共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Optimal conditions for both biomass formation and penicillin synthesis by a strain of Penicillium chrysogenum were determined when using a collagen-derived nitrogen source. Preliminary investigations were carried out in shaken flask cultures employing a planned experimental program termed the Graeco-Latin square technique (Auden et al., 1967). It was initially determined that up to 30% of a conventional complex nitrogen source such as cottonseed meal could be replaced by the collagen-derived nitrogen source without decreasing the productivity with respect to the penicillin yield. In the pilot scale experiments using a 30 l stirred tank type of bioreactor, higher penicillin yields were obtained when 70% of the conventional complex nitrogen source in the form of cottonseed meal was replaced by the collagen hydrolysate. Furthermore, the maximum rate of penicillin synthesis continued for over a longer period when using collagen hydrolysate as a complex nitrogen source. Penicillin synthesis rates were determined using a linear regression. 相似文献
3.
4.
Arias-Barrau E Sandoval A Arcos M Arias S Naharro G Olivera ER Luengo JM 《FEMS microbiology letters》2005,249(2):297-302
A genetically engineered strain of Pseudomonas putida U designed for the identification of new therapeutic herbicides has been obtained. In this bacterium, deletion of the homogentisate gene cluster (hmgRABC) confers upon this mutant huge biotechnological possibilities since it can be used: (i) as a target for testing new specific herbicides (p-hydroxy-phenylpyruvate dioxygenase inhibitors); (ii) to identify new therapeutic drugs-effective in the treatment of alkaptonuria and other related tyrosinemia - and (iii) as a source of homogentisic acid in a plant-bacterium association. 相似文献
5.
Martiniano Fernández-Valverde Angel Reglero JoséM. Luengo 《FEMS microbiology letters》1992,96(2-3):111-114
Five different naturally occurring penicillins containing as side chains hexanoic, trans-3-hexenoic, heptanoic, octanoic or trans-3-octenoic acids have been synthesized 'in vitro' by coupling long-chain fatty acid-CoA ligase (AMP-forming) (EC 6.2.1.3) from Pseudomonas fragi (LFCoA-L) with acyl-CoA: 6-aminopenicillanic acid acyltransferase (AT) from Penicillium chrysogenum. The quantity of penicillin produced was directly related with the carbon length of the side chain precursor tested, being maximal with octanoic acid. Fatty acids with a lower length than C5 were not recognized as substrates and nor were certain aromatic molecules. 相似文献
6.
The precipitation of enzyme causes the major activity loss in the conventional protocol for CLEAs preparation. Herein, a sugar-assisted strategy was developed to minimize the activity loss in the step of enzyme precipitation by adding sugar as the stabilizer, which contributed to improve the activity yield of resulting CLEAs. Penicillin G acylase (PGA) was employed as a model enzyme. The effects of glucose, sucrose and trehalose on the activity yields of CLEAs were investigated. The highest activity was obtained in the case of adding trehalose. Confocal laser scanning microscopy and Fourier transform infrared spectroscopy showed that the polar microenvironment and the secondary structure of native enzyme were preserved to some extent when PGA was prepared as sugar-assisted CLEAs, resulting in PGA's higher activity than sugar-free CLEAs. Scanning electron microscope revealed the different inner morphologies, and the kinetic studies showed the higher affinity and resist-inhibition capacity of sugar-assisted CLEAs. Furthermore, stability experiments demonstrated that CLEAs prepared in sugar-assisted strategy remained higher thermal stability when it was incubated at high temperature. 相似文献
7.
