首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The molecular specificity of the biosynthesis of triacylglycerols by rat intestinal mucosa was examined by means of radioactive and mass tracers, and thin-layer chromatography with silver nitrate and gas-liquid chromatography with radioactivity monitoring. Bile salt micelles of alternately labeled monoacylglycerols and free fatty acids were incubated with everted sacs of intestinal mucosa for various periods of time and the triacylglycerols isolated by solvent extraction and thin-layer chromatography. Analyses of the molecular species of the triacylglycerols labeled from monoacylglycerols showed that the 2-monoacylglycerol pathway was responsible for the biosynthesis of a maximum of 90% and the X-1-monoacylglycerol pathway for about 10% of the total radioactive triacylglycerols. Detailed analyses of the molecular species of triacylglycerols labeled fro free fatty acids showed that the phosphatidic acid pathway contributed a minimum of 20-30% of the total labeled triacylglycerol formed. There was a preferential utilization in triacylglycerol biosynthesis of the more unsaturated diacylglycerols arising from the monoacylglycerol pathway and of the more saturated diacylglycerols originating from the phosphatidic acid pathway. The above experiments do not allow a demonstration of the utilization of the sn-2,3-diacylglycerols in triacylglycerol biosynthesis but are not inconsistent with it.  相似文献   

2.
Fish oil chylomicrons, obtained from mesenteric duct chyle of rats fed [3H]20:5 and [14C]20:4 or [3H]20:5 and [14C]18:2 in a fish oil emulsion, were incubated with human pancreatic lipase-colipase, human carboxyl ester lipase (CEL) and human duodenal contents. With duodenal contents, the triacylglycerols labelled with [3H]20:5 and [14C]20:4 were rapidly converted to free fatty acids (FFA) and monoacylglycerols. Also during incubation with lipase-colipase the [3H]- and [14C]triacylglycerols disappeared completely and at equal rates, but in this case much [3H]20:5 and [14C]20:4 accumulated in diacylglycerols. When CEL was also added, the rate of disappearance of [3H]- and [14C]triacylglycerols increased and the radioactivity of diacylglycerols decreased markedly. During incubation of chylomicrons labelled with [3H]20:5 and [14C]18:2 with lipase-colipase, the rates of hydrolysis of [3H]- and [14C]triacylglycerols were similar, but more [3H]20:5 than [14C]18:2 accumulated in diacylglycerols. The accumulation of [3H]diacylglycerol was reduced by adding CEL. Also when fatty acids were analyzed by gas chromatography, 20:5 was enriched in remaining triacylglycerol and in diacylglycerol after incubation with lipase-colipase alone. The data thus indicate that both lipase-colipase and CEL participate in the hydrolysis of 20:5 and 20:4 ester bonds of dietary triacylglycerol.  相似文献   

3.
The influence of taurocholate on very low density lipoprotein (VLDL) triacylglycerol synthesis and secretion was studied by isolated rat liver-parenchymal cells. The incorporation of [3H]glycerol into cell-associated and VLDL triacylglycerols were measured after incubation in medium containing 0.75 mM oleate. Taurocholate caused a maked decrease in VLDL [3H]triacylglycerol secretion from the hepatocytes: 50-150 microM taurocholate inhibited secretion of VLDL [3H]triacylglycerols by 70-90%. Similar results were obtained when the mass of secreted VLDL triacylglycerols was measured. Taurocholate caused a decreased secretion of VLDL [3H]triacylglycerols after 15-30 min incubation. A higher amount of cellular triacylglycerols was found in taurocholate-supplemented cells. Furthermore taurocholate did not change the intracellular lipolysis of triacylglycerols. These results suggest that bile acids interfere more probably with the assembly and/or secretion of VLDL-particles and not with earlier stages of VLDL formation, e.g. triacylglycerol synthesis.  相似文献   

