首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Twelve blood group and protein systems from a total of 819 individuals from six tribal groups (Apalaí‐Wayana, Emerillon, Kaliña, Palikur Wayampi, and Wayana) living in French Guiana and Brazil were compared with each other and integrated with previous results from 17 other South Amerindian populations studied for the same genetic markers. Using correspondence analysis, map methodologies, and maximum linkage cluster analysis developed with the UPGMA method, we attempted to establish the genetic position of these tribes among South American Indians. Peripheral positions for the Emerillon and the Palikur were observed. Ethnohistorical data in French Guiana suggest that a strong founder effect for the former and endogamy for the latter could have generated the genetic differentiation of these two ethnic groups. However, when considered in a wider context, all French Guiana Natives cluster together in an intermediate position as compared with 17 other Amerindian groups studied for the comparison. Am J Phys Anthropol, 2007. © 2006 Wiley‐Liss, Inc.  相似文献   

2.
Human T-lymphotropic virus type 1 (HTLV-1) infection has been discovered recently in people of Amerindian descent living in coastal areas of British Columbia, Canada. DNA sequencing combined with phylogenetic analysis and restriction fragment length polymorphism (RFLP) typing of HTLV-1 strains recovered from these British Columbia Indians (BCI) was conducted. Sequence-based phylogenetic trees distributed the BCI isolates among the Japanese subcluster (subcluster B) and the geographically widely distributed subcluster (subcluster A) of the large HTLV-1 cosmopolitan cluster. Long terminal repeat (LTR) RFLP typing revealed three distinct, equally frequent LTR cleavage patterns, two of which were of previously recognized Japanese and widely dispersed cosmopolitan types. A third, new cleavage pattern was detected which may have arisen by recombination between two other HTLV-1 genotypes. Our results suggest multiple origins for HTLV-1 in BCI, which are equally consistent with (i) a cluster of recent sporadic infections, (ii) ancient endemic vertical transmission through Amerindian lineages, or (iii) both.  相似文献   

3.

Background

No association between the Human T-cell lymphotropic virus (HTLV), an oncogenic virus that alters host immunity, and the Human Papillomavirus (HPV) has previously been reported. Examining the association between these two viruses may permit the identification of a population at increased risk for developing cervical cancer.

Methods and Findings

Between July 2010 and February 2011, we conducted a cross-sectional study among indigenous Amazonian Peruvian women from the Shipibo-Konibo ethnic group, a group with endemic HTLV infection. We recruited women between 15 and 39 years of age who were living in the cities of Lima and Ucayali. Our objectives were to determine the association between HTLV and: (i) HPV infection of any type, and (ii) high-risk HPV type infection. Sexually active Shipibo-Konibo women were screened for HTLV-1 and HTLV-2 infections. All HTLV-1 or -2 positive women, along with two community-matched HTLV negative sexually active Shipibo-Konibo controls were later tested for the presence of HPV DNA, conventional cytology, and HIV. We screened 1,253 Shipibo-Konibo women, observing a prevalence of 5.9% (n = 74) for HTLV-1 and 3.8% (n = 47) for HTLV-2 infections. We enrolled 62 (60.8%) HTLV-1 positive women, 40 (39.2%) HTLV-2 positive women, and 205 community-matched HTLV negative controls. HTLV-1 infection was strongly associated with HPV infection of any type (43.6% vs. 29.3%; Prevalence Ratio (PR): 2.10, 95% CI: 1.53–2.87), and with high-risk HPV infection (32.3% vs. 22.4%; PR: 1.93, 95% CI: 1.04–3.59). HTLV-2 was not significantly associated with either of these HPV infections.

Conclusions

HTLV-1 infection was associated with HPV infection of any type and with high-risk HPV infection. Future longitudinal studies are needed to evaluate the incidence of high-risk HPV infection as well as the incidence of cervical neoplasia among HTLV-1 positive women.  相似文献   

