首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Each type of basement membrane in man contains between two and five genetically distinct type IV collagens: alpha 1(IV)-alpha 5(IV). Genes for alpha 1(IV), alpha 2(IV), alpha 3(IV), and alpha 5(IV) have been isolated. We have recently isolated partial cDNAs for the fifth member of the family, designated alpha 4(IV). On the basis of comparison of the deduced peptide sequences of all five chains, the type IV collagens can be divided into two families: alpha 1-like, comprising alpha 1(IV), alpha 3(IV), and alpha 5(IV); and alpha 2-like, comprising alpha 2(IV) and alpha 4(IV). Genes encoding the alpha 1(IV) and alpha 2(IV) chains (COL4A1 and COL4A2) both map to human chromosome 13q34 and have been shown to be transcribed from opposite DNA strands using a common bidirectional promoter that allows coordinate regulation of the two chains. Indeed, these two chains are commonly found together in basement membrane and form [alpha 1]2.[alpha 2] heterotrimers. Whereas alpha 1(IV) and alpha 2(IV) have been found in all basement membranes studied hitherto, it has been shown that alpha 3(IV) and alpha 4(IV) are found in only a subset of basement membranes. In basement membranes where either of these molecules is present, however, they are found together. In view of this relationship and the structural similarities between alpha 1(IV) and alpha 3(IV) and between alpha 2(IV) and alpha 4(IV), we hypothesized that COL4A3 and COL4A4, the genes encoding alpha 3(IV) and alpha 4(IV), respectively, have a genomic organization similar to that of COL4A1 and COL4A2.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
We report the complete sequence of the human COL9A3 gene that encodes the alpha3 chain of heterotrimeric type IX collagen, a member of the fibril-associated collagens with interrupted triple helices family of collagenous proteins. Nucleotide sequencing defined over 23,000 base pairs (bp) of the gene and about 3000 bp of the 5'-flanking sequences. The gene contains 32 exons. The domain and exon organization of the gene is almost identical to a related gene, the human COL9A2 gene. However, exon 2 of the COL9A3 gene codes for one -Gly-X-Y- triplet less than exon 2 of the COL9A2 gene. The difference is compensated by an insertion of 9 bp coding for an additional triplet in exon 4 of the COL9A3 gene. As a result, the number of -Gly-X-Y- repeats in the third collagenous domain remains the same in both genes and ensures the formation of an in-register triple helix. In the course of screening this gene for mutations, heterozygosity for separate 9-bp deletions within the COL1 domain were identified in two kindreds. In both instances, the deletions did not co-segregate with any disease phenotype, suggesting that they were neutral variants. In contrast, similar deletions in triple helical domain of type I collagen are lethal. To study whether alpha3(IX) chains with the deletion will participate in the formation of correctly folded heterotrimeric type IX collagen, we expressed mutant alpha3 chains together with normal alpha1 and alpha2 chains in insect cells. We show here that despite the deletion, mutant alpha3 chains were secreted as heterotrimeric, triple helical molecules consisting of three alpha chains in a 1:1:1 ratio. The results suggest that the next noncollagenous domain (NC2) is capable of correcting the alignment of the alpha chains, and this ensures the formation of an in-register triple helix.  相似文献   

4.
A large kindred with adult-type X-linked Alport syndrome was studied with regard to a defect in the recently described COL4A5 collagen gene. Southern blot analysis with COL4A5 cDNA probes showed loss of a MspI restriction site. Direct sequencing of cDNA amplified from lymphoblast mRNA demonstrated a single-base substitution converting a glycine codon to arginine at position 325 in the alpha 5 chain of type IV collagen. The triple-helical collagenous domain of alpha 5(IV), characterized by a Gly-X-Y repeat sequence, is interrupted 22 times by noncollagenous sequences. The mutation creates an additional interruption in the Gly-X-Y repeat motif, between interruptions 4 and 5. It is interesting that such glycine substitutions inside the COL1A1 or COL1A2 genes have been associated with many cases of osteogenesis imperfecta. This gly325-to-arg substitution presumably alters the triple-helix formation, and, in turn, modifies the ultrastructural and functional characteristics of the type IV collagen network inside the glomerular basement membrane.  相似文献   

