共查询到20条相似文献,搜索用时 0 毫秒
1.
The aim of this work was to evaluate the effects of 24,25-dihydroxyvitamin D3, 24,25(OH)2D3, on alkaline phosphatase (AP) and tartrate-resistant acid phosphatase (TRAP) activities in fetal rat calvaria cultures. These actions were compared with those of 1,25-dihydroxyvitamin D3, 1,25(OH)2D3, and 25-hydroxyvitamin D3, 25(OH)D3, in similar experimental conditions. At 10 min, 30 min and at 24 h incubation time, 1,25(OH)2D3 (10(-10)M) and 25(OH)D3 (10(-7) M) produced a significant increase in AP and TRAP activities compared to control group (without vitamin D metabolites). However, 24,25(OH)2D3 (10(-7) M) only produced effects on phosphatase activities similar to those produced by 1,25(OH)2D3 and 25(OH)D3, after 24 h incubation time. These findings suggest that 1,25(OH)2D3 and 25(OH)2D3 could carry out actions in minutes (nongenomic mechanism), while 24,25(OH)2D3 needs longer periods of time to perform its biological actions (genomic mechanism). 相似文献
2.
3.
4.
H Wald T Hayek M M Popovtzer 《Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.)》1985,180(2):219-223
The effect of 24,25(OH)2D3 on 1,25(OH)2D3-induced hypercalcemia was studied in normal rats. Serum (S) levels and urinary excretion of Ca2+ (UCaV) were measured in (a) control rats, (b) rats receiving a daily sc injection of 54 ng 1,25(OH)2D3, (c) rats receiving 24,25(OH)2D3 in the same dose and same manner, and (d) rats receiving 1,25(OH)2D3 + 24,25(OH)2D3. The animals were housed in metabolic cages and 24-hr urine specimens were collected. After 24 hr SCa2+ increased similarly with 1,25(OH)2D3 and with 1,25(OH)2D3 + 24,25(OH)2D3, while 24,25(OH)2D3 alone did not change SCa2+. UCaV after 24 hr increased significantly less (P less than 0.025) with 1,25(OH)2D3 + 24,25(OH)2D3 than with 1,25(OH)2D3 alone. After 5 days of 1,25(OH)2D3, SCa2+ rose from 5.1 +/- 0.15 to 6.29 +/- 0.08 whereas 1,25(OH)2D3 + 24,25(OH)2D3 effected a greater increase in SCa2+ up to 6.63 +/- 0.09 (P less than 0.01). 24,25(OH)2D3 alone did not change SCa2+. UCaV after 5 days of treatment rose similarly with 1,25(OH)2D3 and with 1,25(OH)2D3 + 24,25(OH)2D3. After 10 days of 1,25(OH)2D3 SCa2+ was 6.17 +/- 0.15 meq/liter while with the combination SCa2+ rose to 6.74 +/- 0.2 (P less than 0.025). 24,25(OH)2D3 alone did not change SCa2+. These results show that (a) 24,25(OH)2D3 alone does not alter SCa2+ in normal rats, (b) combined administration of 1,25(OH)2D3 + 24,25(OH)2D3 enhances the hypercalcemic response to 1,25(OH)2D3 without a parallel increase in UCaV, and (c) it is suggested that the effect of 24,25(OH)2D3 on serum Ca2+ level, at least partly, may result from its hypocalciuric effect. 相似文献
5.
W. E. Stumpf M. Sar F. A. Reid S. Huang R. Narbaitz H. F. DeLuca 《Cell and tissue research》1981,221(2):333-338
Summary After injection of radiolabeled 1,25 (OH)2 vitamin D3, nuclear concentration of radioactivity is observed in parenchymal cells of the parathyroid gland in pregnant, adult male, and 10-day male neonatal rats. In competition studies with unlabeled 1,25 (OH)2 vitamin D3, but not with 25 (OH) vitamin D3, nuclear uptake is prevented. Experiments with 3H 25 (OH) vitamin D3, in contrast to 3H 1,25 (OH)2 vitamin D3, do not show nuclear concentration in cells of the parathyroid. The results of the autoradiographic studies suggest the presence of receptors for a direct effect of 1,25 (OH)2 vitamin D3 on the parathyroid gland for modulation of parathyroid hormone secretion. 相似文献
6.