4.
Three types of human T-cell leukemia virus (HTLV)-simian T-cell leukemia virus (STLV) (collectively called primate T-cell leukemia viruses [PTLVs]) have been characterized, with evidence for zoonotic origin from primates for HTLV type 1 (HTLV-1) and HTLV-2 in Africa. To assess human exposure to STLVs in western Central Africa, we screened for STLV infection in primates hunted in the rain forests of Cameroon. Blood was obtained from 524 animals representing 18 different species. All the animals were wild caught between 1999 and 2002; 328 animals were sampled as bush meat and 196 were pets. Overall, 59 (11.2%) of the primates had antibodies cross-reacting with HTLV-1 and/or HTLV-2 antigens; HTLV-1 infection was confirmed in 37 animals, HTLV-2 infection was confirmed in 9, dual HTLV-1 and HTLV-2 infection was confirmed in 10, and results for 3 animals were indeterminate. Prevalences of infection were significantly lower in pets than in bush meat, 1.5 versus 17.0%, respectively. Discriminatory PCRs identified STLV-1, STLV-3, and STLV-1 and STLV-3 in HTLV-1-, HTLV-2-, and HTLV-1- and HTLV-2-cross-reactive samples, respectively. We identified for the first time STLV-1 sequences in mustached monkeys (Cercopithecus cephus), talapoins (Miopithecus ogouensis), and gorillas (Gorilla gorilla) and confirmed STLV-1 infection in mandrills, African green monkeys, agile mangabeys, and crested mona and greater spot-nosed monkeys. STLV-1 long terminal repeat (LTR) and env sequences revealed that the strains belonged to different PTLV-1 subtypes. A high prevalence of PTLV infection was observed among agile mangabeys (Cercocebus agilis); 89% of bush meat was infected with STLV. Cocirculation of STLV-1 and STLV-3 and STLV-1-STLV-3 coinfections were identified among the agile mangabeys. Phylogenetic analyses of partial LTR sequences indicated that the agile mangabey STLV-3 strains were more related to the STLV-3 CTO604 strain isolated from a red-capped mangabey (Cercocebus torquatus) from Cameroon than to the STLV-3 PH969 strain from an Eritrean baboon or the PPA-F3 strain from a baboon in Senegal. Our study documents for the first time that (i) a substantial proportion of wild-living monkeys in Cameroon is STLV infected, (ii) STLV-1 and STLV-3 cocirculate in the same primate species, (iii) coinfection with STLV-1 and STLV-3 occurs in agile mangabeys, and (iv) humans are exposed to different STLV-1 and STLV-3 subtypes through handling primates as bush meat.  相似文献   

5.
To investigate the roles of human T-cell leukemia virus type 1 (HTLV-1) envelope (Env) proteins gp46 and gp21 in the early steps of infection, the effects of the 23 synthetic peptides covering the entire Env proteins on transmission of cell-free HTLV-1 were examined by PCR and by the plaque assay using a pseudotype of vesicular stomatis virus (VSV) bearing the Env of HTLV-1 [VSV(HTLV-1)]. The synthetic peptide corresponding to amino acids 400 to 429 of the gp21 Env protein (gp21 peptide 400-429, Cys-Arg-Phe-Pro-Asn-Ile-Thr-Asn-Ser-His-Val-Pro-Ile-Leu-Gln-Glu-Arg-P ro-Pro-Leu-Glu-Asn-Arg-Val-Leu-Thr-Gly-Trp-Gly-Leu) strongly inhibited infection of cell-free HTLV-1. By using the mutant peptide, Asn407, Ser408, and Leu413, -419, -424, and -429 were confirmed to be important amino acids for neutralizing activity of the gp21 peptide 400-429. Addition of this peptide before or during adsorption of HTLV-1 at 4 degrees C did not affect its entry. However, HTLV-1 infection was inhibited about 60% when the gp21 peptide 400-429 was added even 30 min after adsorption of HTLV-1 to cells, indicating that the amino acid sequence 400 to 429 on the gp21 Env protein plays an important role at the postbinding step of HTLV-1 infection. In contrast, a monoclonal antibody reported to recognize the gp46 191-196 peptide inhibited the infection of HTLV-1 at the binding step.  相似文献   

6.
Since the 1980s, cetacean morbillivirus (CeMV) has caused mass mortality events worldwide. However, no epizootics had been recorded in the South Atlantic, until an unusual mortality event (UME) linked to Guiana dolphin cetacean morbillivirus (GD-CeMV) began in Ilha Grande Bay, southeastern Brazil, in November 2017. In a five-month period, the UME spread to neighboring Sepetiba Bay and accounted for the death of at least 277 Guiana dolphins (Sotalia guianensis). Prevalence of morbillivirus positive dolphins, as estimated from RT-PCR diagnostics, was 92.3% (24/26) in Ilha Grande Bay and 91.9% (57/62) in Sepetiba Bay. Females had higher mortality rates during the UME (1.5:1), in contrast with historical mortality data from both bays that showed a 2:1 male to female death ratio. Calf mortality rates also increased in both bays. These results suggest that females and calves were more vulnerable to morbilliviral infection. Herein, we discuss possible explanations for such sex-biased death pattern during the UME and their implication for the conservation of endangered Guiana dolphins. We also speculate about the origin and spread of morbillivirus in the South Atlantic Ocean.  相似文献   