5.
Rat retina, lens, and kidney from 8-week-old animals were assayed for the steady-state levels of mRNAs for four basement membrane components: The alpha 1 chain of type IV collagen, the alpha 2 chain of type IV collagen, the B1 chain of laminin, and the B2 chain of laminin. Each tissue exhibited markedly different ratios of the four mRNAs. The mRNA ratio for the alpha 1 chain of type IV collagen to the B1 chain of laminin varied from a value of 0.7 in retina to a value of 17 in lens. Also, the mRNA ratio for the alpha 1 chain to the alpha 2 chain of type IV collagen varied from 1.6 in retina to 17 in lens, and the mRNA ratio for the B1 chain to the B2 chain of laminin varied from 0.6 in lens to 2.9 in kidney. The mRNA coding for the alpha 1 chain of type IV collagen decreased in all three tissues as the animals increased in age from 8 to 16 weeks, with the rate of decline being greater in retina than in lens of kidney. The levels of mRNA coding for the B1 and the B2 chains of laminin decreased in the kidney between 8 and 16 weeks but at different rates. Comparison of mRNAs from kidney of rats over this time period showed that the ratio of alpha 1 to B1 remained relatively constant with age, whereas the ratio of B1 to B2 increased. One possible explanation for the results is that each tissue has elaborate, tissue-specific controls for translation that provide synthesis of basement membrane components in the same proportion, in spite of the varying steady-state levels of the mRNAs. A more likely explanation is that different tissues synthesize type IV collagen and laminin at different rates, and that even the subunit compositions of the type IV collagen and laminin molecules vary from tissue to tissue and in an age-dependent manner.  相似文献   

6.
7.
We previously observed association between variants in the plasmacytoma variant translocation 1 gene (PVT1) and end-stage renal disease (ESRD) attributed to both type 1 and type 2 diabetes, and demonstrated PVT1 expression in a variety of renal cell types. While these findings suggest a role for PVT1 in the development of ESRD, potential mechanisms for involvement remain unknown. The goal of this study was to identify possible molecular mechanisms by which PVT1 may contribute to the development and progression of diabetic kidney disease. We knocked-down PVT1 expression in mesangial cells using RNA interference, and analyzed RNA and protein levels of fibronectin 1 (FN1), collagen, type IV, alpha 1 (COL4A1), transforming growth factor beta 1 (TGFB1) and plasminogen activator inhibitor-1 (SERPINE1 or PAI-1) by qPCR and ELISA, respectively. PVT1 expression was significantly upregulated by glucose treatment in human mesangial cells, as were levels of FN1, COL4A1, TGFB1, and PAI-1. Importantly, PVT1 knockdown significantly reduced mRNA and protein levels of the major ECM proteins, FN1 and COL4A1, and two key regulators of ECM proteins, TGFB1 and PAI-1. However, we observed a higher and more rapid reduction in levels of secreted FN1, COL4A1, and PAI-1 compared with TGFB1, suggesting that at least some of the PVT1 effects on ECM proteins may be independent of this cytokine. These results indicate that PVT1 may mediate the development and progression of diabetic nephropathy through mechanisms involving ECM accumulation.  相似文献   

