首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Efficient separation of recombinant polypeptides from proteins of the expression host and their subsequent derivatisation with functional chemical groups is essential for the success of many biological applications. Numerous tag systems have been developed to facilitate the purification procedure but only limited progress has been made in development of generic methods for targeted modification of proteins with functional groups. In this work, we present a novel 6 amino acid long C-terminal protein tag that can be selectively modified with functionalized derivatives of farnesyl isoprenoids by protein farnesyltransferase. The reaction could be performed in complex protein mixtures without detectable unspecific labeling. We demonstrate that this modification can be used to purify the target protein by over 800-fold in a single purification step using phase partitioning. Moreover, we show that the fluorescent group could be used to monitor the interaction of the derivatized proteins with other polypeptides.  相似文献   

2.
The immobilization of a protein by covalent attachment to a support matrix should involve only functional groups of the protein that are not essential for its biological activity. A general strategy for obtaining recombinant proteins designed for oriented covalent grafting onto copolymers was investigated. The rationale involves the definition of seven p24-derived recombinant proteins as fused to either distant or adjacent tags comprising primary amine rich tag consisting of six contiguous lysines suitable for oriented covalent immobilization and a hexa-histidine tag suitable for metal chelate affinity purification. High-level expression, efficient affinity purification, and coupling yields onto maleic anhydride-alt-methyl vinyl ether copolymers higher than 95% were obtained for all proteins. Afterwards, an investigation of the biological features of the immobilized vs. nonimmobilized protein onto the copolymer allowed us to select one bioconjugate which was used in a diagnostic context, i.e., as a capture antigen in an ELISA format test. Sera from 107 HIV-seropositive individuals at various stages of HIV infection, including two seroconversion panels and 104 healthy HIV-seronegative controls, were tested using either RH24 or RK24H-copolymer coated onto the microtiter plate. These assays showed that the use of such a protein-copolymer bioconjugate allowed detection of lower antibody titers than the RH24 protein, illustrating the potential of applications of such doubly tagged proteins. Thus, a set of expression vectors was designed containing four different combinations of hexa-lysine and hexa-histidine tags and a multiple cloning site, allowing the production of different recombinant fusion proteins suitable for biological reactivity conservation after immobilization.  相似文献   

3.
Chmelik J 《Proteomics》2007,7(16):2719-2728
Field-flow fractionation (FFF) represents a group of elution separation methods where external force fields act perpendicularly on analytes in a carrier liquid flows with nonuniform velocity profiles. It is an elution separation method that enables to separate analytes in relatively short times and collect fractions for further characterization or for investigation of their properties. Other advantages of FFF are small consumption of samples and gentle experimental conditions. These make FFF uniquely qualified for separation and purification of biological samples. The most promising are applications of different variants of flow FFF utilizing a cross flow through membrane channel walls to separate proteins. The separation is based on differences in protein diffusion coefficients, which allows calculating the size of macromolecules. Other FFF techniques (e.g., electrical, isoelectric, and sedimentation FFF) were also used for separation of biomolecules. FFF appears to be not only promising rapid technique for protein separation but it offers some other advantages in sample preparation, especially, focusing (hyperlayer) FFF techniques that enable preparation of homogeneous fractions of cells. Selected applications of FFF to protein analysis are described and future trends in application of FFF to proteomics are discussed.  相似文献   

4.
In this study, we investigated the use of poly-mer-bound precursor for generating a radiolabeled prosthetic group to be used for conjugate labeling of biological macromolecules. For the approach, a trialkyltin chloride in which the tin was bound to a hydrophilic PEG-based resin support via one of the alkyl groups was synthesized. This resin was then used to prepare a resin-bound trialkyltin benzoic acid, which in some cases was further derivatized on-resin by converting it to a succinimidyl ester. Exposure of the resin-bound compounds to electrophilic radioiodine (12?I) in either an aqueous or methanol solvent liberated either free radiolabeled [12?I]iodobenzoic acid or its succinimidyl ester without co-release of the resin-bound precursors. Radiochemical yield was between 35% and 75%, depending on the solvent system and precursor. As example applications for the released compounds, the amine-reactive N-succinimidyl-[12?I]iodobenzoate prosthetic group was used for conjugate radiolabeling of a peptide, tomato plant systemin, and two proteins, albumin and IgG antibody. These results demonstrate that resin-bound organotin precursors in which the compound to be labeled is tethered to the support via the tin group to be substituted can be used to produce radioiodine-labeled aromatic prosthetic groups in good specific activity without the need for HPLC purification. This solid-phase approach is potentially adaptable to kit-formulation for performing conjugate radiolabeling of biological macromolecules.  相似文献   

