首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 356 毫秒
1.
Rooney N  Streuli CH 《FEBS letters》2011,585(11):1663-1672
Differentiation into tissue-specific cell types occurs in response to numerous external signals. Integrins impart signals from the extracellular matrix microenvironment that are required for cell differentiation. However, the precise cytoplasmic transducers of these signals are yet to be understood properly. In lactating mammary epithelial cells, integrin-linked kinase has been identified as an indispensable integrin-signalling adaptor that enables the activation of Rac1, which is necessary for prolactin-induced milk protein expression. Here we use examples from various tissues to summarise possible mechanisms by which ILK and its binding partners PINCH and Parvin (ILK-PINCH-Parvin complex) could be required for Rac activation and mammary epithelial differentiation.  相似文献   

2.
Cell adhesion and migration are complex processes that require integrin activation, the formation and dissolution of focal adhesion (FAs), and linkage of actin cytoskeleton to the FAs. The IPP (ILK, PINCH, Parvin) complex regulates FA formation via binding of the adaptor protein ILK to β1 integrin, PINCH and parvin. The signaling protein Rsu1 is linked to the complex via binding PINCH1. The role of Rsu1 and PINCH1 in adhesion and migration was examined in non-transformed mammary epithelial cells. Confocal microscopy revealed that the depletion of either Rsu1 or PINCH1 by siRNA in MCF10A cells decreased the number of focal adhesions and altered the distribution and localization of β1 integrin, vinculin, talin and paxillin without affecting the levels of FA protein expression. This correlated with reduced adhesion, failure to spread or migrate in response to EGF and a loss of actin stress fibers and caveolae. In addition, constitutive phosphorylation of actin regulatory proteins occurred in the absence of PINCH1. The depletion of Rsu1 caused significant reduction in PINCH1 implying that Rsu1 may function by regulating levels of PINCH1. However, while both Rsu1- or PINCH1-depleted cells retained the ability to activate adhesion signaling in response to EGF stimulation, only Rsu1 was required for EGF-induced p38 Map Kinase phosphorylation and ATF2 activation, suggesting an Rsu1 function independent from the IPP complex. Reconstitution of Rsu1-depleted cells with an Rsu1 mutant that does not bind to PINCH1 failed to restore FAs or migration but did promote spreading and constitutive p38 activation. These data show that Rsu1-PINCH1 association with ILK and the IPP complex is required for regulation of adhesion and migration but that Rsu1 has a critical role in linking integrin-induced adhesion to activation of p38 Map kinase signaling and cell spreading. Moreover, it suggests that Rsu1 may regulate p38 signaling from the IPP complex affecting other functions including survival.  相似文献   

3.
The growth of new blood vessels by angiogenesis and their stabilization by the recruitment of perivascular mural cells are thought to be two sequential, yet independent events. Here we identify molecular links between both processes through the βPix and integrin α(v)β(8) proteins. Bubblehead (bbh) mutants with a genetic mutation in βPix show defective vascular stabilization. βPix is a guanine nucleotide exchange factor and scaffold protein that binds many proteins including Git1, which bridges βPix to integrins at focal adhesions. Here we show that the ability of βPix to stabilize vessels requires Git1 binding residues. Knockdown of Git1 leads to a hemorrhage phenotype similar to loss of integrin α(v), integrin β(8) or βPix, suggesting that vascular stabilization through βPix involves interactions with integrins. Furthermore, double loss of function of βPix and integrin α(v) shows enhanced hemorrhage rates. Not only is vascular stability impaired in these embryos, but we also uncover a novel role of both βPix and integrin α(v)β(8) in cerebral angiogenesis. Downregulation of either βPix or integrin α(v)β(8) results in fewer and morphologically abnormal cerebral arteries penetrating the hindbrain. We show that this is coupled with a significant reduction in endothelial cell proliferation in bbh mutants or integrin α(v)β(8) morphants. These data suggest that a complex involving βPix, GIT1 and integrin α(v)β(8) may regulate vascular stability, cerebral angiogenesis and endothelial cell proliferation in the developing embryo.  相似文献   

