首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect on DNA and the antibacterial activity of a series of high nuclearity nickel compounds with three, four and five metal atoms were examined. The compounds have a mixed ligand composition with salicylhydroxamic acid and di-2-pyridyl-ketonoxime as chelate agents. In the trinuclear compound Ni(3)(shi)(2)(Hpko)(2)(py)(2)(1), two metal ions show a square planar geometry while the third one is in an octahedral environment. The compounds with four and five nickel atoms construct metallacrown cores with two distinct connectivities. The tetranuclear vacant metallacrown [12-MC(Ni(II)N(Hshi)2(pko)2)-4](2+) shows the connectivity pattern [-O-Ni-O-N-Ni-N-](2), while the pentanuclear ([Ni(II)][12-MC(Ni(II)N(shi)2(pko)2)-4])(2+) follows the pattern [-Ni-O-N-](4). Two distinct arrangements of the chelates around the ring metal ions were observed; a 6-5-6-5-6-5-6-5 arrangement for the [12-MC(Ni(II)N(Hshi)2(pko)2)-4] core and a 6-6-5-5-6-6-5-5 arrangement for the [12-MC(Ni(II)N(shi)2(pko)2)-4] core. Magnetic variable temperature susceptibility study of the trinuclear compound revealed the presence of one paramagnetic nickel(II) ion with strong crystal field dependence, with D=5.0(4) cm(-1), g(xy)=2.7(3) and g(z)=2.3(3). The effect of the synthesized Ni(II) complexes on the integrity and electrophoretic mobility of nucleic acids was examined. Only compounds 2, 3 and 4 altered the mobility of pDNA, forming high molecular weight concatamers at low concentrations or precipitates at higher concentrations. Antibacterial activity screening of the above compounds suggests that nickel compounds 2, 3 and 4 were the most active and can act as potent antibacterial agents.  相似文献   

2.
The reaction of manganese chloride, sodium or potassium thiocyanate and salicylhydroxamic acid in dimethylformamide-methanol solution leads to the formation of the 12-membered metallacrowns [Na(dmf)2]2(SCN)2{[12-MCMn(III)N(shi)-4](dmf)4} (1) and [K(dmf)2]2(SCN)2{[12-MCMn(III)N(shi)-4](dmf)4} (2). The crystal structure analyses of 1 and 2 show that pseudohalide ligands are bound to the ring manganese ions through the N atoms, while the alkaline ions, Na+ or K+, are accommodated at the cavity of the metallacrown ring. The alkali cations are bound to four oxygen atoms of the metallacrown ring and a single axial dmf. The binding of the pseudohalides (SCN, OCN and N3) to the manganese ions of the metallacrown ring is very similar to that observed previously for (NaBr)2 and (KBr)2 metallacrowns; however, unlike the previously described halide complexes, the thiocyante does not form a bridge between the ring and central metal ions. Furthermore, the pseudohalide ligands do not form a second bond to an adjacent metallacrown, thus, single metallacrowns are isolated rather than chains or columns. The affinity of thiocyanate for the metallacrown is approximately equal to chloride and significantly greater than bromide.  相似文献   

3.
Interaction of manganese with salicylhydroxamic ligands leads to the formation of a series of 15-membered metallacrown Mn(II)(L)(2)[15-MC(Mn(III)N(shi))-5](py)(6) (L=alkanoato ligand). The crystal structure contains a neutral 15-membered metallacrown ring of the type [15-MC(Mn(III)N(shi))-5]. The metallacrown core consists of five Mn(III) and five shi(-3) ligands. The 15-membered metallacrown ring is formed by the succession of five structural moieties of the type [Mn(III)-N-O]. The diversity in the configuration (planar or propeller) for the ring Mn(III) ions gives to the metallacrown core flexibility and simultaneously allows the encapsulation of the sixth Mn(II). The encapsulated Mn(II) is seven-coordinate and is bound to the five hydroximate oxygen donors provided by the metallacrown core, and two oxygen atoms from the carboxylate herbicide ligands. Antibacterial screening data showed that among all the compounds tested, manganese metallacrowns are more active than the simple manganese herbicide or carboxylate complexes while an increase in the efficiency of [15-MC(Mn(III)N(shi))-5] towards the analogous [12-MC(Mn(III)N(shi))-4] can be observed.  相似文献   