5.
The interactions of biological macromolecules with nanoparticles underlie a wide variety of current and future applications in the fields of biotechnology, medicine and bioremediation. The same interactions are also responsible for mediating potential biohazards of nanomaterials. Some applications require that proteins adsorb to the nanomaterial and that the protein resists or undergoes structural rearrangements. This article presents a screening method for detecting nanoparticle-protein partners and conformational changes on time scales ranging from milliseconds to days. Mobile fluorophores are used as reporters to study the interaction between proteins and nanoparticles in a high-throughput manner in multi-well format. Furthermore, the screening method may reveal changes in colloidal stability of nanomaterials depending on the physicochemical conditions.  相似文献   

6.
膜蛋白在诸多生物过程,如呼吸作用、光合作用、信号识别和分子转运等方面发挥着重要作用,近年来,去污剂的快速发展,在一定程度上极大地推动了膜蛋白研究的进展。去污剂广泛应用于膜蛋白的提取、增溶、纯化、理化性质及结构研究,然而如何选择合适的去污剂往往是一项复杂的任务。本文从以下两个方面入手系统地描述了去污剂的重要理化性质及其在膜蛋白结构功能研究中的应用,(1)去污剂结构及其对去污剂性质和水溶性的影响,去污剂形成胶束的条件及影响去污剂胶束形成的其他因素。希望这些关于去污剂的基本性质和参数的介绍,可以为相关科研工作者选用去污剂提供一个理论依据。(2)去污剂抽提膜蛋白的流程和注意细节,去污剂对膜蛋白纯化时分子量测定的影响,膜蛋白研究中去污剂的置换与去除,膜蛋白结构、功能研究案例归纳。希望这些应用细节、课题研究,可以为相关科研工作者研究膜蛋白结构功能时提供一个经验借鉴。  相似文献   

7.
膜蛋白在诸多生物过程,如呼吸作用、光合作用、信号识别和分子转运等方面发挥着重要作用,近年来,去污剂的快速发展,在一定程度上极大地推动了膜蛋白研究的进展。去污剂广泛应用于膜蛋白的提取、增溶、纯化、理化性质及结构研究,然而如何选择合适的去污剂往往是一项复杂的任务。本文从以下两个方面入手系统地描述了去污剂的重要理化性质及其在膜蛋白结构功能研究中的应用,(1)去污剂结构及其对去污剂性质和水溶性的影响,去污剂形成胶束的条件及影响去污剂胶束形成的其他因素。希望这些关于去污剂的基本性质和参数的介绍,可以为相关科研工作者选用去污剂提供一个理论依据。(2)去污剂抽提膜蛋白的流程和注意细节,去污剂对膜蛋白纯化时分子量测定的影响,膜蛋白研究中去污剂的置换与去除,膜蛋白结构、功能研究案例归纳。希望这些应用细节、课题研究,可以为相关科研工作者研究膜蛋白结构功能时提供一个经验借鉴。  相似文献   

8.
Most approaches to monitoring interactions between biological macromolecules require large amounts of material, rely upon the covalent modification of an interaction partner, or are not amenable to real-time detection. We have developed a generalizable assay system based on interactions between proteins and reporter ribozymes. The assay can be configured in a modular fashion to monitor the presence and concentration of a protein or of molecules that modulate protein function. We report two applications of the assay: screening for a small molecule that disrupts protein binding to its nucleic acid target and screening for protein protein interactions. We screened a structurally diverse library of antibiotics for small molecules that modulate the activity of HIV-1 Rev-responsive ribozymes by binding to Rev. We identified an inhibitor that subsequently inhibited HIV-1 replication in cells. A simple format switch allowed reliable monitoring of domain-specific interactions between the blood-clotting factor thrombin and its protein partners. The rapid identification of interactions between proteins or of compounds that disrupt such interactions should have substantial utility for the drug-discovery process.  相似文献   

9.
With recent advances in protein microchemistry, compatible methods for the preparation and quantitation of proteins and peptides are required. Fluorescamine, a reagent which reacts with primary amino groups has been used successfully to detect amino acids, peptides, and proteins in various micromethods. This article discusses these methods which include (1) amino acid analysis of protein and peptide hydrolysates with postcolumn fluorescamine derivatization; (2) purification and characterization of proteins and peptides by reversed-phase HPLC with postcolumn fluorescamine derivatization; (3) purification of peptides by two-dimensional chromatography and electrophoresis on thin-layer cellulose with fluorescamine staining; and (4) electroblotting of protein bands from SDS-PAGE to glass fiber filters and polyvinylidene difluoride (PVDF) membranes with fluorescamine staining. In addition, this article also compares a postcolumn fluorescamine detection system with a UV detection system in the applications of amino acid analysis and reversed-phase HPLC protein/peptide analysis.  相似文献   