Rutger D. Douma Lodewijk P. de Jonge Caspar T.H. Jonker Reza M. Seifar Joseph J. Heijnen Walter M. van Gulik 《Biotechnology and bioengineering》2010,107(1):105-115
Important steps in metabolic pathways are formed by the transport of substrates and products over the cell membrane. The study of in vivo transport kinetics requires accurate quantification of intra‐ and extracellular levels of the transported compounds. Especially in case of extracellular abundance, the proper determination of intracellular metabolite levels poses challenges. Efficient removal of extracellular substrates and products is therefore important not to overestimate the intracellular amounts. In this study we evaluated two different rapid sampling methods, one combined with cold filtration and the other with centrifugation, for their applicability to determine intracellular amounts of metabolites which are present in high concentrations in the extracellular medium. The filtration‐based method combines fast sampling and immediate quenching of cellular metabolism in cold methanol, with rapid and effective removal of all compounds present outside the cells by means of direct filtration and subsequent filtration‐based washing. In the centrifugation‐based method, removal of the extracellular metabolites from the cells was achieved by means of multiple centrifugation and resuspension steps with the cold quenching solution. The cold filtration method was found to be highly superior to the centrifugation method to determine intracellular amounts of metabolites related to penicillin‐G biosynthesis and allowed the quantification of compounds of which the extracellular amounts were 3–4 orders of magnitude higher than the intracellular amounts. Using this method for the first time allowed to measure the intracellular levels of the side chain precursor phenylacetic acid (PAA) and the product penicillin‐G of the penicillin biosynthesis pathway, compounds of which the transport mechanism in Penicillium chrysogenum is still far from being sufficiently understood. Biotechnol. Bioeng. 2010;107: 105–115. © 2010 Wiley Periodicals, Inc. 相似文献
8.
Abstract The relationship between fatty acid metabolism and PHA biosynthesis in P. putida is described. Detailed 1 H and 13 C NMR studies were performed to investigate the structures of poly(3-hydroxyalkanoates) (PHAs) formed from carbohydrates and fatty acids. On the basis of these results, it is proposed that during growth on glucose the 3-hydroxyacyl-acyl carrier protein intermediates of the de novo fatty acid biosynthetic pathway are diverted to PHA biosynthesis. Similarly, further evidence is presented that during cultivation on fatty acids, intermediates of the β-oxidation cycle serve as precursors of PHA biosynthesis. 相似文献
9.
The activities of the TOL plasmid-coded xylene oxygenase, benzylalcohol dehydrogenase, benzaldehyde dehydrogenase of Pseudomonas putida strain PaW1 were tested with substituted toluenes, benzylalcohols and benzaldehydes, respectively, as substrates. Several chlorinated toluenes were shown to induce enzymes of the xylene degradation sequence. Conjugative transfer of the TOL plasmid from Pseudomonas putida strain PaW1 to Pseudomonas sp. strain B13 and Pseudomonas cepacia strain JH230 allowed the isolation of hybrid strains capable of growing in the presence of 3-chloro-, 4-chloro- and 3,5-dichlorotoluene. Hybrid strains revealed new ways to prevent the dead-end meta-pathway for cholorocatechols. 相似文献
10.
Chun-Xiu Chen Qi Wu Bo-Kai Liu De-Shui Lv Xian-Fu Lin 《Enzyme and microbial technology》2008,42(7):601-607
The efficient enzymatic synthesis of amoxicillin using anhydrous tert-pentanol as a novel media has been demonstrated for the first time. p-OH-Phenylglycine methyl ester (HPGM) was selected as the activated acyl donor due to its good solubility in organic solvents. The screening results of 21 organic solvents showed that solvents with either strong polarity or poor substrate solubility were unfavorable. Remarkable catalytic activity of the immobilized penicillin acylase (IPA) from Escherichia coli was retained in tert-pentanol, and high yield could be obtained. Effects of various parameters such as acyl donor, water content or cosolvents of tert-pentanol, substrate concentration, temperature, etc., on the enzymatic synthesis of amoxicillin in tert-pentanol were investigated systematically. The best reaction medium, the optimal temperature, initial concentration of 6-APA and HPGM and concentration of enzyme were tert-pentanol, 15 °C, 100, 200 mM and 20 IU/mL, respectively. Under the optimal conditions, the yield of amoxicillin was as high as 88% after a reaction time of 20 h. 相似文献
11.
The current practices of using monooxygenase enzymes to perform regio- and stereoselective oxidation reactions in organic syntheses are reviewed. The isolation of a monooxygenase from Pseudomonas putida NCIMB 10007 and its use in the conversion of bicyclo[3.2.0]hept-2-en-6-one into two isomeric optically active lactones is described. The monooxygenase utilises NADH as cofactor and NADH-recycling is accomplished using formate and formate dehydrogenase. As alternative methodology, it is shown that a secondary alcohol can be converted into a chiral lactone using a dehydrogenase and a monooxygenase working in tandem with in situ cofactor recycling. © 1993 Wiley-Liss, Inc. 相似文献
12.