4.
Interaction of manganese with salicylhydroxamic ligands (shi) in methanol, in the presence of pyridine, leads to the formation of a series of 15-membered metallacrown (MC) Mn(II)(L)2[15-MCMn(III)N(shi)-5](py)6 or 7, (L=formato, benzoate or alkanoato ligand, py=pyridine). In the absence of pyridine, the Mn(II)(L)2[12-MCMn(III)N(shi)-4](MeOH)6 metallacrown was isolated and structurally characterized. The crystal structure of {[Mn(II)(HCOO)2][(15-MCMn(III)N(shi)-5)(py)7]}.py.1.9CH3OH.H2O (1) contains a neutral 15-membered metallacrown ring consisting of five Mn(III) and five shi(-3) ligands. The 15-membered metallacrown ring is formed by the succession of five structural moieties of the type [Mn(III)-N-O]. The diverse in the configuration (planar or propeller) for the ring Mn(III) ions gives the metallacrown core a bending structure. The crystal structure of {[Mn(II)(C6H5COO)2][(12-MCMn(III)N(shi)-4)(CH3OH)6]}.2CH3OH (2) contains a neutral 12-membered metallacrown ring consisting of four Mn(III) and four shi(-3) ligands. The 12-membered metallacrown ring is formed by the same way of succession of four structural moieties of the type [Mn(III)-N-O], while the presence of a planar only configuration of shi ligands around ring Mn(III) ions gives to the metallacrown core a planar structure. The encapsulated Mn(II) is six and seven-coordinate for (1) and (2), respectively, and is bound to the hydroximate oxygen of the metallacrown core and two oxygen atoms from the carboxylate ligands. Antibacterial screening data showed that, among all the compounds tested, manganese metallacrowns are more active compared to the simple manganese herbicide or carboxylate complexes, with increased efficiency for [15-MCMn(III)N(shi)-5] compared to the analogous [12-MCMn(III)N(shi)-4].  相似文献   

5.
Two new nickel(II) and copper(II) complexes of 2-(Furan-2-yl)-1H-Imidazo[4,5-f][1,10]Phenanthroline (FIP) and 2-(thiophen-2-yl)-1H-imidazo[4,5-f][1,10]phenanthroline (TIP), imidazophen derivatives were synthesized. The structures of the compounds were determined by UV-visible and FT-IR spectroscopic methods and elemental analysis. The biological activities of Ni and Cu complexes, as anticancer agents, were tested against chronic myelogenous leukemia cell line, K562, at micromolar concentration. The MTT studies showed Cc50 values are 21 and 160 µM for Cu and Ni(II) complexes, respectively; suggesting that Ni (II) complex has Cc50 almost seven times of that obtained for cisplatin. Biological activity of the Ni(II) and Cu(II) complexes were also assayed against selective microorganisms by disc diffusion method. These results showed that the Cu(II) complex is antifungal agent but Ni(II) complex has antibacterial activity.  相似文献   

6.
《Inorganica chimica acta》1987,128(2):231-237
Ni(II) dithiocarbamates (Ni(dtc)2) with various substituents on dtc were allowed to react with triphenylphosphine (PPh3). Mixed ligand complexes of the general formulae Ni(dtc)Cl(PPh3) and [Ni(dtc)(PPh3)2]ClO4 were prepared. The complexes were analysed by high resolution IR spectra. Comparison of the ν(C–N) frequencies of different complexes viz., Ni(dtc)2, Ni(dtc)Cl(PPh3) and [Ni(dtc)(PPh3)2]ClO4, showed the following order of decreasing v(C–N) values: [Ni(dtc)(PPh3)2]+> Ni(dtc)Cl(PPh3)> Ni(dtc)2. The observation showed the extent of contribution of the thiouride form in describing the structure of the complexes. The higher the contribution, larger is the value of ν(C–N). Cyclic voltammetric studies on the complexes showed the one electron reduction potentials to decrease in the following order: Ni(dtc)Cl(PPh3)>Ni(dtc)2> [Ni(dtc)(PPh3)2]+. The observations are explained with the nature of the substituents on the dtc moiety and other ligands present around Ni(II). Crystal structure of [Ni(dedtc) (PPh3)2]ClO4 (dedtc = diethyldithiocarbamate) was determined to study the effect of the introduction of PPh3 in place of Cl in the Ni(dtc)Cl(PPh3) complex. The complex is planar with NiS2P2 chromophore. The NiS distances are 2.190(2) and 2.239(2) Å and the NiP distances are 2.230(2) and 2.200(2) Å. The asymmetry in the NiS and NiP distances is ascribed to the steric effect due to bulky PPh3. The structural aspects are compared with those of the Ni(dtc)Cl(PPh3) complex.  相似文献   