目的:研究不同强度脉冲电磁场干预对成肌细胞增殖的影响。方法:10Hz脉冲低频电磁场刺激经复苏后培养贴壁良好的C2C12成肌细胞,根据不同磁场强度和作用时间将其分为A、B、C组,无磁场干预的为对照组。采用RT-q PCR检测不同磁场强度下成肌细胞标记基因Myf5、Myo D及Pax7的m RNA的表达。结果:经RT-q PCR检测三种基因的表达情况,Myf5 m RNA在1.5 m T磁场强度下照射第五天表达最高;0.5 m T磁场强度下Myf5 m RNA的表达与对照组相比无统计学意义(P>0.05);1.0 m T磁场强度下Myf5 m RNA表达与对照组比较差异具有统计学意义(P<0.05);1.5 m T磁场强度下Myf5 m RNA表达与对照组比较差异具有统计学意义(P<0.05)。对照组Myo D m RNA的表达要比磁场作用下表达要高。三个磁场强度下Myo D m RNA表达与对照组相比均无统计学意义(P>0.05)。0.5 m T、1.0 m T磁场强度下Pax7 m RNA的表达要比对照组要高,与对照组相比具有统计学意义(P<0.05);1.5 m T磁场强度下Pax7 m RNA表达与对照组相比无统计学意义(P>0.05)。结论 :1.5 m T脉冲电磁场强度下作用5天对体外培养的成肌细胞Myf5 m RNA标记基因增殖促进作用最强。 相似文献
7.
干扰Sirt2促进C2C12成肌细胞分化 总被引:1,自引:0,他引:1
Sirt2是组蛋白去乙酰化酶(HDAC III)家族成员之一, 对细胞周期、自噬、脂肪细胞分化、神经细胞存活等生物学过程的调节发挥重要作用. 目前,Sirt2在肌肉发育过程中的研究尚未见报道.本文通过构建Sirt2慢病毒干扰载体,侵染C2C12成肌细胞,并用细胞免疫荧光化学、real-time PCR 和Western印迹方法,检测其对成肌分化标志基因及相关信号通路因子的影响. 结果显示,干扰质粒shRNA 663处理C2C12细胞后,Sirt2 mRNA及蛋白质表达水平与对照相比显著下调(P<0.01);C2C12细胞分化第4 d,MyoD,MyoG,MyHC mRNA及蛋白质表达均显著增加(P<0.01); PI3K,AKT,FoxO1磷酸化水平明显升高. 结果表明,Sirt2可通过PI3K/AKT/FOXO1信号通路来促进成肌细胞分化,是肌生成的一个潜在调节因子. 相似文献
8.
H Wald J Traves M M Popovtzer 《Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.)》1987,184(1):47-49
The effect of 24,25(OH)2D3 on 1,25(OH)2D3-induced hypercalcemia was studied in parathyroidectomized (PTX) rats for 10 days. Serum (S) and urinary Ca excretion (UCaV) were measured in (a) control rats, (b) rats receiving a daily sc injection of 54 ng 1,25(OH)2D3, (c) rats receiving 24,25(OH)2D3 in the same dose and same manner, and (d) rats receiving 1,25(OH)2D3 + 24,25(OH)2D3. Our results show that (i) 24,25(OH)2D3 alone does not increase SCa2+ in PTX rats, (ii) combined administration of 1,25(OH)2D3 + 24,25(OH)2D3 enhances the hypercalcemic response to 1,25(OH)2D3 without a parallel increase in UCaV, (iii) combined administration of 1,25(OH)2D3 + 24,25(OH)2D3 reduces the rise in urinary excretion of Ca2+ compared with that of rats receiving 1,25(OH)2D3 alone for 10 days, and (iv) these alterations are independent of parathyroid hormone. 相似文献
9.
