首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
DCT1 (NRAMP2, DMT1, slc11a2) is a member of the NRAMP family and functions as general metal ion transporter in mammals; defective DCT1 causes anemia. The driving force for metal ion transport is protonmotive force, where protons are transported in the same direction as metal ions. The stoichiometry between metal ion and proton varies under different conditions due to mechanistic proton slip. To better understand this phenomenon, we performed site-directed mutagenesis of DCT1 and analyzed the mutants by measurement of metal ion uptake activity and electrophysiology in Xenopus laevis oocytes. A single reciprocal mutation, I144F, between DCT1 and the homologous yeast transporter Smf1p located in putative transmembrane domain 2 abolished the metal ion transport activity of DCT1, significantly increased the slip currents, and generated sodium slip currents. A double mutation adding F227I in transmembrane domain 4 to I144F in transmembrane domain 2 restored the uptake activity of DCT1 and reduced the slip currents. These results demonstrate the importance of these regions in coupling of metal ions and protons as well as the possible proximity of I144 and F227 in the folded structure of DCT1.  相似文献   

2.
DCT1 (NRAMP2, DMT1, slc11a2) is a member of the NRAMP family and functions as general metal ion transporter in mammals; defective DCT1 causes anemia. The driving force for metal ion transport is protonmotive force, where protons are transported in the same direction as metal ions. The stoichiometry between metal ion and proton varies under different conditions due to mechanistic proton slip. To better understand this phenomenon, we performed site-directed mutagenesis of DCT1 and analyzed the mutants by measurement of metal ion uptake activity and electrophysiology in Xenopus laevis oocytes. A single reciprocal mutation, I144F, between DCT1 and the homologous yeast transporter Smf1p located in putative transmembrane domain 2 abolished the metal ion transport activity of DCT1, significantly increased the slip currents, and generated sodium slip currents. A double mutation adding F227I in transmembrane domain 4 to I144F in transmembrane domain 2 restored the uptake activity of DCT1 and reduced the slip currents. These results demonstrate the importance of these regions in coupling of metal ions and protons as well as the possible proximity of I144 and F227 in the folded structure of DCT1.  相似文献   

3.
We introduced mutations to test the function of the conserved amino-terminal region of the gamma subunit from the Escherichia coli ATP synthase (F0F1-ATPase). Plasmid-borne mutant genes were expressed in an uncG strain which is deficient for the gamma subunit (gamma Gln-14-->end). Most of the changes, which were between gamma Ile-19 and gamma Lys-33, gamma Asp-83 and gamma Cys-87, or at gamma Asp-165, had little effect on growth by oxidative phosphorylation, membrane ATPase activity, or H+ pumping. Notable exceptions were gamma Met-23-->Arg or Lys mutations. Strains carrying these mutations grew only very slowly by oxidative phosphorylation. Membranes prepared from the strains had substantial levels of ATPase activity, 100% compared with wild type for gamma Arg-23 and 65% for gamma Lys-23, but formed only 32 and 17%, respectively, of the electrochemical gradient of protons. In contrast, other mutant enzymes with similar ATPase activities (including gamma Met-23-->Asp or Glu) formed H+ gradients like the wild type. Membranes from the gamma Arg-23 and gamma Lys-23 mutants were not passively leaky to protons and had functional F0 sectors. These results suggested that substitution by positively charged side chains at position 23 perturbed the energy coupling. The catalytic sites of the mutant enzymes were still regulated by the electrochemical H+ gradient but were inefficiently coupled to H+ translocation in both ATP-dependent H+ pumping and delta mu H+ driven ATP synthesis.  相似文献   

4.
The rotation of an asymmetric core of subunits in F0F1-ATP synthases has been proposed as a means of coupling the exergonic transport of protons through F0 to the endergonic conformational changes in F1 required for substrate binding and product release. Here we review earlier evidence both for and against subunit rotation and then discuss our most recent studies using reversible intersubunit disulfide cross-links to test for rotation. We conclude that the subunit of F1 rotates relative to the surrounding catalytic subunits during catalytic turnover by both soluble F1 and membrane-bound F0F1. Furthermore, the inhibition of this rotation by the modification of F0 with DCCD suggests that rotation in F1 is obligatorily coupled to rotation in F0 as an integral part of the coupling mechanism.  相似文献   