7.
Syntheses, structural characterizations, magnetic behaviors and theoretical analyses of two new ion-pair complexes, [IFBzIQl][Ni(mnt)2](1) and [IClBzIQl]2[Ni(mnt)2]2 · MeCN(2) [IFBzIQl][Ni(mnt)2] ([IFBzIQl]+ = 1-(2′-fluoro-4′-iodobenzyl)isoquinolinium, [IClBzIQl]+ = 1-(2′-chloro-4′-iodobenzyl)isoquinolinium, mnt2− = maleonitriledithiolate), have been investigated. In crystal of 1, the [Ni(mnt)2] anions and the [IFBzIQl]+ cations stack into an alternating column through π?π stacking interactions. The anions of both 1 and 2 form a dimer via π?π stacking and S?S short interactions between the [Ni(mnt)2] anions. The overlapping mode of two neighboring [Ni(mnt)2] anions in the dimer is the Ni-ring fashion with a Ni?Ni distance of 4.076 Å for 1, and ring-ring fashion with the Ni?Ni and S?S distances being 4.395 and 3.593 Å for 2. Some weak interactions such as π?π, C?N, C-H?F or C-H?N in 1 and 2 play a crucial role in stacking and stabilizing the crystal lattice, and give a 3D network structure and exchange pathways of the magnetic interaction for 1 and 2. Magnetic susceptibility measurements for 1 and 2 in the temperature range 1.8-300 K show that the overall magnetic behavior indicates the presence of antiferromagnetic interaction, while 2 exhibits an activated magnetic behavior in the high-temperature region (HT) together with a Curie tail in the low-temperature region (LT).  相似文献   

8.
Some complexes containing “[Ni([18]py2N4)]2+, [Ni([20]py2N4)]2+, [Ni(Bzo2[18]py2N4)]2+ and [Ni(Bzo2[20]py2N4)]2+” were successfully prepared by the template synthesis of 2,6-diacetylpyridine with [bis(diamine)nickel(II)]; [Ni(N-N)2]2+; within the zeolite-Y. These complexes were entrapped in the supercage of Y-zeolite by a two-step process in the liquid phase: (i) inclusion of a Ni(II) precursor complex, [Ni(diamine)2]2+@NaY, and (ii) template synthesis of the nickel(II) precursor complex with 2,6-diacetylpyridine. The new complex nanoparticles entrapped within the zeolite-Y “[Ni([18]py2N4)]2+@NaY, [Ni([20]py2N4)]2+@NaY, [Ni(Bzo2[18]py2N4)]2+@NaY, [Ni(Bzo2[20]py2N4)]2+@NaY” were characterized by several techniques: chemical analysis and spectroscopic methods (FT-IR, UV-Vis, XRD, BET, DRS). Analysis of the data indicates that the Ni(II) complexes are encapsulated within the zeolite-Y and exhibit different property from those of the free complexes, which can arise from distortions caused by steric effects due to the presence of sodium cations, or from interactions with the zeolite matrix.  相似文献   