Boyan BD Jennings EG Wang L Schwartz Z 《The Journal of steroid biochemistry and molecular biology》2004,(1-5):309-315
Vitamin D metabolites 1alpha,25(OH)(2)D(3) and 24R,25(OH)(2)D(3) regulate endochondral ossification in a cell maturation-dependent manner via membrane-mediated mechanisms. 24R,25(OH)(2)D(3) stimulates PKC activity in chondrocytes from the growth plate resting zone, whereas 1alpha,25(OH)(2)D(3) stimulates PKC in growth zone chondrocytes. We used the rat costochondral growth plate cartilage cell model to study how these responses are differentially regulated. 1alpha,25(OH)(2)D(3) acts on PKC, MAP kinase, and downstream physiological responses via phosphatidylinositol-specific PLC-beta; 24R,25(OH)(2)D(3) acts via PLD. In both cases, diacylglycerol (DAG) is increased, activating PKC. Both cell types possess membrane and nuclear receptors for 1alpha,25(OH)(2)D(3), but the mechanisms that render the 1alpha,25(OH)(2)D(3) pathway silent in resting zone cells or the 24R,25(OH)(2)D(3) pathway silent in growth zone cells are unclear. PLA(2) is pivotal in this process. 1alpha,25(OH)(2)D(3) stimulates PLA(2) activity in growth zone cells and 24R,25(OH)(2)D(3) inhibits PLA(2) activity in resting zone cells. Both processes result in PKC activation. To understand how negative regulation of PLA(2) results in increased PKC activity in resting zone cells, we used PLA(2) activating peptide to stimulate PLA(2) activity and examined cell response. PLAP is not expressed in resting zone cells in vivo, supporting the hypothesis that PLA(2) activation is inhibitory to 24R,25(OH)(2)D(3) action in these cells. 相似文献
10.
DTX4(Deltex 4 homolog)蛋白属于Deltex家族成员|Deltex家族是Notch信号通路的调节因子. 已知Notch信号通路在成肌分化中发挥重要作用. 然而,DTX4是否参与调控肌肉发育尚未有报道. 本研究探索DTX4对成肌分化的影响及作用机制. 实时定量PCR和蛋白质印迹分析揭示,伴随小鼠C2C12成肌细胞(myoblast)分化为肌管(myotube)过程,成肌分化标志蛋白肌球蛋白重链(myosin heavy-chain,MyHC)、肌细胞生成素(myogenin)表达逐渐升高,DTX4 mRNA及蛋白质表达水平也逐渐升高. 通过顺序专一的siRNA敲减DTX4表达后,C2C12成肌细胞肌管面积和肌管融合指数明显减少|MyHC、肌细胞生成素蛋白表达水平明显降低|但ERK信号通路未见明显变化.上述结果表明,敲减DTX4表达抑制C2C12细胞成肌分化.我们的结果提示,DTX4可能参与C2C12细胞成肌分化. 相似文献
11.
Phosphate homeostasis is controlled in part by absorption from the intestine, and reabsorption in the kidney. While the effect of Vitamin D metabolites on enterocytes is well documented, in the current study we assess selected responses in primary cultures of kidney cells. Time course studies revealed a rapid stimulation of phosphate uptake in cells treated with 1,25(OH)(2)D(3), relative to controls. Dose-response studies indicated a biphasic curve with optimal stimulation at 300 pM 1,25(OH)(2)D(3) and inhibition at 600 pM seco-steroid. Antibody 099--against the 1,25D(3)-MARRS receptor - abolished stimulation by the steroid hormone. Moreover, phosphate uptake was mediated by the protein kinase C pathway. The metabolite 24,25(OH)(2)D(3), which was found to inhibit the rapid stimulation of phosphate uptake in intestinal cells, had a parallel effect in cultured kidney cells. Finally, the 24,25(OH)(2)D(3) binding protein, catalase, was assessed for longer term down regulation. In both intestinal epithelial cells and kidney cells incubated with 24,25(OH)(2)D(3) for 5-24h, both the specific activity of the enzyme and protein levels were decreased relative to controls, while 1,25(OH)(2)D(3) increased both parameters over the same time periods. We conclude that the Vitamin D metabolites have similar effects in both kidney and intestine, and that 24,25(OH)(2)D(3) may have effects at the level of gene expression. 相似文献
12.