5.
A carbodiimide with a photoactivatable diazirine substituent was synthesized and incubated with the Na(+)-translocating F(1)F(0) ATP synthase from both Propionigenium modestum and Ilyobacter tartaricus. This caused severe inhibition of ATP hydrolysis activity in the absence of Na(+) ions but not in its presence, indicating the specific reaction with the Na(+) binding c-Glu(65) residue. Photocross-linking was investigated with the substituted ATP synthase from both bacteria in reconstituted 1-palmitoyl-2-oleyl-sn-glycero-3-phosphocholine (POPC)-containing proteoliposomes. A subunit c/POPC conjugate was found in the illuminated samples but no a-c cross-links were observed, not even after ATP-induced rotation of the c-ring. Our substituted diazirine moiety on c-Glu(65) was therefore in close contact with phospholipid but does not contact subunit a. Na(+)in/(22)Na(+)out exchange activity of the ATP synthase was not affected by modifying the c-Glu(65) sites with the carbodiimide, but upon photoinduced cross-linking, this activity was abolished. Cross-linking the rotor to lipids apparently arrested rotational mobility required for moving Na(+) ions back and forth across the membrane. The site of cross-linking was analyzed by digestions of the substituted POPC using phospholipases C and A(2) and by mass spectroscopy. The substitutions were found exclusively at the fatty acid side chains, which indicates that c-Glu(65) is located within the core of the membrane.  相似文献   

6.
7.
4F2hc stabilizes GLUT1 protein and increases glucose transport activity   总被引:1,自引:0,他引:1  
Glucose transporter 1 (GLUT1) is widely distributed throughout various tissues and contributes to insulin-independent basal glucose uptake. Using a split-ubiquitin membrane yeast two-hybrid system, we newly identified 4F2 heavy chain (4F2hc) as a membrane protein interacting with GLUT1. Though 4F2hc reportedly forms heterodimeric complexes between amino acid transporters, such as LAT1 and LAT2, and regulates amino acid uptake, we investigated the effects of 4F2hc on GLUT1 expression and the associated glucose uptake. First, FLAG-tagged 4F2hc and hemagglutinin-tagged GLUT1 were overexpressed in human embryonic kidney 293 cells and their association was confirmed by coimmunoprecipitation. The green fluorescent protein-tagged 4F2hc and DsRed-tagged GLUT1 showed significant, but incomplete, colocalization at the plasma membrane. In addition, an endogenous association between GLUT1 and 4F2hc was demonstrated using mouse brain tissue and HeLa cells. Interestingly, overexpression of 4F2hc increased the amount of GLUT1 protein in HeLa and HepG2 cells with increased glucose uptake. In contrast, small interfering RNA (siRNA)-mediated 4F2hc gene suppression markedly reduced GLUT1 protein in both cell types, with reduced glucose uptake. While GLUT1 mRNA levels were not affected by overexpression or gene silencing of 4F2hc, GLUT1 degradation after the addition of cycloheximide was significantly suppressed by 4F2hc overexpression and increased by 4F2hc siRNA treatment. Taken together, these observations indicate that 4F2hc is likely to be involved in GLUT1 stabilization and to contribute to the regulation of not only amino acid but also glucose metabolism.  相似文献   

8.
The binding of the external loop1 of DCT1 with divalent metal cations was first verified by the NMR measurements of isolated peptides and the binding sites were determined.  相似文献   

9.
The conversion of red cells of patients with sickle cell anemia (S-S) from biconcave disk to sickle shape by removal of oxygen was found to increase the fraction of medium trapped in cells packed by centrifugation from 0.036 (S.E. 0.003) to 0.106 (S.E. 0.004). The fraction of water in the cells (corrected for trapped medium) was not affected by this shape transformation. Cation transport, however, was changed profoundly. S-S cells incubated in N2 rather than O2 showed net K loss with acceleration of both influx and outflux. That this change in K transport was due to the process of sickling was indicated by (1) the persistence of the effect in the absence of plasma, (2) the absence of the effect in hypoxic S-S cells in which sickling was inhibited by alkali or carbon monoxide, (3) the reversal of the effect when sickling was reversed by exposure to O2, and (4) the independence of the effect from such potentially important factors as age of the cell population. The acceleration of K transport by sickling is probably mediated by modification of the cell surface rather than the cell interior since concentrated sickle hemoglobin solutions in O2 or N2 did not show selective affinity for K. In molecular terms, the effect of sickling on K transport can be explained by presuming that the shape change (1) opens pathways for the free diffusion of K, and (2) accelerates K transport by a non-diffusion carrier process. The evidence for the former mechanism included (a) dependence of K influx into sickled cells on the concentration of K in the medium, and (b) increase in the total cation content of sickled cells with increasing pH. Observations suggestive of a carrier process included (a) the failure of sickled cell K concentration to become equal to external K concentration even after 48 hours, (b) the deviation of the flux ratio from that characteristic of diffusion, and (c) the dependence of K influx on glycolysis.  相似文献   

