首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
As part of its pathogenic life cycle, Phytophthora capsici disperses to plants through a motile zoospore stage. Molecules on the zoospore surface are involved in reception of environmental signals that direct preinfection behavior. We developed a phage display protocol to identify peptides that bind to the surface molecules of P. capsici zoospores in vitro. The selected phage-displayed peptides contained an abundance of polar amino acids and proline but were otherwise not conserved. About half of the selected phage that were tested concomitantly induced zoospore encystment in the absence of other signaling agents. A display phage was shown to bind to the zoospore but not to the cyst form of P. capsici. Two free peptides corresponding to active phage were similarly able to induce encystment of zoospores, indicating that their ability to serve as signaling ligands did not depend on their exact molecular context. Isolation and subsequent expression of peptides that act on pathogens could allow the identification of receptor molecules on the zoospore surface, in addition to forming the basis for a novel plant disease resistance strategy.  相似文献   

2.
Hardham  A. R.  Suzaki  E. 《Protoplasma》1986,133(2-3):165-173
Summary Only two of a number of macromolecules that bind to the surface of zoospores of the dieback fungus,Phytophthora cinnamomi, induce encystment when added to a suspension of actively swimming zoospores. One, the lectin Concanavalin A (ConA), binds to the entire surface of the zoospores including the surface of both flagella. Within 10 minutes more than 70% of the cells have encysted in the presence of 5 g/ml ConA. This encystment is inhibited by preincubation of the lectin with its hapten sugar, -methyl-D-mannoside. The other effective molecule, a monoclonal antibody designated Zf-1, is one of 35 that have been raised to components on the surface of zoospores and cysts ofP. cinnamomi. The antigen for Zf-1 occurs only on the surface of the two flagella. Purified Zf-1 at 15 g/ml causes encystment of 75% of the zoospores in 13minutes. To show that the induction of encystment by these two probes is not due simply to the presence of protein either in solution or bound to the zoospore a number of other proteins were tested, including other antibodies that bind to the zoospore surface. None of these other molecules caused encystment even at concentrations greater than 200 g/ml. The results are consistent with the surface components that bind ConA and Zf-1 being involved in the critical step of triggering encystment at the surface of a potential host during infection.  相似文献   

3.
Addepalli MK  Fujita Y  Kanai K 《Mycologia》2002,94(4):712-722
Pythium porphyrae (Oomycota) is a microbial pathogen which causes red rot disease in the commercially cultivated red seaweed Porphyra. This disease is initiated by the motile zoospores of the fungus, which it has been suggested to recognize and process host specific signals by membrane bound receptors. Monoclonal antibodies (MAbs) were developed against the surface components of zoospores and cysts of this fungus in order to try and identify the putative receptor molecules involved in the zoospore encystment process. Screening of MAbs by immunofluorescence assays has revealed three different patterns of surface epitope binding, while labeling of zoospore and cysts components by FITC-conjugated lectins has identified different carbohydrate moieties. Of the MAbs and lectins tested, MAb 1A3 and wheat germ agglutinin have induced zoospore encystment under in vitro conditions. MAb 1A3 identified a 109 KDa band of a glycoprotein in western blot analysis which could be a putative receptor responsible for the induction of zoospore encystment.  相似文献   