Victor L. Sylvia Zvi Schwartz E. Bryan Ellis Steven H. Helm Ruben Gomez David D. Dean Barbara D. Boyan 《Journal of cellular physiology》1996,167(3):380-393
Prior studies have shown that vitamin D regulation of protein kinase C activity (PKC) in the cell layer of chondrocyte cultures is cell maturation-dependent. In the present study, we examined the membrane distribution of PKC and whether 1α,25-(OH)2D3 and 24R,25-(OH)2D3 can directly regulate enzyme activity in isolated plasma membranes and extracellular matrix vesicles. Matrix vesicle PKC was activated by bryostatin-1 and inhibited by a PKC-specific pseudosubstrate inhibitor peptide. Depletion of membrane PKC activity using isoform-specific anti-PKC antibodies suggested that PKCα is the major isoform in cell layer lysates as well as in plasma membranes isolated from both cell types; PKCζ is the predominant form in matrix vesicles. This was confirmed in Western blots of immunoprecipitates as well as in studies using control peptides to block binding of the isoform specific antibody to the enzyme and using a PKCζ-specific pseudosubstrate inhibitor peptide. The presence of PKCζ in matrix vesicles was further verified by immunoelectron microscopy. Enzyme activity in the matrix vesicle was insensitive to exogenous lipid, whereas that in the plasma membrane required lipid for full activity. 1,25-(OH)2D3 and 24,25-(OH)2D3 inhibited matrix vesicle PKC, but stimulated plasma membrane PKC when added directly to the isolated membrane fractions. PKC activity in the matrix vesicle was calcium-independent, whereas that in the plasma membrane required calcium. Moreover, the vitamin D-sensitive PKC in matrix vesicles was not dependent on calcium, whereas the vitamin D-sensitive enzyme in plasma membranes was calcium-dependent. It is concluded that PKC isoforms are differentially distributed between matrix vesicles and plasma membranes and that enzyme activity is regulated in a membrane-specific manner. This suggests the existence of a nongenomic mechanism whereby the effects of 1,25-(OH)2D3 and 24,25-(OH)2D3 may be mediated via PKC. Further, PKCζ may be important in nongenomic, autocrine signal transduction at sites distal from the cell. © 1996 Wiley-Liss, Inc. 相似文献
13.
在研究AMPK的调控网络时,通常利用过表达显性失活突变型AMPK(dominant negative AMPK,DN-AMPK)作为研究手段来验证AMPK在某些重要生理病理调节通路中的关键作用。旨在利用Ad5腺病毒载体体系构建Ad-DN-AMPK表达载体,并在成肌细胞系C2C12中检测无活性AMPK高表达后对C2C12细胞分化为肌管细胞的影响。通过构建AMPKα1(D159A)和AMPKα2(K45R)的腺病毒表达载体,在HEK293细胞中成功包装并扩增出完整的腺病毒,待其感染能力基本稳定后,将腺病毒感染C2C12,利用激光定量成像仪检测其感染滴度,感染效率能高达100%,并且能够持续表达6 d。DN-AMPK高表达后,AMPK常用激活剂A769662(SN-5)不能激活AMPK,表现为AMPK下游蛋白活性丧失,如ACC磷酸化无变化。通过实时定量PCR的方法,检测DN-AMPK对C2C12分化为肌管细胞的影响,结果表明过表达DN-AMPK能够促进C2C12细胞分化为肌管细胞的标记蛋白(Myod和Myogenin)的表达,即促进C2C12分化为肌管细胞。 相似文献
14.
The field of Vitamin D assay technology has progressed significantly over the past 4 decades. Further, the clinical utility of these measurements has moved from esoteric into mainstream clinical diagnosis. This movement has been fueled by the realization that Vitamin D is involved in bodily systems beyond skeletal integrity. The clinical assay techniques for circulating 25(OH)D and 1,25(OH)2D have progressed away from competitive protein binding assay (CPBAs) that utilize tritium reporters to radioimmunoassay (RIAs) that utilize both I125 and chemiluminescent reporters. These advances have allowed direct serum analysis of 25(OH)D in an automated format that provides a huge sample throughput. Detection of circulating 25(OH)D can also be achieved utilizing direct high-performance liquid chromatographic (HPLC) or liquid chromatography coupled with mass spectrometry (LC–MS) techniques. These methods are accurate, however, they require expensive equipment and restrict sample throughput in the large clinical laboratory. Direct serum detection of 1,25(OH)2D is unlikely to occur for many reasons as a sample pre-purification will always be required. However, a semi-automated chemiluminescent detection system with automated sample preparation is in final development for the determination of circulating 1,25(OH)2D. These advances will allow both 25(OH)D and 1,25(OH)2D to be detected in an accurate, rapid fashion to meet the clinical demands we see emerging. 相似文献
15.