4.
Background. Integrins are transmembrane αβ heterodimer receptors that function as structural and functional bridges between the cytoskeleton and ECM (extracellular matrix) molecules. The RGD (arginine‐glycine‐aspartate tripeptide motif)‐dependent integrin α8β1 has been shown to be involved in various cell functions in neuronal and mesenchymal‐derived cell types. Its role in epithelial cells remains unknown. Results. Integrin α8β1 was found to be expressed in the crypt cell population of the human intestine but was absent from differentiating and mature epithelial cells of the villus. The function of α8β1 in epithelial crypt cells was investigated at the cellular level using normal HIECs (human intestinal epithelial cells). Specific knockdown of α8 subunit expression using an shRNA (small‐hairpin RNA) approach showed that α8β1 plays important roles in RGD‐dependent cell adhesion, migration and proliferation via a RhoA/ROCK (Rho‐associated kinase)‐dependent mechanism as demonstrated by active RhoA quantification and pharmacological inhibition of ROCK. Moreover, loss of α8β1, through RhoA/ROCK, impairs FA (focal adhesion) complex integrity as demonstrated by faulty vinculin recruitment. Conclusions. Integrin α8β1 is expressed in epithelial cells. In intestinal crypt cells, α8β1 is closely involved in the regulation of adhesion, migration and cell proliferation via a predominant RhoA/ROCK‐dependent mechanism. These results suggest an important role for this integrin in intestinal crypt cell homoeostasis.  相似文献   

5.
Bone resorption requires the adhesion of osteoclasts to extracellular matrix (ECM) components, a process mediated by the αvβ3 integrin. Following engagement with the ECM, integrin receptors signal via multiple downstream effectors, including the integrin‐linked kinase (ILK). In order to characterize the physiological role of ILK in bone resorption, we generated mice with an osteoclast‐specific Ilk gene ablation by mating mice with a floxed Ilk allele with TRAP‐Cre transgenic mice. The TRAP‐Cre mice specifically excised floxed alleles in osteoclasts, as revealed by crossing them with the ROSA26R reporter strain. Osteoclast‐specific Ilk mutant mice appeared phenotypically normal, but histomorphometric analysis of the proximal tibia revealed an increase in bone volume and trabecular thickness. Osteoclast‐specific Ilk ablation was associated with an increase in osteoclastogenesis both in vitro and in vivo. However, the mutant osteoclasts displayed a decrease in resorption activity as assessed by reduced pit formation on dentin slices in vitro and decreased serum concentrations of the C‐terminal telopeptide of collagen in vivo. Interestingly, compound heterozygous mice in which one allele of Ilk and one allele of the β3 integrin gene were inactivated (ILK+/?; β) also had increased trabecular thickness, confirming that β3 integrin and Ilk form part of the same genetic cascade. Our results show that ILK is important for the function, but not the differentiation, of osteoclasts. J. Cell. Biochem. 110: 960–967, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

6.
Cardiac performance decreases with age, which is a major risk factor for cardiovascular disease and mortality in the aging human population, but the molecular mechanisms underlying cardiac aging are still poorly understood. Investigating the role of integrin‐linked kinase (ilk) and β1‐integrin (myospheroid, mys) in Drosophila, which colocalize near cardiomyocyte contacts and Z‐bands, we find that reduced ilk or mys function prevents the typical changes of cardiac aging seen in wildtype, such as arrhythmias. In particular, the characteristic increase in cardiac arrhythmias with age is prevented in ilk and mys heterozygous flies with nearly identical genetic background, and they live longer, in line with previous findings in Caenorhabditis elegans for ilk and in Drosophila for mys. Consistent with these findings, we observed elevated β1‐integrin protein levels in old compared with young wild‐type flies, and cardiac‐specific overexpression of mys in young flies causes aging‐like heart dysfunction. Moreover, moderate cardiac‐specific knockdown of integrin‐linked kinase (ILK)/integrin pathway‐associated genes also prevented the decline in cardiac performance with age. In contrast, strong cardiac knockdown of ilk or ILK‐associated genes can severely compromise cardiac integrity, including cardiomyocyte adhesion and overall heart function. These data suggest that ilk/mys function is necessary for establishing and maintaining normal heart structure and function, and appropriate fine‐tuning of this pathway can retard the age‐dependent decline in cardiac performance and extend lifespan. Thus, ILK/integrin‐associated signaling emerges as an important and conserved genetic mechanism in longevity, and as a new means to improve age‐dependent cardiac performance, in addition to its vital role in maintaining cardiac integrity.  相似文献   