10.
Sodium citrate has previously been shown to convert native alpha(1)-antitrypsin into the inactive latent state and cause alpha(1)-antitrypsin to polymerize via the C-sheet pathway instead of the more common A-sheet pathway. In order to begin to understand these dramatic effects, we have examined the influence of low concentrations of sodium citrate upon the structure, stability and function of alpha(1)-antitrypsin. In 0.5 M citrate, the midpoint of guanidine hydrochloride-induced unfolding was increased by 1.8 M and the rate of heat inactivation was decreased approximately 30-fold compared with Tris or phosphate buffer. alpha(1)-Antitrypsin was fully active in the presence of a range of citrate concentrations (0. 1-0.5 M), forming a stable 1:1 complex with chymotrypsin. The association rate constant between alpha(1)-antitrypsin and chymotrypsin was decreased with increasing citrate concentration. Fluorescence and circular dichroism spectroscopy demonstrated no significant changes in the tertiary structure due to the presence of citrate. However, the insertion rate of exogenous reactive-center loop peptide increased with increasing citrate concentration, indicating some structural changes in the A beta-sheet region. Taken together, these data suggest that in the presence of 0.5 M citrate alpha(1)-antitrypsin adopts a highly stable but active conformation.  相似文献   

11.
12.
Although wild-type human presenilin 1 (PS1) rescues the C. elegans egg-laying (egl) phenotype that is caused by a loss of function mutation in the C. elegans presenilin homologue sel12, most familial Alzheimer's disease (FAD)-linked PS1 mutants only partially rescue this phenotype. To investigate the effects of the loss of function sel12 mutation on Abeta production in mammalian cells, we analyzed Abeta production in transfected H4 neuroglioma cells expressing the PS1 homologue of the sel12 C60S mutant, PS1 C92S. This analysis revealed that PS1 C92S increased Abeta42 levels in a similar fashion to other pathogenic Alzheimer's disease (AD) PS1 mutations. Significantly, the PS1 C92S mutation has recently been identified as the pathogenic mutation in an Italian family with FAD. Thus, placing a mutation that results in loss of function in C. elegans into a context whereby its effect on mammalian cells can be evaluated suggests that all FAD-linked PS1 mutants result in increased Abeta42 production through a partial loss of function mechanism.  相似文献   

13.
14.
Acidification inside the vacuo-lysosome systems is ubiquitous in eukaryotic organisms and essential for organelle functions. The acidification of these organelles is accomplished by proton-translocating ATPase belonging to the V-type H+-ATPase superfamily. However, in terms of chemiosmotic energy transduction, electrogenic proton pumping alone is not sufficient to establish and maintain those compartments inside acidic. Current studies have shown that thein situ acidification depends upon the activity of V-ATPase and vacuolar anion conductance; the latter is required for shunting a membrane potential (interior positive) generated by the positively charged proton translocation. Yeast vacuoles possess two distinct Cl transport systems both participating in the acidification inside the vacuole, a large acidic compartment with digestive and storage functions. These two transport systems have distinct characteristics for their kinetics of Cl uptake or sensitivity to a stilbene derivative. One shows linear dependence on a Cl concentration and is inhibited by 4,4-diisothiocyano-2,2-stilbenedisulfonic acid (DIDS). The other shows saturable kinetics with an apparentK m for Cl of approximately 20 mM. Molecular mechanisms of the chemiosmotic coupling in the vacuolar ion transport and acidification inside are discussed in detail.  相似文献   

15.
Jee J  Byeon IJ  Louis JM  Gronenborn AM 《Proteins》2008,71(3):1420-1431
The immunoglobulin-binding domain B1 of streptococcal protein G (GB1), a very stable, small, single-domain protein, is one of the most extensively used models in the area of protein folding and design. Variants derived from a library of randomized hydrophobic core residues previously revealed alternative folds, namely a completely intertwined tetramer (Frank et al., Nat Struct Biol 2002;9:877-885) and a domain-swapped dimer (Byeon et al., J Mol Biol 2003;333:141-152). Here, we report the NMR structure of the single amino acid mutant Ala-34-Phe which exists as side-by-side dimer. The dimer dissociation constant is 27 +/- 4 microM. The dimer interface comprises two structural elements: First, the beta-sheets of the two monomers pair in an antiparallel arrangement, thereby forming an eight-stranded beta-sheet. Second, the alpha-helix is shortened, ending in a loop that engages in intermolecular contacts. The largest difference between the monomer unit in the A34F dimer and the monomeric wild-type GB1 is the dissolution of the C-terminal half of the alpha-helix associated with a pronounced slow conformational motion of the interface loop. This involves a large movement of the Tyr-33 side chain that swings out from the monomer to engage in dimer contacts.  相似文献   