4.
Summary Lagenidium giganteum (Oomycetes: Lagenidiales), a facultative parasite of mosquito larvae, infects the larval stage of most species of mosquitoes and a very limited number of alternate hosts. Host infection by this and other members of Oomycetes is initiated by motile, laterally biflagellate zoospores. Chemical bases for the various degrees of host specificity exhibited by these parasites is not known, but presumably involves receptors on the zoospore surface recognizing compounds either secreted by or on the surface of their hosts. Surface topography had no detectable effect onL. giganteum encystment or appressorium formation. Scanning electron microscopy documented the detachment of flagella during zoospore encystment. Bulbous knobs at the basal end of the detached flagellum were interpreted as encysting zoospores dropping the axoneme and/or the basal body and associated structures to which flagella are attached. Multiple signals appear to be involved in the initial steps ofL. giganteum host invasion. Zoospores of this parasite did not encyst on powdered preparations of chitin or chitosan (deacetylated chitin). Upon dissolution of chitosan in dilute acid followed by drying these solutions to form thin, transparent films, zoospores readily encysted. The degree of reacetylation of these films and the spacing of acetylated and deacetylated residues had no significant effect on zoospore encystment. Zoospores of a strain ofLagenidium myophilum isolated from marine shrimp, that also infects mosquito larvae, encysted on chitosan films. No encystment of spores of the plant parasitePhytophthora capsici was observed on chitin or chitosan films. Simulation of cuticle sclerotization by incubating chitosan films with different catecholamines and tyrosinase significantly reduced zoospore encystment. Zoospores that encysted on chitosan films did not germinate in distilled water. Germination could be induced by adding microgram quantities of bovine serum albumin or proteins secreted by motile zoospores into the water, and to a lesser degree by some amino acids, but not by various cations. Zoospores encysted and germinated on the pupal stage of some mosquito species. Appressoria were occasionally formed, but most subsequently sent out another mycelial branch, apparently without attempting to pierce the pupal cuticle. Methylation of pupal exuviae with ethereal diazomethane or methanol/HCl significantly increased zoospore encystment. Modification of chitin by catecholamines, lipids and protein on the epicuticular larval surface all affected host invasion.Abbreviations BSA bovine serum albumin - CID collision-induced dissociation - DOPA 3,4-dihydroxyphenylalanine - ESI-MS electrospray mass spectrometry - ESI-MS/MS tandem electrospray mass spectrometry - SDS-PAGE sodium dodecyl sulphate polyacrylamide gel electrophoresis - WGA wheat germ agglutinin - ZAP zoospore aggregation pheromone  相似文献   

5.
Hua C  Wang Y  Zheng X  Dou D  Zhang Z  Govers F  Wang Y 《Eukaryotic cell》2008,7(12):2133-2140
For the soybean pathogen Phytophthora sojae, chemotaxis of zoospores to isoflavones is believed to be critical for recognition of the host and for initiating infection. However, the molecular mechanisms underlying this chemotaxis are largely unknown. To investigate the role of G-protein and calcium signaling in chemotaxis, we analyzed the expression of several genes known to be involved in these pathways and selected one that was specifically expressed in sporangia and zoospores but not in mycelium. This gene, named PsGPA1, is a single-copy gene in P. sojae and encodes a G-protein alpha subunit that shares 96% identity in amino acid sequence with that of Phytophthora infestans. To elucidate the function, expression of PsGPA1 was silenced by introducing antisense constructs into P. sojae. PsGPA1 silencing did not disturb hyphal growth or sporulation but severely affected zoospore behavior, including chemotaxis to the soybean isoflavone daidzein. Zoospore encystment and cyst germination were also altered, resulting in the inability of the PsGPA1-silenced mutants to infect soybean. In addition, the expressions of a calmodulin gene, PsCAM1, and two calcium- and calmodulin-dependent protein kinase genes, PsCMK3 and PsCMK4, were increased in the mutant zoospores, suggesting that PsGPA1 negatively regulates the calcium signaling pathways that are likely involved in zoospore chemotaxis.  相似文献   

6.
Summary The process of zoospore maturation and encystment inP. proliferum was studied by electron microscopy. General ultrastructural features of the mature, swimming zoospore were found to be similar to those previously described for other oomycetes in both the attachment and ultrastructure of the flagella as well as the type and distribution of cellular organelles. Associated with extensive areas of RER in the mature zoospores were unusual, electrondense, bar-like structures. These structures were found in the groove region of young zoospores and at the periphery of encysting zoospores. Their possible function is discussed. The five main types of vesicles observed during encystment, as seen grouped in this study, along with the vesicles described in previous studies of oomycete encystment, were in table form and individually discussed. Interesting correlations appear to exist in the types of vesicles that are present within the oomycetes studied thusfar.  相似文献   