8.
Bouwman F  Renes J  Mariman E 《Proteomics》2004,4(12):3855-3863
Differential gel electrophoresis followed by matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry (MS) is a commonly used protein profiling method. However, observed changes can be explained in multiple ways, one of which is by the protein turnover rate. In order to easily and rapidly obtain information on both the identity and turnover of individual proteins, we applied a combination of protein labeling with L-(ring-2,3,4,5,6 2H5) phenylalanine and MALDI-TOF MS. While the spectrum reveals the identity of a protein, mass isotopomer analysis provides information about the rate of protein labeling as a measure of synthesis or turnover. Using this approach on mature 3T3-L1 adipocytes, we were able to discriminate between rapidly and slowly metabolised proteins. In our isolate, proteins of the cytoskeleton appeared to be slowly metabolised, whereas components of the extracellular matrix, in particular collagen type I alpha 1 (COL1A1) and collagen type I alpha 2 (COL1A2) showed rapid accumulation of newly synthesized proteins. Both proteins appeared to be metabolised in the same ratio as they are present in collagen fibers, i.e. 2:1 (COL1A1: COL1A2). In addition, functionally related proteins were also readily labeled. Taken together, we have shown that a combination of stable isotope labeling and protein profiling by gel electrophoresis and MALDI-TOF analysis can simultaneously provide information on the identity and relative metabolic rate of proteins in eukaryotic cells in a simple, nonhazardous and rapid-throughput way.  相似文献   

9.
《The Journal of cell biology》1995,130(5):1219-1229
Genes for the human alpha 5(IV) and alpha 6(IV) collagen chains have a unique arrangement in that they are colocalized on chromosome Xq22 in a head-to-head fashion and appear to share a common bidirectional promoter. In addition we reported a novel observation that the COL4A6 gene is transcribed from two alternative promoters in a tissue-specific manner (Sugimoto, M., T. Oohashi, and Y. Ninomiya. 1994. Proc. Natl. Acad. Sci. USA. 91:11679-11683). To know whether the translation products of both genes are colocalized in various tissues, we raised alpha 5(IV) and alpha 6(IV) chain-specific rat monoclonal antibodies against synthetic peptides reflecting sequences near the carboxy terminus of each noncollagenous (NC)1 domain. By Western blotting alpha 6(IV) chain-specific antibody recognized 27-kD monomers and associated dimers of the human type IV collagen NC1 domain, which is the first demonstration of the presence in tissues of the alpha 6(IV) polypeptide as predicted from its cDNA sequence. Immunofluorescence studies using anti-alpha 6(IV) antibody demonstrated that in human adult kidney the alpha 6(IV) chain was never detected in the glomerular basement membrane, whereas the basement membranes of the Bowman's capsules and distal tubules were positive. The staining pattern of the glomerular basement membrane was quite different from that obtained with the anti- alpha 5(IV) peptide antibody. The alpha 5(IV) and alpha 6(IV) chains were colocalized in the basement membrane in the skin, smooth muscle cells, and adipocytes; however, little if any reaction was seen in basement membranes of cardiac muscles and hepatic sinusoidal endothelial cells. Thus, both genes are expressed in a tissue-specific manner, perhaps due to the unique function of the bidirectional promoter for both genes, which is presumably different from that for COL4A1 and COL4A2.  相似文献   

10.
Type IV collagen, which has long been assumed to contain two alpha 1(IV) and one alpha 2(IV) chains, also contains alpha 3(IV), alpha 4(IV), and alpha 5(IV) chains. Stoichiometry of collagenous alpha(IV) chains differs among tissues, suggesting the existence of subclasses of type IV collagen, each with a unique chain composition. This study seeks to define, by characterization of subunit compositions of NC1 domain populations, the structural organization of type IV collagen from bovine glomerular basement membrane. NC1 hexamers from type IV collagen were separated on two affinity chromatography columns, one containing monoclonal antibodies to the alpha 3 chain, and another, to the alpha 1 chain. SDS-polyacrylamide gel electrophoresis, immunoblotting, reversed phase high-performance liquid chromatography, and enzyme-linked immunosorbent assay identified three NC1 hexamer populations: 1) a hexamer composed of (alpha 1)2 and (alpha 2)2 homodimers; 2) a hexamer composed of (alpha 3)2 and (alpha 4)2 homodimers; 3) a hexamer containing all four alpha chains connected in heterodimers, alpha 1-alpha 3 and alpha 2-alpha 4. Results suggest that there are two distinct type IV collagen molecules, one composed of alpha 1(IV) and alpha 2(IV) chains and another composed of alpha 3(IV) and alpha 4(IV) chains. Furthermore, polymerization occurs between molecules with the same chain composition and between molecules with different chain composition. Moreover, crosslinking between different alpha chains is restricted, thus limiting the number of possible macromolecular structures.  相似文献   