7.
Human T-cell lymphotropic virus type 1 (HTLV-1) is mainly associated with two diseases: tropical spastic paraparesis/HTLV-1-associated myelopathy (TSP/HAM) and adult T-cell leukaemia/lymphoma. This retrovirus infects five-10 million individuals throughout the world. Previously, we developed a database that annotates sequence data from GenBank and the present study aimed to describe the clinical, molecular and epidemiological scenarios of HTLV-1 infection through the stored sequences in this database. A total of 2,545 registered complete and partial sequences of HTLV-1 were collected and 1,967 (77.3%) of those sequences represented unique isolates. Among these isolates, 93% contained geographic origin information and only 39% were related to any clinical status. A total of 1,091 sequences contained information about the geographic origin and viral subtype and 93% of these sequences were identified as subtype “a”. Ethnicity data are very scarce. Regarding clinical status data, 29% of the sequences were generated from TSP/HAM and 67.8% from healthy carrier individuals. Although the data mining enabled some inferences about specific aspects of HTLV-1 infection to be made, due to the relative scarcity of data of available sequences, it was not possible to delineate a global scenario of HTLV-1 infection.  相似文献   

8.
Human T-cell leukemia virus type 1 (HTLV-1) infection is involved in the development of adult T-cell leukemia and HTLV-1-associated myelopathy/tropical spastic paraparesis. A high HTLV-1 proviral load in circulating lymphocytes of HTLV-1 carriers is a risk factor for HTLV-1-related diseases. The virus–cell interaction is linked to viral tropism and pathogenesis. Characterization of the factors that affect HTLV-1 infection is important for preventing HTLV-1 infection. HTLV-1 virions are believed to be weakly infectious under cell culture conditions; however, we found that the treatment of HTLV-1 virions with microbial neuraminidase, an enzyme catalyzing the removal of sialic acid residues from various glycoconjugates, enhanced the number of proviral DNAs in infected cells in a dose-dependent manner. Neuraminidase treatment of virions, but not target cells, enhanced viral binding and entry into cells and viral infectivity; treatment of target cells prior to infection had no effect. Moreover, the number of HTLV-1-mediated syncytia was higher in the presence of neuraminidase. Our results suggest a possible contribution of microbial agents carrying neuraminidase activity to HTLV-1 pathogenesis.  相似文献   

9.
Infection with the Human T-cell Leukemia virus type I (HTLV-1) retrovirus results in a number of diverse pathologies, including the aggressive, fatal T-cell malignancy adult T-cell leukemia (ATL) and the chronic, progressive neurologic disorder termed HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Worldwide, it is estimated there are 15-20 million HTLV-1-infected individuals; although the majority of HTLV-1-infected individuals remain asymptomatic carriers (AC) during their lifetime, 2-5% of AC develops either ATL or HAM/TSP, but never both. Regardless of asymptomatic status or clinical outcome, HTLV-1 carriers are at high risk of opportunistic infection. The progression to pathological HTLV-1 disease is in part attributed to the failure of the innate and adaptive immune system to control virus spread. The innate immune response against retroviral infection requires recognition of viral pathogen-associated molecular patterns (PAMPs) through pattern-recognition receptors (PRR) dependent pathways, leading to the induction of host antiviral and inflammatory responses. Recent studies have begun to characterize the interplay between HTLV-1 infection and the innate immune response and have identified distinct gene expression profiles in patients with ATL or HAM/TSP--upregulation of growth regulatory pathways in ATL and constitutive activation of antiviral and inflammatory pathways in HAM/STP. In this review, we provide an overview of the replicative lifecycle of HTLV-1 and the distinct pathologies associated with HTLV-1 infection. We also explore the innate immune mechanisms that respond to HTLV-1 infection, the strategies used by HTLV-1 to subvert these defenses and their contribution to HTLV-1-associated diseases.  相似文献   