9.
《Inorganica chimica acta》1988,153(4):247-254
Methylmercury(II) complexes of 7-methylguanine (7mguaH) have been isolated from aqueous solution in the pH range 1-12 and structurally characterized. 1:1 complexes [(7mgua)HgCH3]·2H2O and [(7mguaH)HgCH3][NO3]· H2O with respectively N1 - and N9-coordination (X-ray analyses) were obtained from solutions in the respective pH ranges 9–12 and 1–4. A 2:1 complex [(7mgua)(HgCH3)2][NO3] with N1,N9-coordination (X-ray) may be prepared in the intermediate pH range 4–7. Two 3:1 complexes were isolated: [(7mgua)(HgCH3)3][NO3]2 from strongly acid solution (pH = 1–3), and [(7mguaH−1)(HgCH3)3][NO3] in the pH range 7–9. Whereas an X-ray analysis establishes N1,N3,N9-coordination for the former species in the solid state, the 1H NMR data suggest N2,N3,N9-coordination for the former and N2,N2,N9-coordination for the latter species in d6-DMSO solution.  相似文献   

10.
The nickel(II) complexes with the quinolone antibacterial agents oxolinic acid, flumequine, enrofloxacin and sparfloxacin in the presence of the N,N′-donor heterocyclic ligand 2,2′-bipyridylamine have been synthesized and characterized. The quinolones act as bidentate ligands coordinated to Ni(II) ion through the pyridone oxygen and a carboxylato oxygen. The crystal structure of [(2,2′-bipyridylamine)bis(sparfloxacinato)nickel(II)] has been determined by X-ray crystallography. UV study of the interaction of the complexes with calf-thymus DNA (CT DNA) has shown that they bind to CT DNA with [(2,2′-bipyridylamine)bis(flumequinato)nickel(II)] exhibiting the highest binding constant to CT DNA. The cyclic voltammograms of the complexes have shown that in the presence of CT DNA the complexes can bind to CT DNA by the intercalative binding mode which has also been verified by DNA solution viscosity measurements. Competitive study with ethidium bromide (EB) has shown that the complexes can displace the DNA-bound EB indicating that they bind to DNA in strong competition with EB. The complexes exhibit good binding propensity to human or bovine serum albumin protein having relatively high binding constant values. The biological properties of the [Ni(quinolonato)2(2,2′-bipyridylamine)] complexes have been evaluated in comparison to the previously reported Ni(II) quinolone complexes [Ni(quinolonato)2(H2O)2], [Ni(quinolonato)2(2,2′-bipyridine)] and [Ni(quinolonato)2(1,10-phenanthroline)]. The quinolones and their Ni(II) complexes have been tested for their antioxidant and free radical scavenging activity. They have been also tested in vitro for their inhibitory activity against soybean lipoxygenase.  相似文献   

11.
Reaction of the zwitterionic imidazolium salt [(CH2COOH)(CH2COO)im] with K2CO3 or BaO in the presence of 18-crown-6 affords the salts [(CH2COO)2im][K(18-crown-6)] and [(CH2COO)2im]2[Ba(18-crown-6)], respectively. Recrystallisation of these crown complexes from the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide, [emim][Tf2N], at a water interface, results in the formation of new salts in which the original anion is replaced by Tf2N. Single crystal X-ray diffraction has been performed on two of the salts. Notably, the potassium structure containing 18-crown-6 and Tf2N forms a linear chain coordination polymer that can be regarded as metal organic frameworks (MOFs). Moreover, this study provides insights into the separation of group I and II metal ions using crown ethers in combination with ionic liquids.  相似文献   

12.
The trianionic heptadentate ligand, (Z)-3-(5′-chlorosalicylhydrazinocarbonyl) propenoic acid, has been synthesized and reacted with FeCl3·6H2O, to produce the complex [FeIII6(C12H8N2O5Cl)6(H2O)4(CH3OH)2]·8H2O·4CH3OH. In the self-assembly process the ligand was esterified and transferred into (Z)-methyl 3-(5′-chlorosalicylhydrazinocarbonyl) propenoate. In the crystal structure, the neutral Fe(III) complex contain a 18-membered metallacrown ring consisting of six Fe(III) and six trianionic ligands. The 18-membered metallacrown ring is formed by the succession of six structural moieties of the type [Fe(III)-N-N]. Due to the meridional coordination of the ligands to the Fe3+ ions, the ligands enforce the stereochemistry of the Fe3+ ions as a propeller configuration with alternating Λ/Δ forms. The metallacrown can be treated with SnCl2 or Zn powder to obtain purified ester.  相似文献   