11.
Chou MY  Li HC 《Genomics》2002,79(3):395-401
We cloned a 4.1-kb full-length cDNA based on a reported human genomic clone containing a partial open reading frame (ORF) coding for a novel collagen-like protein. Sequence analysis indicated that the ORF codes for the alpha(1)-chain of type XXI collagen. Assembly of the genomic data reveals a complete sequence of the human gene COL21A1. COL21A1 is localized to chromosome 6p11.2-12.3, spanning 337 kb in size. The gene contains 31 exons, in which the 5'-untranslated exons 1 and 1a are alternatively spliced. The exon/domain organization of COL21A1 resembles that of the reported FACIT collagen genes, including COL9A1, COL9A2, COL9A3, and COL19A1, suggesting that these genes may have derived from the same ancestor FACIT gene by duplication. The expression of COL21A1 in human tissues is developmentally regulated, with a higher level at fetal stages. Type XXI collagen is an extracellular matrix component of the blood vessel walls, secreted by smooth-muscle cells. Platelet-derived growth factor (PDGF) has a pronounced effect on the stimulation of COL21A1 expression in cultured aortic smooth-muscle cells, suggesting that alpha1(XXI) collagen may contribute to the extracellular matrix assembly of the vascular network during blood vessel formation.  相似文献   

12.
13.
14.
Our previous report showed that human fetal lung fibroblasts secreted non-disulfide-bonded, non-helical collagenous polypeptides of alpha1(IV) and alpha2(IV) chains depending on culture conditions [Connective Tissue (1999) 31, 161-168]. The secretion of non-helical collagenous polypeptides is unexpected from the current consensus that such polypeptides are not secreted under physiological conditions. The absence of interchain disulfide bonds among alpha1(IV) and alpha2(IV) chains was always correlated with the absence of triple-helical structure of the type IV collagen. The finding corresponds with the fact that the interchain disulfide bonds are formed at or close to the completion of the type IV collagen triple-helix formation. The present report shows that ascorbate is the primary factor for the triple-helix formation of the type IV collagen. When human mesangial cells were cultured with ascorbate, only the triple-helical type IV collagen was secreted. However, when the cells were cultured without ascorbate, the non-helical alpha1(IV) and alpha2(IV) chains were secreted. Relative amounts of the secreted products were unchanged with or without ascorbate, suggesting that ascorbate is required for the step of the triple-helix formation. The ascorbate-dependency of the triple-helix formation of the type IV collagen was observed in all the human cells examined. The non-helical alpha1(IV) chain produced by the ascorbate-free culture contained about 80% less hydroxyproline than the alpha1(IV) chain from the triple-helical type IV collagen. The evidence for the non-association of the non-helical alpha1(IV) and alpha2(IV) chains in the conditioned medium was obtained by an anti-alpha1(IV) antibody-coupled affinity column chromatography for the conditioned medium. Although all the non-helical alpha1(IV) chains were found in the bound fraction, all the non-helical alpha2(IV) chains were recovered in the flow-through fraction. The present findings suggest that ascorbate plays a key role in the trimerization step of three alpha chains and/or in the subsequent triple-helix formation of the type IV collagen.  相似文献   