7.
Although glucocorticoids strongly affect numerous biological processes including cell growth, development, and homeostasis, their effects on migration of human mesenchymal stem cells (hMSCs) are unclear. Therefore, we investigated the role of dexamethasone (DEX) and its related signaling pathways on migration of hMSCs. We found that DEX, at 10?8 to 10?6 M, significantly increased migration after a 24 h incubation, and DEX (10?6 M) increased migration at >12 h. Moreover, DEX (10?6 M) increased the level of glucocorticoid receptor (GR)‐α mRNA and protein expression, but not GR‐β mRNA. The increases in DEX‐induced migration were inhibited by the GR antagonist mifepristone (10?7 M). In addition, DEX increased integrin‐linked kinase (ILK) and α‐parvin expression but did not change PINCH‐1/2 expression in lysate. DEX also increased formations of complex with ILK and α‐parvin, and ILK and PINCH‐1/2 as shown by immunoprecipitation, which were all inhibited by mifepristone. DEX‐induced migration was blocked by ILK and α‐parvin small interfering(si)RNAs. In addition, DEX increased focal adhesion kinase (FAK) and paxillin expression, which were attenuated by ILK and α‐parvin siRNAs. DEX‐induced cell migration was inhibited by FAK/paxillin siRNAs. DEX also increased β1‐integrin expression, which was blocked by FAK/paxillin siRNAs. In addition, DEX‐induced cell migration was inhibited by β1‐integrin siRNA. Downregulation of ILK, α‐parvin, FAK/paxillin and β1‐integrin expression by siRNAs decreased DEX‐induced filamentous(F)‐actin organization and migration of hMSCs. In conclusion, DEX partially stimulates hMSC migration by the expression of β1‐integrin through formation of a PINCH‐1/2/ILK/α‐parvin complex (PIP complex), and FAK and paxillin expression. J. Cell. Physiol. 226: 683–692, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

8.
In response to a wound, astrocytes in culture extend microtubule‐rich processes and polarize, orienting their centrosomes and Golgi apparatus woundside. β1 Integrin null astrocytes fail to extend processes toward the wound, and are disoriented, and often migrate away orthogonal, to the wound. The centrosome is unusually fragmented in β1 integrin null astrocytes. Expression of a β1 integrin cDNA in the null background yields cells with intact centrosomes that polarize and extend processes normally. Fragmented centrosomes rapidly assemble following integrin ligation and cell attachment. However, several experiments indicated that cell adhesion is not necessary. For example, astrocytes in suspension expressing a chimeric β1 subunit that can be activated by an antibody assemble centrosomes suggesting that β1 activation is sufficient to cause centrosome assembly in the absence of cell adhesion. siRNA knockdown of PCM1, a major centrosomal protein, inhibits cell polarization, consistent with the notion that centrosomes are necessary for polarity and that integrins regulate polarity via centrosome integrity. Screening inhibitors of molecules downstream of integrins indicate that neither FAK nor ILK is involved in regulation of centrosome integrity. In contrast, blebbistatin, a specific inhibitor of non‐muscle myosin II (NMII), mimics the response of β1 integrin null astrocytes by disrupting centrosome integrity and cell polarization. Blebbistatin also inhibits integrin‐mediated centrosome assembly in astrocytes attaching to fibronectin, consistent with the hypothesis that NMII functions downstream of integrins in regulating centrosome integrity. © 2012 Wiley Periodicals, Inc. Develop Neurobiol 73: 333–353, 2013.  相似文献   

9.
Skeletal myoblasts withdrawing from cell cycle is a prerequisite for myodifferentiation, while upon proliferation/differentiation transformation, a large portion of myoblasts will undergo apoptosis. Skeletal fibroblasts, residing in muscle tissue both during and post myogenesis, have been proofed to play pivotal roles in muscle development, while their effect on myoblast apoptosis being coincident with differentiation has not been reported. Using a membrane insert co‐culture system, we studied it and found that the mitochondrial pathway played a crucial role in myoblast apoptosis during differentiation, and fibroblasts promoted not only cell cycle withdrawal but also myoblast survival in a paracrine fashion, which was coupled with upregulations of β1 integrin, phosphorylated Akt and anti‐apoptotic protein Bcl2. To determine the effect of β1 integrin in the process, we transfected myoblasts with siRNA specific for β1 integrin before co‐culture and found that β1 integrin knockdown abolished anti‐apoptotic ability of myoblasts and inhibited Akt activation and Bcl2 expression. Blockage of PI3K/Akt pathway with wortmannin also seriously impaired the protective effect of fibroblasts on myoblasts and fibroblast‐induced Bcl2 expression. The data demonstrated that fibroblasts protected myoblasts from intrinsic apoptosis associated with differentiation, and β1 integrin‐PI3K/Akt pathway activation was required for the process.  相似文献   