13.
Lee SH  Ha SH  Lee SB  Koo YM 《Biotechnology letters》2006,28(17):1335-1339
The adverse influence of chloride impurities on the lipase-catalyzed transesterification in ionic liquid is described. The activity of lipase from Rhizomucor miehei exponentially decreased with increasing Cl content in 1-octyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl] amide, [Omim][Tf2N], and the activity of lipase in [Omim][Tf2N] mixture containing 2% [Omim] [Cl] was only about 2% of the activity in pure [Omim][Tf2N]. The activity of lipase from Candidantarctica linearly decreased at about 5% with every 1% increase in [Omim][Cl] with there being no activity in [Omim][Tf2N] containing about 20% [Omim][Cl].  相似文献   

14.
Two new molecular magnets, based on [Ni(mnt)2] monoanion, [DiBrBzPy][Ni(mnt)2] (1) and [DiBrBzIQl][Ni(mnt)2] (2) ([DiBrBzPy]+ = 1-(3′,5′-dibromobenzyl)pyridinium, [DiBrBzIQl]+ = 1-(3′,5′-dibromobenzyl)isoquinolinium and mnt2− = maleonitriledithiolate), were prepared and characterized by elemental analyses, IR, ESI-MS spectra, single crystal X-ray diffraction and magnetic measurements. The [Ni(mnt)2] anions and the cations of 1 and 2 are alternately stacked and form 1D column via π?π stacking interactions between the [Ni(mnt)2] anions and the neighboring cations. Some weak Ni?N, C?N interactions and CH?Br, CH?N hydrogen bonds between the adjacent columns further generate a 3D network structure. Magnetic susceptibility measurements show that both 1 and 2 exhibit the typical magnetic behavior of a spin gap system with an energy gap of 1151.9 K for 1 and 73.9 K for 2.  相似文献   

15.
Reaction of Mn(II) with phenoxyalkanoic acids and di-2-pyridyl ketone oxime (Hpko) leads to neutral tetranuclear complexes of the general formula Mn(4)(O)(pko)(4)(phenoxyalkanoato)(4) (phenoxyalkanoic acids: H-mcpa=2-methyl-4-chloro-phenoxy-acetic acid, H-2,4,5-T=2,4,5-trichloro-phenoxy-acetic acid or H3,4-D=3,4-dichloro-phenoxy-acetic acid). The compounds were synthesized by adding di-2-pyridyl ketone oxime to MnCl(2) in the presence of the sodium salts of the alkanoic acids in methanol. The crystal structure of Mn(4)(II/II/II/IV)(O)(pko)(4)(2,4,5-T)(4).2.5CH(3)OH.0.25H(2)O 1 shows that the complex consists of a [Mn(4)(mu(4)-O)](8+) core with a Mn(IV) and 3 Mn(II) ions in octahedral environment and a mu(4)-O atom bridging the four manganese ions. Spectroscopic studies of the interaction of these tetranuclear clusters with DNA showed that these compounds bind to dsDNA. The binding strength of the Mn(4)(II/II/II/IV)(O)(pko)(4)(2,4,5-T)(4) complex for calf thymus DNA is equal to 1.1x10(4)M(-1). Among the deoxyribonucleotides they bind preferentially to deoxyguanylic acid (dGMP). Competitive studies with ethidium bromide (EthBr) showed that the Mn(4)(II/II/II/IV)(O)(pko)(4)(2,4,5-T)(4) complex exhibited the ability to displace the DNA-bound EthBr indicating that the complex binds to DNA via intercalation in strong competition with EthBr for the intercalative binding site. Additionally, DNA electrophoretic mobility experiments showed that all three complexes, at low cluster concentration, are obviously capable of binding to pDNA causing its cleavage (relaxation) at physiological pH and temperature. At higher cluster concentration, catenated dimer forms of pDNA was formed.  相似文献   