15.
16.
Three novel collagen VI chains, alpha4(VI), alpha5(VI), and alpha6(VI)   总被引:1,自引:0,他引:1  
We report the identification of three new collagen VI genes at a single locus on human chromosome 3q22.1. The three new genes are COL6A4, COL6A5, and COL6A6 that encode the alpha4(VI), alpha5(VI), and alpha6(VI) chains. In humans, the COL6A4 gene has been disrupted by a chromosome break. Each of the three new collagen chains contains a 336-amino acid triple helix flanked by seven N-terminal von Willebrand factor A-like domains and two (alpha4 and alpha6 chains) or three (alpha5 chain) C-terminal von Willebrand factor A-like domains. In humans, mRNA expression of COL6A5 is restricted to a few tissues, including lung, testis, and colon. In contrast, the COL6A6 gene is expressed in a wide range of fetal and adult tissues, including lung, kidney, liver, spleen, thymus, heart, and skeletal muscle. Antibodies to the alpha6(VI) chain stained the extracellular matrix of human skeletal and cardiac muscle, lung, and the territorial matrix of articular cartilage. In cell transfection and immunoprecipitation experiments, mouse alpha4(VI)N6-C2 chain co-assembled with endogenous alpha1(VI) and alpha2(VI) chains to form trimeric collagen VI molecules that were secreted from the cell. In contrast, alpha5(VI)N5-C1 and alpha6(VI)N6-C2 chains did not assemble with alpha1(VI) and alpha2(VI) chains and accumulated intracellularly. We conclude that the alpha4(VI)N6-C2 chain contains all the elements necessary for trimerization with alpha1(VI) and alpha2(VI). In summary, the discovery of three additional collagen VI chains doubles the collagen VI family and adds a layer of complexity to collagen VI assembly and function in the extracellular matrix.  相似文献   

17.
18.
The major type of collagen synthesized by fibroblasts or bone cells, type I collagen, consists of two chains normally found in a 2:1 ratio designated alpha 1(I)2 alpha 2(I) or more simply alpha 1(I)2 alpha 2. I have analyzed the relative synthesis of type I chains in these cells under conditions which reduce the initiation of protein synthesis. It was found that in bone cells, which make a large amount of collagen, the alpha 1(I):alpha 2 ratio is unaltered whereas in fibroblasts, which make smaller amounts of collagen, the alpha 2 chain is particularly sensitive to these same conditions. Examination of the collagen secreted into the medium, under these same conditions, also revealed an altered chain ratio from cells making low amounts of collagen.  相似文献   

19.
Mutations in the genes that code for collagen VI subunits, COL6A1, COL6A2, and COL6A3, are the cause of the autosomal dominant disorder, Bethlem myopathy. Although three different collagen VI structural mutations have previously been reported, the effect of these mutations on collagen VI assembly, structure, and function is currently unknown. We have characterized a new Bethlem myopathy mutation that results in skipping of COL6A1 exon 14 during pre-mRNA splicing and the deletion of 18 amino acids from the triple helical domain of the alpha1(VI) chain. Sequencing of genomic DNA identified a G to A transition in the +1 position of the splice donor site of intron 14 in one allele. The mutant alpha1(VI) chains associated intracellularly with alpha2(VI) and alpha3(VI) to form disulfide-bonded monomers, but further assembly into dimers and tetramers was prevented, and molecules containing the mutant chain were not secreted. This triple helical deletion thus resulted in production of half the normal amount of collagen VI. To further explore the biosynthetic consequences of collagen VI triple helical deletions, an alpha3(VI) cDNA expression construct containing a 202-amino acid deletion within the triple helix was produced and stably expressed in SaOS-2 cells. The transfected mutant alpha3(VI) chains associated with endogenous alpha1(VI) and alpha2(VI) to form collagen VI monomers, but dimers and tetramers did not form and the mutant-containing molecules were not secreted. Thus, deletions within the triple helical region of both the alpha1(VI) and alpha3(VI) chains can prevent intracellular dimer and tetramer assembly and secretion. These results provide the first evidence of the biosynthetic consequences of structural collagen VI mutations and suggest that functional protein haploinsufficiency may be a common pathogenic mechanism in Bethlem myopathy.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号