10.
Integrins are heterodimeric transmembrane cell adhesion receptors that are essential for a wide range of biological functions via cell–matrix and cell–cell interactions. Recent studies have provided evidence that some of the subunits in the integrin family are involved in synaptic and behavioral plasticity. To further understand the role of integrins in the mammalian central nervous system, we generated a postnatal forebrain and excitatory neuron‐specific knockout of α8‐integrin in the mouse. Behavioral studies showed that the mutant mice are normal in multiple hippocampal‐dependent learning tasks, including a T‐maze, non‐match‐to‐place working memory task for which other integrin subunits like α3‐ and β1‐integrin are required. In contrast, mice mutant for α8‐integrin exhibited a specific impairment of long‐term potentiation (LTP) at Schaffer collateral–CA1 synapses, whereas basal synaptic transmission, paired‐pulse facilitation and long‐term depression (LTD) remained unaffected. Because LTP is also impaired in the absence of α3‐integrin, our results indicate that multiple integrin molecules are required for the normal expression of LTP, and different integrins display distinct roles in behavioral and neurophysiological processes like synaptic plasticity.  相似文献   

11.
Adenomatous Polyposis Coli (APC) plays a critical role in cell motility, maintenance of apical-basal polarity, and epithelial morphogenesis. We previously demonstrated that APC loss in Madin Darby Canine Kidney (MDCK) cells increases cyst size and inverts polarity independent of Wnt signaling, and upregulates the tetraspan protein, Epithelial Membrane Protein 2 (EMP2). Herein, we show that APC loss increases β1 integrin expression and migration of MDCK cells. Through 3D in vitro model systems and 2D migration analysis, we have depicted the molecular mechanism(s) by which APC influences polarity and cell motility. EMP2 knockdown in APC shRNA cells revealed that APC regulates apical-basal polarity and cyst size through EMP2. Chemical inhibition of β1 integrin and its signaling components, FAK and Src, indicated that APC controls cyst size and migration, but not polarity, through β1 integrin and its downstream targets. Combined, the current studies have identified two distinct and novel mechanisms required for APC to regulate polarity, cyst size, and cell migration independent of Wnt signaling.  相似文献   

12.
Integrin complexes are necessary for proper proliferation and differentiation of epidermal keratinocytes. Differentiation of these cells is accompanied by down-regulation of integrins and focal adhesions as well as formation of intercellular adherens junctions through E-cadherin homodimerization. A central component of integrin adhesion complexes is integrin-linked kinase (ILK), which can induce loss of E-cadherin expression and epithelial-mesenchymal transformation when ectopically expressed in intestinal and mammary epithelia. In cultured primary mouse keratinocytes, we find that ILK protein levels are independent of integrin expression and signaling, since they remain constant during Ca(2+)-induced differentiation. In contrast, keratinocyte differentiation is accompanied by marked reduction in kinase activity in ILK immunoprecipitates and altered ILK subcellular distribution. Specifically, ILK distributes in close apposition to actin fibers along intercellular junctions in differentiated but not in undifferentiated keratinocytes. ILK localization to cell-cell borders occurs independently of integrin signaling and requires Ca(2+) as well as an intact actin cytoskeleton. Further, and in contrast to what is observed in other epithelial cells, ILK overexpression in differentiated keratinocytes does not promote E-cadherin down-regulation and epithelial-mesenchymal transition. Thus, novel tissue-specific mechanisms control the formation of ILK complexes associated with cell-cell junctions in differentiating murine epidermal keratinocytes.  相似文献   

13.
The bidirectional communication between integrin αvβ3 and vascular endothelial growth factor (VEGF) receptors acts to integrate and coordinate endothelial cell (EC) activity during angiogenesis. However, the molecular mechanisms involved in this signaling crosstalk are only partially revealed. We have found that protein kinase D1 (PKD1) was activated by VEGF‐A, but not by other angiogenic factors, and associated with αvβ3 integrin. Moreover, knockdown of PKD1 increased endocytosis of αvβ3 and reduced its return from endosomes to the plasma membrane leading to accumulation of the integrin in Rab5‐ and Rab4‐positive endosomes. Consistent with this, PKD1 knockdown caused defects in focal complex formation and reduced EC migration in response to VEGF‐A. Moreover, knockdown of PKD1 reduced EC motility on vitronectin, whereas migration on collagen I was not PKD1 dependent. These results suggest that PKD1‐regulated αvβ3 trafficking contributes to the angiogenesis process by integrating VEGF‐A signaling with extracellular matrix interactions.  相似文献   