4.
Substrate specificities of lipases from corn and other seeds   总被引:4,自引:0,他引:4  
Lipases from several seed species were shown to be relatively specific on triacylglycerols containing the major fatty acid components of the storage triacylglycerols in the same species. In a direct comparison using individual triacylglycerol as well as mixed triacylglycerol preparations, highest activities were observed in corn lipase on trilinolein and triolein, castor bean lipase on triricinolein, rapeseed lipase on trierucin, and elm seed lipase on tricaprin. This pattern of fatty acyl specificity was also observed on diacylglycerols, monoacylglycerols, and fatty acyl 4-methylumbelliferone, although the pattern became less distinct. The seed lipases were inactive on lecithins. Corn lipase was more active on tri- than di- or monolinolein, and released linoleic acids from both primary and secondary positions. As judged from the kinetics of hydrolysis of rac-glyceryl-2,3-stearate-1-oleate and rac-glyceryl-1,3-stearate-2-oleate, and of trilinolein and dilinoleins, corn lipase exerted some degree of preference in releasing fatty acid from the primary than the secondary position of a triacylglycerol. At the primary position, corn lipase was more active on oleyl ester than stearyl ester.  相似文献   

5.
The structure of mucosal triacylglycerols was studied in rat intestinal mucosa in vivo during the absorption of a low molecular weight fraction of butter oil and of the corresponding free fatty acids of medium and long chain length. The mucosal lipids were isolated by solvent extraction and the acylglycerol structures were determined by combined AgNO3- thin-layer chromatography and gas-liquid chromatography techniques and stereospecific analysis. Evidence was obtained for a rapid biosynthesis of triacylglycerols from diacylglycerols arising from the operation of both the monoacylglycerol and the phosphatidic acid biosynthetic pathways. Both sn-1,2- and sn-2,3-diacylglycerols appeared to be converted to triacylglycerols at significant rates, but a preferential utilization of sn-1,2-diacylglycerols could not be excluded. Endogenous dilution varied from a miniumum of 5% during triacylglycerol biosynthesis from monoacylglycerols to 15% during their synthesis from free fatty acids, and was characterized by a preferential placement of the endogenous acids in the sn-3 and 2 positions of the triacylglycerol molecules. Exogenous myristic acid was preferentially associated with the sn-3 position, and stearic acid became preferentially bound to the sn-1 position. The complexity of the triacylglycerol end products prevented an exact estimate of the contribution of the phosphatidic acid pathway, but the acylglycerol structures were compatible with a minimum of 20% of total triacylglycerol yield at all times.  相似文献   

6.
Diacetyl long-chain 1(3)- and 2-acyl-sn-glycerols containing either [9,10-3H]oleic acid or [1-14C]palmitic acid were synthesized by partial hydrolysis of the corresponding labelled triacylglycerols and acetylation. They were obtained in a high degree of stereochemical purity by preparative h.p.l.c. on a column containing a diol bonded phase. Each compound was rapidly metabolized by adipocyte preparations in vitro, and a high proportion of the label was recovered in the unesterified fatty acid and triacylglycerol fractions. Negligible amounts of intermediate products of hydrolysis were detected. Triacylglycerols were formed from [9,10-3H]oleic acid and from diacetyl-1(3)-[9,10-3H]oleoyl glycerol precursors at about the same rate, but the 2-isomer was metabolized rather more slowly. The results were consistent with the hypothesis that essentially complete hydrolysis occurred in the medium or at the plasma membrane, through the actions of lipoprotein lipase and monoacylglycerol lipase, and that subsequent esterification took place within the cell. To confirm that no putative intermediate monoacylglycerols were utilized for triacylglycerol biosynthesis via the monacylglycerol pathway, the positional distributions of fatty acids in triacylglycerols from each substrate were determined. No positional selectivity was observed. It was concluded that monoacylglycerols, of an origin exogenous to the tissue, e.g. those derived from plasma triacylglycerols, were not utilized to a significant degree for triacylglycerol biosynthesis in adipose tissue. The diacetyl derivatives of monoacylglycerols may serve as useful stereochemical probes in studies of triacylglycerol biosynthesis via the monoacylglycerol pathway in other tissues.  相似文献   

7.
A simple method is described for the determination of molecular species of enantiomeric sn-1,2- and sn-2,3-diacylglycerols derived from natural triacylglycerols by Grignard degradation. The method is based on a preparative separation of the enantiomeric diacylglycerols as 3,5-dinitrophenylurethane (DNPU) derivatives by high performance liquid chromatography (HPLC) on a chiral column (25 cm x 4.6 mm ID) containing R-(+)-1-(1-naphthyl)ethylamine as a stationary phase. This is followed by polar capillary gas-liquid chromatography (GLC) of the trimethylsilyl (TMS) ether derivatives of the enantiomeric diacylglycerols derived from the DNPU derivatives using trichlorosilane, which does not cause acyl migration and racemization during the reaction. The cleavage is better than 94% complete. The method was standardized with synthetic sn-1,2- and sn-2,3-dipalmitoyl- and rac-1,2-dioleoylglycerols and was applied to the identification and quantitation of individual molecular species of enantiomeric diacylglycerols generated by Grignard degradation of the triacylglycerols from corn oil, cocoa butter, and lard.  相似文献   