Genetic analysis of the gas vesicle gene cluster in haloarchaea 总被引:1,自引:0,他引:1
Gas vesicles are buoyant intracellular organelles composed of a rigid proteinaceous membrane surrounding a gas-filled space. Many prokaryotic microorganisms including photosynthetic and heterotrophic bacteria and halophilic and methanogenic archaea produce gas vesicles. In the majority of cases gas vesicles function in providing vertical motility to cells in aquatic environments. Recent genetic analysis of several halophilic archaeal (haloarchaeal) species has shown that a large cluster of genes [gvpMLKJIHGFEDACN(O)] is necessary for gas vesicle formation. 相似文献
13.
F. Fukumori Hisako Hirayama Hideto Takami Akira Inoue Koki Horikoshi 《Extremophiles : life under extreme conditions》1998,2(4):395-400
A toluene-resistant variant of Pseudomonas putida KT2442, strain TOL, was isolated after liquid cultivation under xylene followed by toluene for 1 month in each condition.
Almost all the populations of the variant strain formed small but readily visible colonies under toluene within 24 h at 30°C.
The toluene-resistant strain also showed an increase in resistance to some unrelated antibiotics. Several toluene-sensitive
Tn5 mutants have been isolated from the toluene-resistant strain and showed various levels of sensitivity. Most of these mutations
did not cause significant changes in antibiotic resistance; however, one of the mutants (TOL-4) was highly susceptible to
both organic solvents and various antibiotics, especially β-lactams. Sequencing analysis revealed that the mutation in TOL-4
had been introduced into a gene that may encode a transporter protein of an efflux system. This efflux system is very similar
to one of the multidrug efflux systems of Pseudomonas aeruginosa. These observations indicate that a multidrug efflux system plays a major role in the organic solvent resistance of P. putida TOL. However, several other genes may also be involved.
Received: December 18, 1997 / Accepted: March 16, 1998 相似文献
14.
Guan Wang Xinxin Wang Tong Wang Walter van Gulik Henk J. Noorman Yingping Zhuang Ju Chu Siliang Zhang 《Biotechnology journal》2019,14(10)
During glucose‐limited growth, a substantial input of adenosine triphosphate (ATP) is required for the production of β‐lactams by the filamentous fungus Penicillium chrysogenum. Formate dehydrogenase has been confirmed in P. chrysogenum for formate oxidation allowing an extra supply of ATP, and coassimilation of glucose and formate has the potential to increase penicillin production and biomass yield. In this study, the steady‐state metabolite levels and fluxes in response to cofeeding of formate as an auxiliary substrate in glucose‐limited chemostat cultures at the dilution rates (D) of both 0.03 h?1 and 0.05 h?1 are determined to evaluate the quantitative impact on the physiology of a high‐yielding P. chrysogenum strain. It is observed that an equimolar addition of formate is conducive to an increase in both biomass yield and penicillin production at D = 0.03 h?1, while this is not the case at D = 0.05 h?1. In addition, a higher cytosolic redox status (NADH/NAD+), a higher intracellular glucose level, and lower penicillin productivity are only observed upon formate addition at D = 0.05 h?1, which are virtually absent at D = 0.03 h?1. In conclusion, the results demonstrate that the effect of formate as an auxiliary substrate on penicillin productivity in the glucose‐limited chemostat cultivations of P. chrysogenum is not only dependent on the formate/glucose ratio as published before but also on the specific growth rate. The results also imply that the overall process productivity and quality regarding the use of formate should be further explored in an actual industrial‐scale scenario. 相似文献
15.
16.