10.
Human T-lymphotropic virus type 1 (HTLV-1) and type 2 (HTLV-2) both cause lifelong persistent infections, but differ in their clinical outcomes. HTLV-1 infection causes a chronic or acute T-lymphocytic malignancy in up to 5% of infected individuals whereas HTLV-2 has not been unequivocally linked to a T-cell malignancy. Virus-driven clonal proliferation of infected cells both in vitro and in vivo has been demonstrated in HTLV-1 infection. However, T-cell clonality in HTLV-2 infection has not been rigorously characterized. In this study we used a high-throughput approach in conjunction with flow cytometric sorting to identify and quantify HTLV-2-infected T-cell clones in 28 individuals with natural infection. We show that while genome-wide integration site preferences in vivo were similar to those found in HTLV-1 infection, expansion of HTLV-2-infected clones did not demonstrate the same significant association with the genomic environment of the integrated provirus. The proviral load in HTLV-2 is almost confined to CD8+ T-cells and is composed of a small number of often highly expanded clones. The HTLV-2 load correlated significantly with the degree of dispersion of the clone frequency distribution, which was highly stable over ∼8 years. These results suggest that there are significant differences in the selection forces that control the clonal expansion of virus-infected cells in HTLV-1 and HTLV-2 infection. In addition, our data demonstrate that strong virus-driven proliferation per se does not predispose to malignant transformation in oncoretroviral infections.  相似文献   

11.

Background

HTLV-1 and HTLV-2 are retroviruses linked etiologically to various human diseases, and both of them can be transmitted by vertical route, sexual intercourse, blood transfusion and intravenous drug use. Recently, some HTLV-infected cases have been reported and this virus is mainly present in the Southeast coastal areas in China, but has not been studied for the people in Central China.

Objectives

To know the epidemiologic patterns among different population samples in Central China and further identify risk factor for HTLV-1 and HTLV-2 infection.

Methods

From January 2008 to December 2011, 5480 blood samples were screened for HTLV-1/2 antibodies by using enzyme immunoassay, followed by Western Blot.

Results

The prevalence of HTLV-1 and HTLV-2 was found with infection rates 0.13% and 0.05% among all population samples for HTLV-1 and HTLV-2, respectively. The highest percentages of infection, 0.39% and 0.20%, were found in the high risk group, while only 0.06% and 0.03% in the blood donor group. There was only one case of HTLV-1 infection (0.11%) among patients with malignant hematological diseases. Of seven HTLV-1 positive cases, six were co-infected with HBV, two with HCV and one with HIV. Among three HTLV-2 positive individuals all were co-infected with HBV, one with HCV.

Conclusions

HTLV-1 and HTLV-2 have been detected in the Central China at low prevalence, with the higher infection rate among high risk group. It was also found that co-infection of HTLV-1/2 with HIV and HBV occurred, presumably due to their similar transmission routes. HTLV-1/2 antibody screen among certain population would be important to prevent the spread of the viruses.  相似文献   

12.

Background

Human T-cell lymphotropic virus type 1 (HTLV-1) infection can increase the risk of developing skin disorders. This study evaluated the correlation between HTLV-1 proviral load and CD4+ and CD8+ T cells count among HTLV-1 infected individuals, with or without skin disorders (SD) associated with HTLV-1 infection [SD-HTLV-1: xerosis/ichthyosis, seborrheic dermatitis or infective dermatitis associated to HTLV-1 (IDH)].

Methods

A total of 193 HTLV-1-infected subjects underwent an interview, dermatological examination, initial HTLV-1 proviral load assay, CD4+ and CD8+ T cells count, and lymphproliferation assay (LPA).

Results

A total of 147 patients had an abnormal skin condition; 116 (79%) of them also had SD-HTLV-1 and 21% had other dermatological diagnoses. The most prevalent SD-HTLV-1 was xerosis/acquired ichthyosis (48%), followed by seborrheic dermatitis (28%). Patients with SD-HTLV-1 were older (51 vs. 47 years), had a higher prevalence of myelopathy/tropical spastic paraparesis (HAM/TSP) (75%), and had an increased first HTLV-1 proviral load and basal LPA compared with patients without SD-HTLV-1. When excluding HAM/TSP patients, the first HTLV-1 proviral load of SD-HTLV-1 individuals remains higher than no SD-HTLV-1 patients.