8.
Incubation of hepatocyte monolayers with oleate or palmitate (1.0 mM) for 2-48 h, increased (20 to 80%) the incorporation of [1,3-14C]glycerol and palmitate into triacyglycerol but not phosphatidylcholine. The effect of fatty acids on liver cell triacylglycerol formation correlated well (r = 0.990) with a simultaneous rise (2-4-fold) in phosphatidate phosphatase (EC 3.1.3.4) activity. Phosphatidate phosphatase activity and triacylglycerol biosynthesis are also increased (2-fold) after hepatocyte monolayers are incubated for 24 h with cyclic GMP in the absence of fatty acids. Fatty acid-dependent increases in liver cell triacylglycerol formation and phosphatidate phosphatase activity are not blocked by cycloheximide. Phosphatidylcholine biosynthesis was also elevated in homogenates of liver cells exposed (24-48 h) to 1.0 mM oleate when exogenous CDPcholine was added to the incubation mixture. Apparently, the phosphatidate phosphatase-dependent rise in diacylglycerols that occurs after fatty acid exposure is primarily shunted into triacylglycerols because liver cell CDPcholine content is not correspondingly increased, and high levels of diacylglycerol acyltransferase (EC 2.3.1.20) and fatty acyl-CoA derivatives are present.  相似文献   

9.
Cultured rat hepatocytes were incubated in medium containing 1.0 mM oleic acid. The incorporation of [3H]glycerol into cell-associated and medium triacylglycerols was measured after 2 h incubation. More than 95% of the secreted [3H]triacylglycerols were recovered in the very low density lipoprotein (VLDL) fraction (d less than 1.006). Chloroquine and other lysosomotropic amines promoted a marked decrease in [3H]triacylglycerol secretion from the hepatocytes while the synthesis was unaffected. At 50-200 microM final concentration, chloroquine inhibited secretion of triacylglycerols by 70-90% of the control. Similar results were obtained when the mass of secreted triacylglycerols was measured. Chloroquine caused decreased secretion of [3H]triacylglycerols after 15-30 min incubation and the inhibitory effect was completely reversible within 1-2 h after washout of chloroquine. The reduced triacylglycerol secretion was not due to increased reuptake of secreted lipoproteins or decreased protein synthesis caused by chloroquine. Electron microscopy of chloroquine-treated cells showed that the inhibition of VLDL secretion occurs at or prior to the level of the Golgi apparatus. These results suggest that chloroquine interferes with crucial steps in the secretory process and/or that lysosomal function could be essential for secretion of VLDL.  相似文献   

10.
The performance of a new ELISA assay kit (DLD Diagnostika GmbH, Hamburg, Germany) for the determination of asymmetric dimethylarginine (ADMA) was evaluated against a reversed phase HPLC method. ADMA concentrations of 55 serum samples were measured with both methods. The intra-assay CV for ADMA-ELISA was 19% (n=10). Inter-assay CVs for ADMA-ELISA were 9% for kit control 1 (0.410+/-0.037 microM) and 14% for kit control 2 (1.174+/-0.165 microM). The intra- and inter-assay CVs for HPLC assay for ADMA were 2.5% (0.586+/-0.015 microM) and 4.2% (0.664+/-0.028 microM), respectively. There was no correlation between these two methods (R(2)=0.0972). The effect of storage conditions of the samples on ADMA concentrations was investigated by HPLC. ADMA concentration was stable after four freezing and thawing cycles. Overall, the HPLC method offered better sensitivity, selectivity and, very importantly, simultaneous determination of ADMA, SDMA, l-homoarginine and l-arginine.  相似文献   