14.
Estrogen effects on mammary gland development and differentiation are mediated by two receptors (ERα and ERβ). Estrogen‐bound ERα induces proliferation of mammary epithelial and cancer cells, while ERβ is important for maintenance of the differentiated epithelium and inhibits proliferation in different cell systems. In addition, the normal breast contains higher ERβ levels compared to the early stage breast cancers, suggesting that loss of ERβ could be important in cancer development. Analysis of ERβ?/? mice has consistently revealed reduced expression of cell adhesion proteins. As such, ERβ is a candidate modulator of epithelial homeostasis and metastasis. Consequently, the aim of this study was to analyze estrogenic effects on adhesion of breast cancer cells expressing ERα and ERβ. As ERβ is widely found in breast cancer but not in cell lines, we used ERα positive T47‐D and MCF‐7 human breast cancer cells to generate cells with inducible ERβ expression. Furthermore, the colon cancer cell lines SW480 and HT‐29 were also used. Integrin α1 mRNA and protein levels increased following ERβ expression. Integrin β1—the unique partner for integrin α1—increased only at the protein level. ERβ expression enhanced the formation of vinculin containing focal complexes and actin filaments, indicating a more adhesive potential. This was confirmed by adhesion assays where ERβ increased adhesion to different extracellular matrix proteins, mostly laminin. In addition, ERβ expression was associated to less cell migration. These results indicate that ERβ affects integrin expression and clustering and consequently modulates adhesion and migration of breast cancer cells. J. Cell. Physiol. 222:156–167, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

15.
The ILK, PINCH, Parvin (IPP) complex regulates adhesion and migration via binding of ILK to β1 integrin and α?parvin thus linking focal adhesions to actin cytoskeleton. ILK also binds the adaptor protein PINCH which connects signaling proteins including Rsu1 to the complex. A recent study of Rsu1 and PINCH1 in non-transformed MCF10A human mammary epithelial cells revealed that the siRNA-mediated depletion of either Rsu1 or PINCH1 decreased the number of focal adhesions (FAs) and altered the distribution and localization of FA proteins. This correlated with reduced adhesion, failure to spread or migrate in response to EGF and a loss of actin stress fibers and caveolae. The depletion of Rsu1 caused significant reduction in PINCH1 implying that Rsu1 may function in part by regulating levels of PINCH1. However, Rsu1, but not PINCH1, was required for EGF-induced activation of p38 Map kinase and ATF2 phosphorylation, suggesting a Rsu1 function independent from the IPP complex. Reconstitution of Rsu1-depleted cells with a Rsu1 mutant (N92D) that does not bind to PINCH1 failed to restore FAs or migration but did promote IPP-independent spreading and constitutive as well as EGF-induced p38 activation. In this commentary we discuss p38 activity in adhesion and how Rsu1 expression may be linked to Map kinase kinase (MKK) activation and detachment-induced stress kinase signaling.  相似文献   

16.
Signals derived from basal lamina components are important for developing three-dimensional architecture of epithelial tissues. Laminins consisting of α, β, and γ subunits in basal lamina play pivotal roles in the formation and maintenance of epithelial tissue structures. However, it remains unclear which laminin isoforms transmit signals and how epithelial cells receive them to regulate multiple developmental processes. In three-dimensional culture of a liver progenitor cell line, Hepatic Progenitor Cells Proliferating on Laminin (HPPL), the cells establish apicobasal polarity and form cysts with a central lumen. Neutralizing antibody against β1 integrin blocked the formation and maintenance of the cyst structure, indicating that β1 integrin signaling was necessary throughout the morphogenesis. Although the addition of α1-containing laminin, a ligand of β1 integrin, induced cyst formation, it was dispensable for the maintenance of the cyst, suggesting that HPPL produces another ligand for β1 integrin to maintain the structure. Indeed, we found that HPPL produced α5-containing laminin, and siRNA against laminin α5 partially inhibited the lumen formation. In fetal liver, p75NTR(+) periportal fibroblasts and bile duct epithelial cells, known as cholangiocytes, expressed α1- and α5-containing laminins, respectively. In laminin α5 KO liver, cholangiocytes normally emerged, but the number of bile ducts was decreased. These results suggest that α1-containing laminin is sufficient as a component of the basal lamina for the commitment of bipotential liver progenitors to cholangiocytes and the apicobasal polarization, whereas α5-containing laminin is necessary for the formation of mature duct structures. Thus, α1- and α5-containing laminins differentially regulate the sequential events to form epithelial tissues via β1 integrin signals.  相似文献   