16.
The Pd(II) and Pt(II) complexes with triazolopyrimidine C-nucleosides L1 (5,7-dimethyl-3-(2′,3′,5′-tri-O-benzoyl-β-d-ribofuranosyl-s-triazolo)[4,3-a]pyrimidine), L2 (5,7-dimethyl-3-β-d-ribofuranosyl-s-triazolo[4,3-a]pyrimidine) and L3 (5,7-dimethyl[1,5-a]-s-triazolopyrimidine), [Pd(en)(L1)](NO3)2, [Pd(bpy)(L1)](NO3)2, cis-Pd(L3)2Cl2, [Pd2(L3)2Cl4] · H2O, cis-Pd(L2)2Cl2 and [Pt3(L1)2Cl6] were synthesized and characterized by elemental analysis and NMR spectroscopy. The structure of the [Pd2(L3)2Cl4] · H2O complex was established by X-ray crystallography. The two L3 ligands are found in a head to tail orientation, with a Pd?Pd distance of 3.1254(17) Å. L1 coordinates to Pd(II) through N8 and N1 forming polymeric structures. L2 coordinates to Pd(II) through N8 in acidic solutions (0.1 M HCl) forming complexes of cis-geometry. The Pd(II) coordination to L2 does not affect the sugar conformation probably due to the high stability of the C-C glycoside bond.  相似文献   

17.
Mixed ligand complexes: [Co(L)(bipy)] · 3H2O (1), [Ni(L)(phen)] · H2O (2), [Cu(L)(phen)] · 3H2O (3) and [Zn(L)(bipy)] · 3H2O (4), where L2− = two -COOH deprotonated dianion of N-(2-benzimidazolyl)methyliminodiacetic acid (H2bzimida, hereafter, H2L), bipy = 2,2′ bipyridine and phen = 1,10-phenanthroline have been isolated and characterized by elemental analysis, spectral and magnetic measurements and thermal studies. Single crystal X-ray diffraction studies show octahedral geometry for 1, 2 and 4 and square pyramidal geometry for 3. Equilibrium studies in aqueous solution (ionic strength I = 10−1 mol dm−3 (NaNO3), at 25 ± 1 °C) using different molar proportions of M(II):H2L:B, where M = Co, Ni, Cu and Zn and B = phen, bipy and en (ethylene diamine), however, provides evidence of formation of mononuclear and binuclear binary and mixed ligand complexes: M(L), M(H−1L), M(B)2+, M(L)(B), M(H−1L)(B), M2(H−1L)(OH), (B)M(H−1L)M(B)+, where H−1L3− represents two -COOH and the benzimidazole N1-H deprotonated quadridentate (O, N, O, N), or, quinquedentate (O, N, O, N, N) function of the coordinated ligand H2L. Binuclear mixed ligand complex formation equilibria: M(L)(B) + M(B)2+ ? (B)M(H−1L)M(B)+ + H+ is favoured with higher π-acidity of the B ligands. For Co(II), Ni(II) and Cu(II), these equilibria are accompanied by blue shift of the electronic absorption maxima of M(II) ions, as a negatively charged bridging benzimidazolate moiety provides stronger ligand field than a neutral one. Solution stability of the mixed ligand complexes are in the expected order: Co(II) < Ni(II) < Cu(II) > Zn(II). The Δ log KM values are less negetive than their statistical values, indicating favoured formation of the mixed ligand complexes over the binary ones.  相似文献   

18.
The dinickel(II) compound [Ni2(μ-OAc)2(OAc)2(μ-H2O)(asy·dmen)2]·2.5H2O, 1; undergoes facile reaction in a 1:2 molar ratio with benzohydroxamic acid (BHA) in ethanol to give the novel nickel(II) tetranuclear hydroxamate complex [Ni4(μ-OAc)3(μ-BA)3(asy·dmen)3][OTf]2·H2O, 2, in which the bridging acetates, bridging two nickel atoms in 1, undergo a carboxylate shift from the μ211 bridging mode of binding to the μ312 bridging three nickel atoms in the tetramer. The structure of complex 2 was determined by single-crystal X-ray crystallography. The two monodentate acetates, water and two bidentate bridging acetates of two moles of complex 1 are replaced by three monodentate bridging acetates and three benzohydroxamates. Three nickel atoms in the tetramer, Ni(2), Ni(3) and Ni(4) are in a N2O4 octahedral environment, while the fourth nickel atom Ni(1) is in an O(6) octahedral environment. The Ni-Ni separations are Ni(1)-Ni(2) = 3.108 Å, Ni(1)-Ni(3) = 3.104 Å and Ni(1)-Ni(4) = 3.110 Å, which are longer than previously studied in dinuclear urease inhibited models but shorter than in the nickel(II) tetrameric glutarohydroxamate complex [Ni4(μ-OAc)2(μ-gluA2)2(tmen)4][OTf]2, isolated and characterized previously in this laboratory. Magnetic studies of the tetrameric complex show that the four Ni(II) ions are ferromagnetically coupled, leading to a total ground spin state ST = 4. Three analogous tetranuclear nickel hydroxamates were prepared from AHA and BHA and the appropriate dinuclear complex with either sy·dmen or asy·dmen as capping ligands.  相似文献   