Shiqin Yu Bin Lai Manuel R. Plan Mark P. Hodson Endah A. Lestari Hao Song Jens O. Krömer 《Biotechnology and bioengineering》2018,115(1):145-155
It was recently demonstrated that a bioelectrochemical system (BES) with a redox mediator allowed Pseudomonas putida to perform anoxic metabolism, converting sugar to sugar acids with high yield. However, the low productivity currently limits the application of this technology. To improve productivity, the strain was optimized through improved expression of glucose dehydrogenase (GCD) and gluconate dehydrogenase (GAD). In addition, quantitative real‐time RT‐PCR analysis revealed the intrinsic self‐regulation of GCD and GAD. Utilizing this self‐regulation system, the single overexpression strain (GCD) gave an outstanding performance in the electron transfer rate and 2‐ketogluconic acid (2KGA) productivity. The peak anodic current density, specific glucose uptake rate and 2KGA producing rate were 0.12 mA/cm2, 0.27 ± 0.02 mmol/gCDW/hr and 0.25 ± 0.02 mmol/gCDW/hr, which were 327%, 477%, and 644% of the values of wild‐type P. putida KT2440, respectively. This work demonstrates that expression of periplasmic dehydrogenases involved in electron transfer can significantly improve productivity in the BES. 相似文献
17.
Abstract: 3-Nitrotoluene was degraded when incubated with the resting cells of Pseudomonas putida OU83. Most of the 3-nitrotoluene (70%) was metabolized via reduction of the nitro group to form 3-aminotoluene (3-AT). A minor portion (30%) was degraded through a novel pathway involving oxidation of 3-NT to form 3-nitrophenol through a series of intermediary metabolites: 3-nitrobenzyl alcohol, 3-nitrobenzaldehyde and 3-nitrobenzoic acid. Degradation of 3-nitrophenol occurred with the formation of a transient intermediary metabolite, hydroxynitroquinone, which was further degraded with the near stoichiometric release of nitrite into the medium. 3-Nitrotoluene-induced cells showed increased oxygen consumption with 3-nitrotoluene, 3-nitrobenzaldehyde, 3-nitrobenzoate, and 3-nitrophenol as substrates in comparison to uninduced cells. Cell extracts prepared from strain OU83 contained benzylalcohol dehydrogenase and benzaldehyde dehydrogenase activities. The experimental evidence suggests a novel pathway for the degradation of 3-NT in which C-1 elimination is catalyzed by a cofactor-independent deformylase, rather than a decarboxylase or dioxygenase. 相似文献
18.
Tomislav Ivankovic Christian Geindreau Philipe Séchet Zhujun Huang Jean M. F. Martins 《Biofouling》2016,32(10):1235-1244
The development of a reliable model allowing accurate predictions of biofilm growth in porous media relies on a good knowledge of the temporal evolution of biofilm structure within the porous network. Since little is known about the real 3-D structure of biofilms in porous media, this work was aimed at developing a new experimental protocol to visualize the 3-D microstructure of the inside of a porous medium using laboratory X-ray microtomography. A reliable and reproducible methodology is proposed for (1) growing a biofilm inside a porous medium, and (2) X-ray tomography-based characterization of the temporal development of the biofilm at the inlet of the biofilter. The statistical analysis proposed here also validates the results presented in the literature based on a biofilm structure single measurement. 相似文献
19.
《Bioscience, biotechnology, and biochemistry》2013,77(8):1716-1718
Recombinant strains of Ralstonia eutropha and Pseudomonas putida harboring a chimeric polyhydroxyalkanoate (PHA) synthase, which consisted of PHA synthases of Aeromonas caviae and R. eutropha, produced 3-hydroxybutyrate (3HB)-based PHA copolymers comprised of 3-hydroxyhexanoate and 3-hydroxyoctanoate units from dodecanoate (87–97 mol % 3HB), indicating that the chimeric PHA synthase possesses desirable substrate specificity leading to the production of 3HB-rich copolymers. 相似文献
20.
固定化酶-离子交换组合系统进行青霉素G水解生产6-APA的模型化研究 总被引:4,自引:1,他引:4
采用固定化青霉素酰化酶(Penicillin acylase)在反应器中进行青霉素G水解生产6-APA,同时与离子交换柱相组合以连续地去除反应混合液中的苯乙酸。建立了离子变换柱的分格模型(Comparunent model).在确定了青霉素G和苯乙酸沿柱高的浓度分布的基础上,与描述固定化酶反应器的状态方程相结合,得到了固定化酶-离子交换组合系统的数学模型。在将计算机模拟值与实验值进行验证后,探讨了组合系统中树脂量、循环流速和组合起始时间对青霉素G酶解过程的影响。 相似文献