Conclusions

There was a high prevalence of skin disorders (76%) among HTLV-1-infected individuals, regardless of clinical status, and 60% of these diseases are considered skin disease associated with HTLV-1 infection.  相似文献   

13.
G Feuer  J K Fraser  J A Zack  F Lee  R Feuer    I S Chen 《Journal of virology》1996,70(6):4038-4044
Human T-cell leukemia virus type I (HTLV-1) is the etiologic agent of adult T-cell leukemia and lymphoma and HTLV-1-associated myelopathy-tropical spastic paraparesis. We examined whether HTLV could productively infect human hematopoietic progenitor cells. CD34+ cells were enriched from human fetal liver cells and cocultivated with cell lines transformed with HTLV-1 and -2. HTLV-1 infection was established in between 10 and >95% of the enriched CD34+ cell population, as demonstrated by quantitative PCR analysis. HTLV-1 p19 Gag expression was also detected in infected hematopoietic progenitor cells. HTLV-1-infected hematopoietic progenitor cells were cultured in semisolid medium permissive for the development of erythbroid (BFU-E), myeloid (CFU-GM), and primitive progenitor (CFU-GEMM, HPP-CFC, or CFU-A) colonies. HTLV-1 sequences were detected in colonies of all hematopoietic lineages; furthermore, the ratio of HTLV genomes to the number of human cells in each infected colony was 1:1, consistent with each colony arising from a single infected hematopoietic progenitor cell. Severe combined immunodeficient mice engrafted with human fetal thymus and liver tissues (SCID-hu) develop a conjoint organ which supports human thymocyte differentiation and maturation. Inoculation of SCID-hu mice with HTLV-1-infected T cells or enriched populations of CD34+ cells established viral infection of thymocytes 4 to 6 weeks postreconstitution. Thymocytes from two mice with the greatest HTLV-1 proviral burdens showed increased expression of the CD25 marker and the interleukin 2 receptor alpha chain and perturbation of CD4+ and CD8+ thymocyte subset distribution profiles. Hematopoietic progenitor cells and thymuses may be targets for HTLV infection in humans, and these events may play a role in the pathogenesis associated with infection.  相似文献   

14.

Introduction

In resource-poor areas, infectious diseases may be important causes of morbidity among individuals infected with the Human T-Lymphotropic Virus type 1 (HTLV-1). We report the clinical associations of HTLV-1 infection among socially disadvantaged Indigenous adults in central Australia.

Methodology and Principal Findings

HTLV-1 serological results for Indigenous adults admitted 1st January 2000 to 31st December 2010 were obtained from the Alice Springs Hospital pathology database. Infections, comorbid conditions and HTLV-1 related diseases were identified using ICD-10 AM discharge morbidity codes. Relevant pathology and imaging results were reviewed. Disease associations, admission rates and risk factors for death were compared according to HTLV-1 serostatus. HTLV-1 western blots were positive for 531 (33.3%) of 1595 Indigenous adults tested. Clinical associations of HTLV-1 infection included bronchiectasis (adjusted Risk Ratio, 1.35; 95% CI, 1.14–1.60), blood stream infections (BSI) with enteric organisms (aRR, 1.36; 95% CI, 1.05–1.77) and admission with strongyloidiasis (aRR 1.38; 95% CI, 1.16–1.64). After adjusting for covariates, HTLV-1 infection remained associated with increased numbers of BSI episodes (adjusted negative binomial regression, coefficient, 0.21; 95% CI, 0.02–0.41) and increased admission numbers with strongyloidiasis (coefficient, 0.563; 95% CI, 0.17–0.95) and respiratory conditions including asthma (coefficient, 0.99; 95% CI, 0.27–1.7), lower respiratory tract infections (coefficient, 0.19; 95% CI, 0.04–0.34) and bronchiectasis (coefficient, 0.60; 95% CI, 0.02–1.18). Two patients were admitted with adult T-cell Leukemia/Lymphoma, four with probable HTLV-1 associated myelopathy and another with infective dermatitis. Independent predictors of mortality included BSI with enteric organisms (aRR 1.78; 95% CI, 1.15–2.74) and bronchiectasis (aRR 2.07; 95% CI, 1.45–2.98).