19.
A series of hexadentate ligands, H2Lm (m = 1−4), [1H-pyrrol-2-ylmethylene]{2-[2-(2-{[1H-pyrrol-2-ylmethylene]amino}phenoxy)ethoxy]phenyl}amine (H2L1), [1H-pyrrol-2-ylmethylene]{2-[4-(2-{[1H-pyrrol-2-ylmethylene]amino}phenoxy)butoxy]phenyl}amine (H2L2), [1H-pyrrol-2-ylmethylene][2-({2-[(2-{[1H-pyrrol-2-ylmethylene]amino}phenyl)thio]ethyl}thio)phenyl]amine (H2L3) and [1H-pyrrol-2-ylmethylene][2-({4-[(2-{[1H-pyrrol-2-lmethylene]amino}phenyl)thio]butyl}thio) phenyl]amine (H2L4) were prepared by condensation reaction of pyrrol-2-carboxaldehyde with {2-[2-(2-aminophenoxy)ethoxy]phenyl}amine, {2-[4-(2-aminophenoxy)butoxy]phenyl}amine, [2-({2-[(2-aminophenyl)thio]ethyl}thio)phenyl]amine and [2-({4-[(2-aminophenyl)thio]butyl}thio)phenyl]amine respectively. Reaction of these ligands with nickel(II) and copper(II) acetate gave complexes of the form MLm (m = 1−4), and the synthesized ligands and their complexes have been characterized by a variety of physico-chemical techniques. The solid and solution states investigations show that the complexes are neutral. The molecular structures of NiL3 and CuL2, which have been determined by single crystal X-ray diffraction, indicate that the NiL3 complex has a distorted octahedral coordination environment around the metal while the CuL2 complex has a seesaw coordination geometry. DFT calculations were used to analyse the electronic structure and simulation of the electronic absorption spectrum of the CuL2 complex using TDDFT gives results that are consistent with the measured spectroscopic behavior of the complex. Cyclic voltammetry indicates that all copper complexes are electrochemically inactive but the nickel complexes with softer thioethers are more easily oxidized than their oxygen analogs.  相似文献   

20.
Two new complexes [(Etdpa)MnCl2] and [(Adpa)Mn(Cl)(H2O)] (Etdpa = ethyl bis(2-pyridylmethyl)amino-2-propionate; Adpa = bis(2-pyridylmethyl)amino-2-propionic acid) were synthesized and characterized by spectral methods. The crystal structure of [(Etdpa)MnCl2] shows that the Mn(II) atom is coordinated by three N atoms (N1, N2, N3), one oxygen atom (O1) of the ligand (Etdpa) and two chloride atoms (Cl1, Cl2), forming a distorted octahedral geometry. The binding interaction between ct-DNA and the synthesized complexes was relatively weak, but they can inhibit the induced swelling of Ca2+-loaded mitochondria in a dose-dependent manner. The [(Adpa)Mn(Cl)(H2O)] can cause the obvious decrease of mitochondria membrane potential. The MTT (3-[4,5-Dimethylthiazol-2-yl]-2,5-diphenpyltetra-zolium bromide) assay shows that the two Mn(II) complexes are more active against cancer cells. Especially [(Adpa)Mn(Cl)(H2O)] can inhibit the proliferation of glioma cells with IC50 9.5 μM. Experimental results indicate that the [(Adpa)Mn(Cl)(H2O)] could be a new potential antitumor complex to target the mitochondria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号