10.
Tethered bilayer lipid membranes are stable and promising model systems that mimic several properties of biological membranes. They provide an electrically insulating platform for the incorporation and study of functional membrane proteins, especially ion channels. Covalently linked to a solid support, they also offer enhanced stability compared with other model architectures. If the support can be used as an electrode, electrical characterisation of the system is possible and biosensing applications can be envisioned.Here, we will review some tethered bilayer structures developed in the past and show some examples of functional protein incorporation, both on oxide and gold substrates.  相似文献   

11.
Many experimental approaches in biology and biophysics, as well as applications in diagnosis and drug discovery, require proteins to be immobilized on solid supports. Protein microarrays, for example, provide a high-throughput format to study biomolecular interactions. The technique employed for protein immobilization is a key to the success of these applications. Recent biochemical developments are allowing, for the first time, the selective and traceless immobilization of proteins generated by cell-free systems without the need for purification and/or reconcentration prior to the immobilization step.  相似文献   

12.
The major macromolecules of basement membranes-collagen IV, laminin-1, and heparan sulfate proteoglycan (HSPG)-have been analyzed by atomic force microscopy (AFM), both individually and in combination with each other. The positions of laminin binding to collagen IV were mapped and compared with the positions of imperfections in the amino acid sequence of collagen IV; the apparent molecular volumes of the HSPG proteoglycans were measured and used to estimate the corresponding molecular weights. Even the thin, thread-like strands of the polyanion heparan sulfate can be visualized with AFM without staining, coating, or fixation. These strands are single polysaccharide chains and are thus thinner than single-stranded DNA. The heparan sulfate strands in HSPG are necessary for protein filtration in kidney basement membranes. We propose that these thin strands filter proteins by functioning as an entropic brush-i.e., that they filter proteins by their constant thermally driven motion in the basement membrane. These AFM analyses in air are a step toward AFM analyses under fluid of basement membrane macromolecules interacting with each other.  相似文献   

13.
Synthetic polymer nanoparticles (NPs) that display high affinity to protein targets have significant potential for medical and biotechnological applications as protein capture agents or functional replacements of antibodies ("plastic antibodies"). In this study, we modified an immunological assay (enzyme-linked immunosorbent assay: ELISA) into a high-throughput screening method to select nanoparticles with high affinity to target proteins. Histone and fibrinogen were chosen as target proteins to demonstrate this concept. The selection process utilized a biotinylated NP library constructed with combinations of functional monomers. The screen identified NPs with distinctive functional group compositions that exhibited high affinity to either histone or fibrinogen. The variation of protein affinity with changes in the nature and amount of functional groups in the NP provided chemical insight into the principle determinants of protein-NP binding. The NP affinity was semiquantified using the ELISA-mimic assay by varying the NP concentrations. The screening results were found to correlate with solution-based assay results. This screening system utilizing a biotinylated NP is a general approach to optimize functional monomer compositions and can be used to rapidly search for synthetic polymers with high (or low) affinity for target biological macromolecules.  相似文献   

14.
Plants present various advantages for the production of biomolecules, including low risk of contamination with prions, viruses and other pathogens, scalability, low production costs, and available agronomical systems. Plants are also versatile vehicles for the production of recombinant molecules because they allow protein expression in various organs, such as tubers and seeds, which naturally accumulate large amounts of protein. Among crop plants, soybean is an excellent protein producer. Soybean plants are also a good source of abundant and cheap biomass and can be cultivated under controlled greenhouse conditions. Under containment, the plant cycle can be manipulated and the final seed yield can be maximized for large-scale protein production within a small and controlled area. Exploitation of specific regulatory sequences capable of directing and accumulating recombinant proteins in protein storage vacuoles in soybean seeds, associated with recently developed biological research tools and purification systems, has great potential to accelerate preliminary characterization of plant-derived biopharmaceuticals and industrial macromolecules. This is an important step in the development of genetically engineered products that are inexpensive and safe for medicinal, food and other uses.  相似文献   