11.
Rats conditioned to eating fixed-size meals (meals at 7 AM and 7 PM), consuming diets rich in palm oil or sunflower seed oil, were used to study the metabolism of chylomicrons and hepatic very low density lipoproteins (VLDL) as a function of time after meal consumption. Rats fed a palm oil diet had higher serum triacylglycerol levels at 7 AM, before the meal (1.96 +/- 0.25 mM vs. 1.09 +/- 0.09 mM) and reached higher levels postprandially (4.32 +/- 0.48 mM vs. 2.87 +/- 0.18 mM) than sunflower seed oil-fed animals, due to higher levels of hepatic VLDL (at 7 AM) and higher levels of chylomicrons and hepatic VLDL (in the postprandial phase). These differences in serum triacylglycerol concentrations between the diets tested were found not to be due to differences in hepatic VLDL triacylglycerol secretion (similar rate for both dietary groups and not very much affected by meal consumption) or chylomicron triacylglycerol secretion (similar response profiles on both diets), pointing towards differences in plasma triacylglycerol catabolism. Subsequent double-label studies on triacylglycerol catabolism of chylomicrons from palm oil- and sunflower seed oil-fed animals in chow-fed recipients showed that palm oil triacyglycerol is catabolized slower than sunflower seed oil triacylglycerol. Furthermore, activities of postheparin plasma lipoprotein lipase tended to be higher in sunflower seed oil-fed animals. From these data we conclude that the relative hypertriglyceridemia found in palm oil-fed animals is due to less efficient catabolism and not to increased synthesis of plasma triacylglycerol.  相似文献   

12.
Dietary triacylglycerols are a major source of energy for animals. The absorption of dietary triacylglycerols involves their hydrolysis to free fatty acids and monoacylglycerols in the intestinal lumen, the uptake of these products into enterocytes, the resynthesis of triacylgylcerols, and the incorporation of newly synthesized triacylglycerols into nascent chylomicrons for secretion. In enterocytes, the final step in triacylglycerol synthesis is believed to be catalyzed primarily through the actions of acyl-CoA:diacylglycerol acyltransferase (DGAT) enzymes. In this study, we analyzed intestinal triacylglycerol absorption and chylomicron synthesis and secretion in DGAT1-deficient (Dgat1(-/-)) mice. Surprisingly, DGAT1 was not essential for quantitative dietary triacylglycerol absorption, even in mice fed a high fat diet, or for the synthesis of chylomicrons. However, Dgat1(-/-) mice had reduced postabsorptive chylomicronemia (1 h after a high fat challenge) and accumulated neutral-lipid droplets in the cytoplasm of enterocytes when chronically fed a high fat diet. These results suggest a reduced rate of triacylglycerol absorption in Dgat1(-/-) mice. Analysis of intestine from Dgat1(-/-) mice revealed activity for two other enzymes, DGAT2 and diacylglycerol transacylase, that catalyze triacylglycerol synthesis and apparently help to compensate for the absence of DGAT1. Our findings indicate that multiple mechanisms for triacylglycerol synthesis in the intestine facilitate triacylglycerol absorption.  相似文献   

13.
The objectives of this study were to measure intestinal very-low-density lipoprotein (VLDL) production in obese Zucker rats and to assess an eventual effect of a high-fat diet. VLDL secretion was specifically inhibited by orotic acid, and intestinal VLDL output was measured following the Triton WR-1339 method. After a control diet, total VLDL secretion (without orotic acid) was 4.8 +/- 0.3 and 1.4 +/- 0.1 mg triacylglycerol/ml in obese and lean rats, respectively, decreasing by 30% in obese rats after fat-feeding. Intestinal VLDL production was similar in obese and lean rats fed the control diet (0.32 +/- 0.05 and 0.27 +/- 0.05 mg triacylglycerol/ml, respectively), increasing 2.5-fold after fat-feeding in both genotypes. Thus, intestine contributed 21 and 60% of total VLDL in lean but only 7 and 24% in obese rats with the control and high-fat diets, respectively. These results show that the intestine of obese Zucker rats does not contribute to their hypertriglyceridemia, suggesting that it originates solely from liver. Moreover, their intestinal VLDL production was stimulated by fat-feeding to the same extent as in lean animals.  相似文献   

