study is that craniodental characters are unreliable indicators of phylogeny in hominoids and fossil hominids but, notably, their analysis did not include extinct species. We report here on a cladistic analysis designed to test whether the inclusion of fossil taxa affects the ability of morphological characters to recover the molecular ape phylogeny. In the process of doing so, the study tests both Collard and Wood's (2000) hypothesis of character reliability, and the several recently proposed hypotheses of early hominid phylogeny. One hundred and ninety-eight craniodental characters were examined, including 109 traits that traditionally have been of interest in prior studies of hominoid and early hominid phylogeny, and 89 craniometric traits that represent size-corrected linear dimensions measured between standard cranial landmarks. The characters were partitioned into two data sets. One set contained all of the characters, and the other omitted the craniometric characters. Six parsimony analyses were performed; each data set was analyzed three times, once using an ingroup that consisted only of extant hominoids, a second time using an ingroup of extant hominoids and extinct early hominids, and a third time excluding Kenyanthropus platyops. Results suggest that the inclusion of fossil taxa can play a significant role in phylogenetic analysis. Analyses that examined only extant taxa produced most parsimonious cladograms that were inconsistent with the ape molecular tree. In contrast, analyses that included fossil hominids were consistent with that tree. This consistency refutes the basis for the hypothesis that craniodental characters are unreliable for reconstructing phylogenetic relationships. Regarding early hominids, the relationships of Sahelanthropus tchadensis and Ardipithecus ramidus were relatively unstable. However, there is tentative support for the hypotheses that S. tchadensis is the sister taxon of all other hominids. There is support for the hypothesis that A. anamensis is the sister taxon of all hominids except S. tchadensis and Ar. ramidus. There is no compelling support for the hypothesis that Kenyanthropus platyops shares especially close affinities with Homo rudolfensis. Rather, K. platyops is nested within the Homo + Paranthropus + Australopithecus africanus clade. If K. platyops is a valid species, these relationships suggest that Homo and Paranthropus are likely to have diverged from other hominids much earlier than previously supposed. There is no support for the hypothesis that A. garhi is either the sister taxon or direct ancestor of the genus Homo. Phylogenetic relationships indicate that Australopithecus is paraphyletic. Thus, A. anamensis and A. garhi should be allocated to new genera.  相似文献   

15.
Miocene primates from southern Africa are extremely rare. For this reason we wish to place on record several interesting new fossil primate specimens recently recovered from the Miocene sites of Berg Aukas and Harasib in the Otavi Mountain region of northern Namibia. The new finds consist of a virtually complete atlas vertebra from Berg Aukas attributable to the hominoid Otavipithecus namibiensis and two teeth and four postcranial fragments from Harasib referrable to Cercopithecoidea. The atlas vertebra exhibits anatomical characteristics intermediate between those of modern cercopithecoids and hominoids which may be indicative of a transition from pronograde to orthograde postures. The cercopithecoid remains show that the earliest Old World monkeys known from southern Africa were small, approximately the size of vervet monkeys. These new specimens are important because they provide the first evidence relating to possible positional behaviors of Otavipithecus and the earliest fossil record of cercopithecoids from southern Africa. © 1996 Wiley-Liss, Inc.  相似文献   

16.
Recent Miocene fossil discoveries of large hominoids resemble orangutans. Since the evolution of large body size was functionally related to a powerful masticatory system in Miocene ape radiations, a better understanding of adaptations in extant orangutans will be informative of hominoid evolution. It is suggested here, based on the behavioral ecology of extant orangutans, that foraging energetics and large body size are tied to a dietary shift that provided access to and utilization of resources not generally available to other primates.  相似文献   

17.
The relationship between femoral neck superior and inferior cortical thickness in primates is related to locomotor behavior. This relationship has been employed to infer bipedalism in fossil hominins, although bipeds share the same pattern of generalized quadrupeds, where the superior cortex is thinner than the inferior one. In contrast, knuckle‐walkers and specialized suspensory taxa display a more homogeneous distribution of cortical bone. These different patterns, probably related to the range of movement at the hip joint and concomitant differences in the load stresses at the femoral neck, are very promising for making locomotor inferences in extinct primates. To evaluate the utility of this feature in the fossil record, we relied on computed tomography applied to the femur of the Late Miocene hominoid Hispanopithecus laietanus as a test‐case study. Both an orthograde body plan and orang‐like suspensory adaptations had been previously documented for this taxon on different anatomical grounds, leading to the hypothesis that this fossil ape should display a modern ape‐like distribution of femoral neck cortical thickness. This is confirmed by the results of this study, leading to the conclusion that Hispanopithecus represents the oldest evidence of a homogeneous cortical bone distribution in the hominoid fossil record. Our results therefore strengthen the utility of femoral neck cortical thickness for making paleobiological inferences on the locomotor repertoire of fossil primates. This feature would be particularly useful for assessing the degree of orthograde arboreal locomotor behaviors vs. terrestrial bipedalism in putative early hominins. Am J PhyAnthropol 2012. © Wiley Periodicals, Inc.  相似文献   

18.
Currently restricted to Southeast Asia and Africa, extant hominoids are the remnants of a group that was much more diverse during the Miocene. Apes initially diversified in Africa during the early Miocene, but by the middle Miocene they extended their geographical range into Eurasia, where they experienced an impressive evolutionary radiation. Understanding the role of Eurasian hominoids in the origin and evolution of the great‐ape‐and‐human clade (Hominidae) is partly hampered by phylogenetic uncertainties, the scarcity and incompleteness of fossil remains, the current restricted diversity of the group, and pervasive homoplasy. Nevertheless, scientific knowledge of the Eurasian hominoid radiation has significantly improved during the last decade. In the case of Western Europe, this has been due to the discovery of new remains from the Vallès‐Penedès Basin (Catalonia, Spain). Here, I review the fossil record of Vallès‐Penedès apes and consider its implications. Although significant disagreements persist among scholars, some important lessons can be learned regarding the evolutionary history of the closest living relatives of humans. © 2012 Wiley Periodicals, Inc.  相似文献   

19.
This paper reviews the non-dental morphological configuration of Miocene hominoids with special reference to the hypothesis of linear relationships between certain fossil species and living analogues. Metrical analysis of the wrist shows thatDryopithecus africanus andPliopithecus vindobonensis are unequivocally affiliated with the morphological pattern of quadrupedal monkeys. Similar analyses of the fossil hominoid elbow shows that they are more cercopithecoid-like than hominoid-like. Multivariate analysis of theP. vindobonensis shoulder in the matrix of extant Anthropoidea indicate that this putative hylobatine fossil shows no indication of even the initial development of hominoid features. The total morphological pattern of theD. africanus forelimb as assessed by principal coordinates analysis of allometrically adjusted shape variables has little resemblance toPan. Likewise, the feet and proximal femora of the Miocene fossils are unlike any living hominoid species. Even theD. africanus skull is similar to extant cercopithecoids in several features. Although ancestors cannot be expected to resemble descendants in every way, the striking dissimilarity between Miocene and extant hominoids seems to eliminate the consideration of a direct ancestor-descendant relationship between specific Miocene and modern forms.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号