16.
The Na(+)-K(+)-2Cl(-) cotransporter (NKCC1) located on the basolateral membrane of intestinal epithelia has been postulated to be the major basolateral Cl(-) entry pathway. With targeted mutagenesis, mice deficient in the NKCC1 protein were generated. The basal short-circuit current did not differ between normal and NKCC1 -/- jejuna. In the -/- jejuna, the forskolin response (22 microA/cm(2); bumetanide insensitive) was significantly attenuated compared with the bumetanide-sensitive response (52 microA/cm(2)) in normal tissue. Ion-replacement studies demonstrated that the forskolin response in the NKCC1 -/- jejuna was HCO(3)(-) dependent, whereas in the normal jejuna it was independent of the HCO(3)(-) concentration in the buffer. NKCC1 -/- ceca exhibited a forskolin response that did not differ significantly from that of normal ceca, but unlike that of normal ceca, was bumetanide insensitive. Ion-substitution studies suggested that basolateral HCO(3)(-) as well as Cl(-) entry (via non-NKCC1) paths played a role in the NKCC1 -/- secretory response. In contrast to cystic fibrosis mice, which lack both basal and stimulated Cl(-) secretion and exhibit severe intestinal pathology, the absence of intestinal pathology in NKCC1 -/- mice likely reflects the ability of the intestine to secrete HCO(3)(-) and Cl(-) by basolateral entry mechanisms independent of NKCC1.  相似文献   

17.
Exposure to bleomycin can result in an inflammatory lung injury. The biological effect of this anti-neoplastic agent is dependent on its coordination of iron with subsequent oxidant generation. In lung cells, divalent metal transporter 1 (DMT1) can participate in metal transport resulting in control of an oxidative stress and tissue damage. We tested the postulate that metal import by DMT1 would participate in preventing lung injury after exposure to bleomycin. Microcytic anemia (mk/mk) mice defective in DMT1 and wild-type mice were exposed to either bleomycin or saline via intratracheal instillation and the resultant lung injury was compared. Twenty-four h after instillation, the number of neutrophils and protein concentrations after bleomycin exposure were significantly elevated in the mk/mk mice relative to the wild-type mice. Similarly, levels of a pro-inflammatory mediator were significantly increased in the mk/mk mice relative to wild-type mice following bleomycin instillation. Relative to wild-type mice, mk/mk mice demonstrated lower non-heme iron concentrations in the lung, liver, spleen, and splenic, peritoneal, and liver macrophages. In contrast, levels of this metal were elevated in alveolar macrophages from mk/mk mice. We conclude that DMT1 participates in the inflammatory lung injury after bleomycin with mk/mk mice having increased inflammation and damage following exposure. This finding supports the hypothesis that DMT1 takes part in iron detoxification and homeostasis in the lung.  相似文献   

18.
Active calcium transport in intestine is essential for serum calcium homeostasis as well as for bone formation. It is well recognized that vitamin D is a major, if not sole, stimulator of intestinal calcium transport activity in mammals. Besides vitamin D, endogenous glucose 1-phosphate (G1P) affects calcium transport activity in some microorganisms. In this study, we investigated whether G1P affects intestinal calcium transport activity in mammals as well. Of several glycolytic intermediates, G1P was the sole sugar compound in stimulating intestinal calcium uptake in Caco-2 cells. G1P stimulated net calcium influx and expression of calbindin D9K protein in rat intestine, through an active transport mechanism. Calcium uptake in G1P-supplemented rats was greater than that in the control rats fed a diet containing adequate vitamin D3. Bone mineral density (BMD) of aged rat femoral metaphysis and diaphysis was also increased by feeding the G1P diet. G1P did not affect serum levels of 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] at all. These results suggest that exogenously applied G1P stimulates active transport of calcium in intestine, independent of vitamin D, leading to an increase of BMD.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号