14.
Glycerolysis of palm and palm kernel oils were conducted using a commercial 1,3-specific lipase from Humicola lanuginosa (trade name: SP 398) as catalyst (500 units lipase g–1 oil) at 40°C and oil:glycerol (1:2 mol mol–1) in a solvent-free system. After 24 h, the glycerolysis products of palm and palm kernel oils consisted of 23% triacylglycerols, 18% monoacylglycerols, 38% diacylglycerols and 18% triacylglycerols, 31% monoacylglycerols, 42% diacylglycerols, respectively. The monoacylglycerol fraction of the glycerolysis product of palm oil was enriched in oleic acid. Palmitic acid content of the monoacylglycerol fraction of the same product was less than that of the original oil. Under the same conditions, monacylglycerol fraction of the palm kernel oil glycerolysis product was enriched in palmitic, stearic and oleic acids.  相似文献   

15.
To study potential effects of hepatic cholesterol concentration on secretion of very-low-density lipoprotein (VLDL) by the liver, male rats were fed on unsupplemented chow, chow with lovastatin (0.1%), or chow with lovastatin (0.1%) and cholesterol (0.1%) for 1 week. Livers were isolated from these animals and perfused in vitro, with a medium containing [2-14C]acetate, bovine serum albumin and glucose in Krebs-Henseleit buffer, and with an oleate-albumin complex. With lovastatin feeding, the hepatic concentrations of cholesteryl esters and triacylglycerols before perfusion were decreased, although free cholesterol was unchanged. However, hepatic secretion of all the VLDL lipids was decreased dramatically by treatment with lovastatin. Although total secretion of VLDL triacylglycerol, phospholipid, cholesterol and cholesteryl esters was decreased, the decrease in triacylglycerol was greater than that in free cholesterol or cholesteryl esters, resulting in secretion of a VLDL particle enriched in sterols relative to triacylglycerol. In separate studies, the uptake of VLDL by livers from control animals or animals treated with lovastatin was measured. Uptake of VLDL was estimated by disappearance of VLDL labelled with [1-14C]oleate in the triacylglycerol moiety, and was observed to be similar in both groups. During perfusion, triacylglycerol accumulated to a greater extent in livers from lovastatin-fed rats than in control animals. The depressed output of VLDL triacylglycerols and the increase in triacylglycerol in the livers from lovastatin-treated animals was indicative of a limitation in the rate of VLDL secretion. Addition of cholesterol (either free cholesterol or human low-density lipoprotein) to the medium perfusing livers from lovastatin-fed rats, or addition of cholesterol to the diet of lovastatin-fed rats, increased the hepatic concentration of cholesteryl esters and the output of VLDL lipids. The concentration of cholesteryl esters in the liver was correlated with the secretion of VLDL by the liver. These data suggest that cholesterol is an obligate component of the VLDL required for its secretion. It is additionally suggested that cholesteryl esters are in rapid equilibrium with a small pool of free cholesterol which comprises a putative metabolic pool available and necessary for the formation and secretion of the VLDL. Furthermore, the specific radioactivity (d.p.m./mumol) of the secreted VLDL free cholesterol was much greater than that of hepatic free cholesterol, suggesting that the putative hepatic metabolic pool is only a minor fraction of total hepatic free cholesterol.  相似文献   

16.
A new HPLC method for the simultaneous determination of celecoxib, carboxycelecoxib and hydroxycelecoxib in human plasma samples has been developed. Following a solid-phase extraction procedure, the samples were separated by gradient reversed-phase HLPC (C(18)) and quantified using UV detection at 254 nm. The method was linear over the concentration range 10-500 ng/ml. The intra-assay variability for the three analytes ranged from 4.0 to 12.6% and the inter-assay variability from 4.9 to 14.2%. The achieved limits of quantitation (LOQ) of 10 ng/ml for each analyte allowed the determination of the pharmacokinetic parameters of the analytes after administration of 100 mg celecoxib.  相似文献   