In this work, we studied the chronesthesia of 1,25-dihydroxyvitamin D 3 (1,25(OH) 2 D 3 ), cobalt (II) chloride and of the complex [CoCl 2 (1,25(OH) 2 D 3 ) 4 ]. The study was carried out in spring and autumn on AP and ?-GT activities in brain and kidney of rats during the rodents' active period. In rat brain, in both seasons, 1,25(OH) 2 D 3 enhanced AP activity by 59 % in spring and 21 % in autumn and ?-GT by 39 and 35 % respectively. Cobalt (II) stimulated AP activity by 34 and 29 % respectively. The complex was mainly active on ?-GT activity (70 and 36 %) showing a synergic effect on ?-GT activity in June. In rat kidney, during spring, the induction of AP activity for 1,25(OH) 2 D 3 , cobalt (II) chloride and their complex was, respectively 21, 18 and 12 %. The ?-GT activity was not modified during this period, whereas in autumn, it was inhibited by -33, -50 and -28 %. The AP activity in autumn was not altered. We conclude that the effects on the two enzymatic markers of the three compounds 1,25(OH) 2 D 3 , cobalt (II) chloride and [CoCl 2 (1,25(OH) 2 D 3 ) 4 ] are quite different in Spring and Autumn, and this is explained on the basis of chronesthesia. 相似文献
16.
The circadian activity rhythm undergoes changes in the course of postnatal development. Experiments without external time cues were performed to characterize the endogenous component and to investigate any age-dependent changes. Female laboratory mice were used. At the beginning of the experiment they were 3 (juvenile), 23 (adult) or 72 (senile) weeks old. Animals were kept in climatic chambers (constant darkness, food and water ad libitum, temperature: 22±2°C, rel. humidity: 55±5%). Locomotor activity was recorded continuously using infrared detectors. The data were stored and analysed by means of the “Chronobiology Kit” (Stanford University). The mean period lengths were not statistically different between age groups. The stability of the spontaneous activity rhythms was highest in adult mice, however. The mean activity/day decreased from juvenile to senile mice. A nonlinear interrelationship between period length and amount of activity was obtained. At lower activity levels the period length became shorter with increasing activity; at higher levels it became longer again. The general shape of the curve was similar in all age groups. With respect to the nonlinear curve, one could not establish a general age dependency of period length. At similar ranges of activity the period length would be shortest in senile animals. Taking into account, however, the decline with age of the amount of activity the period of old mice could be shorter than, equal to or longer than that of adult mice. The results show that the endogenous component of the circadian activity rhythm, including feedback loops, matures and stabilizes from the juvenile to the adult. An expected loss of stability in senile mice was not demonstrated, probably due to a high variance of the animals’ biological age. These age-dependent changes contribute to the changes of circadian activity rhythms obtained under entrained conditions. 相似文献
17.
To determine whether 1,25-dihydroxycholecalciferol [1,25(OH)2D3] affects protein kinase C (PKC) activity in kidney, as has been demonstrated in HL-60 cells we measured 1,25(OH)2D3 binding, PKC activity and PKC immunoreactivity in Madin Darby bovine kidney (MDBK) cells, a normal renal epithelial cell line derived from bovine kidney. Our data demonstrate that MDBK cells exhibit specific high affinity binding for 1,25(OH)2D3, indicating the presence of the vitamin D receptor (VDR). Treatment of MDBK cells with 1,25(OH)2D3 for 24 h increased membrane PKC activity and immunoreactivity. The effect of 1,25(OH)2D3 was dose-dependent, with a peak effect observed at 10(-7)M 1,25(OH)2D3. The 1,25(OH)2D3 induced increase in membrane PKC was paralleled by a comparable decrease in cytosolic PKC activity and amount. Although time course studies were consistent with a VDR mediated effect of 1,25(OH)2D3 on PKC protein synthesis, total PKC activity was not increased by 1,25(OH)2D3, suggesting an effect on PKC translocation or localization. These results suggest that 1,25(OH)2D3 modulates PKC mediated events in kidney, a classic target for this steroid hormone. 相似文献
18.