17.
Homing of endothelial progenitor cells (EPCs) is crucial for neoangiogenesis, which might be negatively affected by hypoxia. We investigated the influence of hypoxia on fibronectin binding integrins for migration and cell‐matrix‐adhesion. AMP‐activated kinase (AMPK) and integrin‐linked kinase (ILK) were examined as possible effectors of hypoxia.Human EPCs were expanded on fibronectin (FN) and integrin expression was profiled by flow cytometry. Cell‐matrix‐adhesion‐ and migration‐assays on FN were performed to examine the influence of hypoxia and AMPK‐activation. Regulation of AMPK and ILK was shown by Western blot analysis. We demonstrate the presence of integrin β1, β2 and α5 on EPCs. Adhesion to FN is reduced by blocking β1 and α5 (49% and 2% of control, P < 0.05) whereas α4‐blockade has no effect. Corresponding effects were shown for migration. Hypoxia and AMPK‐activation decrease adhesion on FN. Although total AMPK‐expression remains unchanged, phospho‐AMPK increases eightfold.The EPCs require α5 for adhesion on FN. Hypoxia and AMPK‐activation decrease adhesion. As α5 is the major adhesive factor for EPCs on FN, this suggests a link between AMPK and α5‐integrins. We found novel evidence for a connection between hypoxia, AMPK‐activity and integrin activity. This might affect the fate of EPCs in ischaemic tissue.  相似文献   

18.
TNF‐α and IGF‐I exert opposing effects on mammary epithelial cell (MEC) growth and survival. However, both increase IGF binding protein‐3 (IGFBP‐3) expression, a multifunctional protein that plays both IGF‐dependent as well as independent roles in these processes. We have reported that IGF‐I utilizes the PI3‐K and MAPK pathways to induce IGFBP‐3 expression in bovine MEC. Here we show that TNF‐α requires the SAPK pathway p38, but not JNK, to induce IGFBP‐3 expression. Contrary to reports in cancer cell lines, TNF‐α retained its ability to decrease DNA synthesis in cells transfected with IGFBP‐3 siRNA. It also retained its ability to inhibit IGF‐I‐stimulated DNA synthesis in these cells. In contrast, the ability of IGF‐I to increase DNA synthesis was attenuated with IGFBP‐3 knockdown. IGFBP‐3 knockdown also decreased basal DNA synthesis, indicating that a certain level of IGFBP‐3 may be required for cell proliferation. While TNF‐α alone failed to induce apoptosis, it increased cell death when added with the JNK agonist anisomycin (ANS). TNF‐α and ANS were unable to induce apoptosis when either IGFBP‐3 or JNK‐2 was knocked‐down, suggesting that both JNK and IGFBP‐3 may interact with a downstream molecule central to apoptosis. There are reports that IGFBP‐3 promotes either cell proliferation or apoptosis in different cell systems. However, this is the first report that endogenous IGFBP‐3 is required for the action of both stimulatory and inhibitory factors within the same cell line. Therefore, the actions of IGFBP‐3 are not pre‐determined, but instead governed by cellular context such as JNK activation. J. Cell. Physiol. 220: 182–188, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

19.
20.
The aim of this study was to explore the effects of platelet‐rich plasma on gingipain‐caused changes in cell morphology and apoptosis of osteoblasts. Mouse osteoblasts MC3T3‐E1 cells were treated with gingipain extracts from Porphyromonas gingivalis in the presence or absence of platelet‐rich plasma. Apoptosis was detected with terminal deoxynucleotidyl transferase‐mediated dUTP nick‐end labeling staining. F‐actin was determined by phalloidin‐fluorescent staining and observed under confocal microscopy. Western blot analysis was used to detect integrin β1, F‐actin, and G‐actin protein expressions. A knocking down approach was used to determine the role of integrin β1. The platelet‐rich plasma protected osteoblasts from gingipain‐induced apoptosis in a dose‐dependent manner, accompanied by upregulation of integrin β1. Platelet‐rich plasma reversed the loss of F‐actin integrity and decrease of F‐actin/G‐actin ratio in osteoblasts in the presence of gingipains. By contrast, the effects of platelet‐rich plasma were abrogated by knockdown of integrin β1. The platelet‐rich plasma failed to reduce cell apoptosis and reorganize the cytoskeleton after knockdown of integrin β1. In conclusion, platelet‐rich plasma inhibits gingipain‐induced osteoblast apoptosis and actin cytoskeleton disruption by upregulating integrin β1 expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号