17.
In order to distinguish between possible fatty acid differences during lumenal lipolysis and cellular absorption, we have reinvestigated the in vitro hydrolysis of menhaden oil and its alkyl esters by pancreatic lipase. For this purpose we incubated menhaden oil or its fatty acid methyl and ethyl esters with porcine pancreatic lipase in the presence of bile salts and determined the composition of the released free fatty acids, monoacylglycerols, diacylglycerols, and residual triacylglycerols, or the free fatty acids and residual alkyl esters, respectively, by thin-layer and gas-liquid chromatography. There was significant discrimination against the delta 4- to delta 7-unsaturated fatty acids of both medium and long chain lengths during the hydrolysis of menhaden oil and its fatty acid ethyl esters. In general, the ethyl esters were hydrolyzed 10-50 times more slowly than the corresponding glyceryl esters, depending on the exact ratio of the two substrate types. None of the triacylglycerols or ethyl esters, however, was completely resistant to hydrolysis resulting in an eventual cleavage of all the alkyl esters and presumably all the primary ester bonds in the triacylglycerol molecules. Since the rate of release of the least resistant fatty acid exceeded that of the most resistant acid by only a factor of 6, it is concluded that in the presence of a large excess of lipase the liberated fatty acids would approach the composition of the dietary alkyl or glyceryl esters, as observed during lumenal lipolysis (Yang, L.-Y., A. Kuksis, and J. J. Myher. 1989. Biochem. Cell Biol. 67: 192-204).  相似文献   

18.
Effect of even- and odd-numbered saturated fatty acids, ranging from lauric to stearic acids, was studied on the de novo synthesis of glycerolipids in rat liver slices. For all fatty acids tested, a marked synthesis of saturated glycerolipids was observed except for phosphatidylethanolamine. When compared at the fixed concentration (2 mM), myristic acid caused a peak synthesis of saturated glycerolipids, and the presence of longer or shorter even- and odd-numbered fatty acids resulted in their lesser formation. The formation of saturated species of triacylglycerol and phosphatidylcholine closely followed the mode of synthesis of saturated diacylglycerols, though dipentadecanoyl-and dipalmitoylglycerols appeared to be less converted to the corresponding saturated triacylglycerols in comparison to the other saturated diacylglycerols. Very little formation of saturated diacylglycerols occurred when lauric, tridecanoic and stearic acids were tested. The majority of lauric and tridecanoic acids incorporated into saturated diacylglycerols was shown to be chain-elongated prior to esterification.  相似文献   

19.
Lipid emulsions were prepared with compositions similar to the triacylglycerol-rich plasma lipoproteins, but also incorporating added small amounts of monoacylglycerols. Control emulsions without monoacylglycerol were metabolized similarly to natural chylomicrons or very-low-density lipoproteins when injected intravenously in rats. The emulsion triacylglycerols and cholesteryl esters were both removed rapidly from the bloodstream, with the removal rates of triacylglycerols faster than those of cholesteryl esters. Much of the removed cholesteryl ester was found in the liver, but only a small fraction of the triacylglycerol, consistent with hepatic uptake of the triacylglycerol-depleted remnants of the injected emulsion. Emulsions incorporating added monooleoylglycerol or stearic acid were metabolized similarly. Added 1- or 2-monostearoylglycerol had no effect on triacylglycerol removal from plasma, but the removal rate of cholesteryl esters was decreased and less cholesteryl ester was found in the liver. These effects are similar to those recently described when emulsions and chylomicrons contained triacylglycerols with a saturated acyl chain at the glycerol 2-position, suggesting that saturated monoacylglycerol produced by the action of lipoprotein lipase may cause triacylglycerol-depleted remnant particles to remain in the plasma instead of being rapidly taken up by the liver.  相似文献   

20.
Enantiomeric diacylglycerols were emulsified, mole for mole, with lyso(1-acyl) lecithin and were hydrolyzed with lipoprotein lipase in NH4Cl-beef serum albumin buffer at pH 8.6 after a brief incubation with delipidated rat serum. The enzyme was prepared from lyophilized and dialyzed bovine skim milk in a 4 percent solution. The course of hydrolysis for each set of enantiomers was determined by gas-liquid chromatography of the masses of the diacylglycerols remaining or monoacylglycerols released in the medium between 0 and 15 min. The majority of sets of sn-1,2- and 2,3-diacylglycerols, including an isotope-labeled true enantiomeric set which was assessed by mass spectrometry, demonstrated preference by the enzyme for lipolysis at position 1 but with less specificity than previously was shown in sn-triacylglycerol hydrolysis. The results preclude the possibility that the predominance of sn-2,3-diacylglycerol intermediates during triacylglycerol hydrolysis is due solely to a preferential breakdown of the 1,2-isomers and reinforce the conclusion that lipoprotein lipase is specific for position 1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号