Bone morphogenetic proteins (BMPs) are members to the transforming growth factor-beta superfamily. They induce ectopic bone formation in rat and are pleiotropic initiators of inducible osteogenic precursor cells. A lot of reports have studied the presence of BMPs and their effects on bone marker expression in many different cell lines, however none describe the regulation of BMP3 by different factors and expression conditions. When a human bone marrow stromal cell (HBMSC) culture was treated simultaneously with 1,25(OH)2D3 (10(-8) M) and BMP3 (2.5 ng/ml), the total osteocalcin content in the cell layer and in the culture medium was higher than when the culture was treated with either factor alone (162%). To elucidate this synergistic activity, Northern blot analysis was done to study the effect of 1,25(OH)2D3 on BMP3 mRNA expression. Several human cell lines (MNNG, U-2OS, MG-63, KHOS, TE85, HOS) and HBMSC were treated by 1,25(OH)2D3 (10(-8) M for 24 h). Purified mRNA from treated and untreated cells were denatured using glyoxal and dimethylsulfoxide, and were fractionated on a 1% agarose gel. After electrophoresis, RNA were blotted onto a nylon membrane and incubated with 32P-labeled BMP3 and GAPDH riboprobes. Northern blot analysis revealed that, the BMP3 mRNA level was increased in a few cell lines (MG-63, HBMSC, HOS) after the addition of 1,25(OH)2D3 when compared to the untreated cells (127%+/-1; 130.5%+/-19.5; 207%+/-14). An higher stimulation was observed in HBMSC primary culture when compared to differentiated HBMSC. In view of these results, we now investigate the following hypothesis: does the BMP3 promoter exhibit the vitamin D receptor response like the osteocalcin gene? 相似文献
19.
G. Coen F. Bondatti G. Donato S. Mazzaferro M. Pasquali S. Rosini D. Sardella F. Taggi 《The Journal of steroid biochemistry and molecular biology》1992,42(8):823-829
1,24(R)(OH)2D3 is a synthetic analogue of 1,25(OH)2D3 which binds to the same receptors as the physiologic metabolite with a lower affinity. The aim of the present study was to compare the activity of 1,24(R)(OH)2D3 and 1,25(OH)2D3 on several target organs in patients with chronic renal failure. Treatment with 1,24(R)(OH)2D3 at doses of either 1 or 2 μg daily was carried out in two groups of 9 patients, with serum creatinine of 4.61 ± 1.59 and 4.66 ± 1.46 mg/dl, respectively. Doses of 1,25(OH)2D3 were 0.5 and 1 μg daily and were administered to 9 and 13 patients, serum creatinine of 4.52 ± 1.67 and 4.3 ± 1.16 mg/dl, respectively. Treatment periods were of 2 weeks. Administration of 1,25(OH)2D3, 1 μg, induced significant increments of intestinal calcium absorption (ICA), ionized calcium, osteocalcin, serum creatinine, urine Ca/GFR, and a decrease in iPTH. 1,25(OH)2D3, 0.5 μg, induced a significant increase in ICA and osteocalcin and a decrease in iPTH. Similarly 1,24(OH)2D3, 2 μg daily, significantly stimulated ICA and raised serum levels of osteocalcin and creatinine while lowering serum iPTH. In addition, 1,24(R)(OH)2D3 administration induced a significant fall of serum 1,25(OH)2D3. Following 1 μg, only osteocalcin increased. Therefore, the dose of 2 μg of 1,24(R)(OH)2D3 has biologic activity similar to 0.5 μg 1,25(OH)2D3 (4:1). However the activity ratio on osteocalcin production appears to be 2:1. In addition, 1,24(R)(OH)2D3 is able to inhibit renal tubular 1-hydroxylase. In conclusion 1,24(R)(OH)2D3 may prove to be useful in the treatment of metabolic bone disease. 相似文献