Conclusion

HTLV-1 infection contributes to morbidity among socially disadvantaged Indigenous adults in central Australia. This is largely due to an increased risk of other infections and respiratory disease. The spectrum of HTLV-1 related diseases may vary according to the social circumstances of the affected population.  相似文献   

15.
The seroprevalence of human T cell leukemia virus type 1 (HTLV-1) infection was investigated in Brazilians (570): native inhabitants (298) and descendants from Japanese (272) living in Recife and its neighborhoods—North-east of Brazil. Furthermore, polytransfused renal transplanted patients (54) were also examined for the serological status to this virus. The seropositivity to HTLV-1, screened by enzyme-linked immunosorbent assay (ELISA), was low: 1.34% for the local population and 0.73% for the descendants from Japanese. However, the seropositivity for the renal transplanted patients was found to be 11.1%. This higher value suggests that this retrovirus infection seems to be of importance in this clinical condition.  相似文献   

16.
17.
18.
A sample of the Ewondo population (a Bantu-speaking group of Southern Cameroon) was analyzed for the polymorphism at three tandem repeated DNA loci (ApoB 3' HVR, D2S44, and D7S21). We observed a greater number of ApoB 3' HVR alleles (17) and a significantly higher estimated heterozygosity (.879 +/- .011) than in previously surveyed populations, with the exception of U.S. Blacks. The higher genetic variability of Ewondo and U.S. Blacks was also shown by the ApoB 3' HVR allele-frequency spectra. A method for measuring population distances, based on cumulative fragment-size distribution, is described. Interpopulation comparisons for ApoB 3' HVR were carried out by this method and were compared with those obtained by a genetic distance measurement. The two sets of results showed a consistent pattern of population differentiation: the Ewondos and the U.S. Blacks clustered together and were well apart from both a Caucasian cluster (Swedes, U.S. Whites, Italians, and Germans) and other well-defined populations (Sikhs of India and Pehuence Indians of Chile). Profile distances were then computed from D2S44 and D7S21 bined data. This analysis indicated a genetic affinity between Ewondos, U.S. Blacks, and Afro-Caribbean Blacks and outlined the genetic diversity between Ewondos, Caucasians, and Asian Indians.  相似文献   

19.
Antibodies to human T-cell lymphotropic virus-1 and 2 (HTLV-1 and 2) were tested in 259 inhabitants (98 males and 161 females) of four villages of the Marajó Island (Pará, Brazil) using enzyme immunoassays (ELISA and Western blot). Types and subtypes of HTLV were determined by nested polymerase chain reaction (PCR) targeting the pX, env and 5 LTR regions. HTLV-1 infection was detected in Santana do Arari (2.06%) and Ponta de Pedras (1%). HTLV-2 was detected only in Santana do Arari (1.06%). Sequencing of the 5 LTR region of HTLV-1 and the phylogenetic analysis identified the virus as a member of the Cosmopolitan Group, subgroup Transcontinental. Santana do Arari is an Afro-Brazilian community and the current results represent the first report of HTLV-1 infection in a mocambo located in the Brazilian Amazon region.  相似文献   

20.
Human T-cell leukemia virus type 1 (HTLV-1) but not HTLV-2 is associated with adult T-cell leukemia. We found that HTLV-2 Tax2 protein stimulated reporter gene expression regulated by the interleukin (IL)-2 promoter through the nuclear factor of activated T cells (NFAT) in a human T-cell line (Jurkat). However, the activity of HTLV-1 Tax1 was minimal in this system. T-cell lines immortalized by HTLV-2 but not HTLV-1 constitutively exhibited activated NFAT in the nucleus and constitutively expressed IL-2 mRNA. Cyclosporine A, an inhibitor of NFAT activation, abrogated the induction of IL-2 mRNA in HTLV-2-immortalized T-cell lines and concomitantly inhibited cell growth. This growth inhibition was rescued by the addition of IL-2 to the culture. Furthermore, anti-IL-2 receptor antibodies significantly reduced the proliferation of HTLV-2-infected T-cell lines but not that of HTLV-1-infected cells. Our results suggest that Tax2 activates an IL-2 autocrine loop mediated through NFAT that supports the growth of HTLV-2-infected cells under low-IL-2 conditions. This mechanism would be especially important in vivo, where this autocrine mechanism establishes a nonleukemogenic life-long HTLV-2 infection. The results also suggest that differences in long-term cytokine production between HTLV-1 and HTLV-2 infection are another factor for the differences in pathogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号