15.
That the macroporous anion-exchange resin AG MP-1 can be used with HPLC equipment and common aqueous buffers for the chromatography of proteins is shown. The utility of this system is illustrated by the partial purification and complete resolution of the three protein synthesis elongation factors from each other, starting with a crude extract of Escherichia coli. The factors were purified 10- to 30-fold in a yield of 50 to 90% with a single 60-min chromatographic program of increasing NaCl concentration. Other proteins from various biological sources were purified with similar results. Thus, it appears that AG MP-1 is useful, at least in some applications, for the rapid, reproducible, and economical purification of proteins using HPLC equipment.  相似文献   

16.
Temperature strongly influences the form and function of biologically important macromolecules and cells. Advances in microfabrication technology have enabled highly localized and accurate temperature control and manipulation, allowing the investigation of thermal effects on biological microsystems. This paper reviews progress in this field, with emphasis on techniques and microdevices with biomedical applications. Recent advances in the study of thermal effects on cellular behavior, enabled by MEMS-based structures are reported. These studies focus on investigating thermal interactions between the cell and its microenvironment. Thermal-based tools for concentration and purification of biologically important macromolecules like DNA and proteins are summarized. These tools address common issues in protein/DNA research, like concentration, separation and purification of samples. With the increasing research focus on the integration of biomedicine with engineering technologies and the several incentives of miniaturization, MEMS-based devices are likely to become increasingly prevalent in biology and medicine. Thermal engineering is expected to continue to play an important role in the improvement of current microdevices and the development of new ones.  相似文献   

17.
A gene fusion approach to simplify protein immobilization and purification is described. A gene encoding the protein of interest is fused to a gene fragment encoding the affinity peptide Ala-His-Gly-His-Arg-Pro. The expressed fusion proteins can be purified using immobilized metal affinity chromatography. A vector, designed to ensure obligate head-to-tail polymerization of oligonucleotide linkers was constructed by in vitro mutagenesis. A linker encoding the affinity peptide, was synthesized and polymerized to two, four and eight copies. These linkers were fused to the 3' end of a structural gene encoding a two-domain protein A molecule, ZZ, and to the 5' end of a gene encoding beta-galactosidase. Fusion proteins, of both types, with zero or two copies of the linker showed little or no binding to immobilized Zn2+, while a relatively strong interaction could be observed for the fusions based on four or eight copies of the linker. Using a pH gradient, the ZZ fusions were found to be eluted from the resin at different pHs depending on the number of the affinity peptide. These results demonstrate that genetic engineering can be used to facilitate purification and immobilization of proteins to immobilized Zn2+ and that the multiplicity of the affinity peptide is an important factor determining the binding characteristics.  相似文献   

18.
We describe here two systems for encoding foreign amino acid sequences in the exposed N-terminal segment of the major coat protein of bacteriophage fd. Small peptides can be encoded directly; larger peptides are encoded in hybrid bacteriophage particles, in which the capsid is formed from a mixture of wild-type and modified coat proteins. In both cases, the peptides are present in multiple copies per phage particle. Peptides that represent the circumsporozoite protein, the major surface antigen of the sporozoites of the malaria parasite, Plasmodium falciparum, were inserted in this way and found to be highly immunogenic. These systems should prove to be valuable in displaying specific or random peptides as antigens, and could lead to cheap and effective vaccines. They will also allow rapid screening of peptides as potential agents of other biological effects, with important applications in biomolecular design.  相似文献   

19.
A method is described for the microbiological determination of the protein content of biological materials. This method can also be adopted to titrate the concentration of a single amino acid in the protein and has the following advantages: (1) titration can be done without purification and hydrolysis of proteins; (2) the titration graph is a straight line between 25 and 800 microgram/ml; (3) protein values agree with those obtained using the Kjeldhal method; and (4) each mutant requiring one amino acid may be used to titrate the concentration of a single amino acid of the protein. The leucine content of various kinds of flour was measured with this system.  相似文献   

20.
A method for the quantitative determination of immobilized proteins based on the binding and subsequent elution of Coomassie Blue R is presented. Also presented is a method for the immobilization of proteins in solution by entrapment in polyacrylamide. These entrapped proteins are then available for use in the assay method presented. Other analytical procedures can also be performed on the entrapped proteins, either alone or in combination with the protein quantitation. The dye binding and elution method presented provides a sensitive and, in most applications, rapid method for the quantitative detection of immobilized proteins. Rather than immobilization being an obstacle to the assay method, this approach utilizes the advantages of immobilization for the removal of excess reagents. Application of this approach to several types of immobilized protein are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号