7.
The infection of roots by the pathogenic Oomycete Pythium aphanidermatuminvolves interactions between the fungal zoospores and rootsurface mucilage polysaccharides. After initial recognitionat the root surface the zoospores are triggered to encyst duringwhich adhesive glycoproteins are secreted followed by a fibrillarcyst wall. In this paper a simple in vitro assay has been usedto assess the ability of a variety of macromolecules to inducezoospore encystment. Mucilage polysaccharides of the cress rootsurface trigger encystment. Whole mucilage was fractionatedby gel filtration and a fraction low in uronic acid, containing5% fucose, was shown to be more effective in triggering encystmentthan a uronic acid-rich fraction. Encystment can also be inducedby commercial pectin. The lectin Con A, and PA1, one of a rangeof monoclonal antibodies specific for zoospore surface antigens,also triggered encystment. In Western blotting experiments PA1recognizes protein epitopes of a 75 kDa surface antigen. Theresults suggest that at least one mechanism of zoospore triggeringmay involve a specific zoospore surface receptor. Key words: Pythium aphanidermatum, recognition, encystment, zoospore, mucilage, root, monoclonal antibodies, polysaccharides  相似文献   

8.
Plant roots generate electrical currents and associated electrical fields as a consequence of electrogenic ion transport at the root surface. Here we demonstrate that the attraction of swimming zoospores of oomycete plant pathogens to plant roots is mediated in part by electrotaxis in natural root-generated electric fields. The zones of accumulation of anode- or cathode-seeking zoospores adjacent to intact and wounded root surfaces correlated with their in vitro electrotactic behavior. Manipulation of the root electrical field was reflected in changes in the pattern of zoospore accumulation and imposed focal electrical fields were capable of overriding endogenous signals at the root surface. The overall pattern of zoospore accumulation around roots was not affected by the presence of amino acids at concentrations expected within the rhizosphere, although higher concentrations induced encystment and reduced root targeting. The data suggest that electrical signals can augment or override chemical ones in mediating short-range tactic responses of oomycete zoospores at root surfaces.  相似文献   

9.
Summary The water expulsion vacuole (WEV) in zoospores ofPhytophthora nicotianae and other members of the Oomycetes is believed to function in cell osmoregulation. We have used videomicroscopy to analyse the behaviour of the WEV during zoospore development, motility and encystment inP. nicotianae. After cleavage of multinucleate sporangia, the WEV begins to pulse slowly but soon attains a rate similar to that seen in motile zoospores. In zoospores, the WEV has a mean cycle time of 5.7 ± 0.71 s. The WEV continues to pulse at this rate until approximately 4 min after the onset of encystment. At this stage, pulsing slows progressively until it becomes undetectable. The commencement of WEV operation in sporangia coincides with the reduction of zoospore volume prior to release from the sporangium. Disappearance of the WEV during encystment occurs as formation of a cell wall allows the generation of turgor pressure in the cyst. As in other organisms, the WEV inP. nicotianae zoospores consists of a central bladder surrounded by a vesicular and tubular spongiome. Immunolabelling with a monoclonal antibody directed towards vacuolar H+-ATPase reveals that this enzyme is confined to membranes of the spongiome and is absent from the bladder membrane or zoospore plasma membrane. An antibody directed towards plasma membrane H+-ATPase shows the presence of this ATPase in both the bladder membrane and the plasma membrane over the cell body but not the flagella. Analysis of ATPase activity in microsomal fractions fromP. nicotianae zoospores has provided information on the biochemical properties of the ATPases in these cells and has shown that they are similar to those in true fungi. Inhibition of the vacuolar H+-ATPase by potassium nitrate causes a reduction in the pulse rate of the WEV in zoospores and leads to premature encystment. These results give support to the idea that the vacuolar H+-ATPase plays an important role in water accumulation by the spongiome in oomycete zoospores, as it does in other protists.Abbreviations BMM butyl methylmethacrylate - F fix 4% formaldehyde fixation - GF fix 4% formaldehyde and 0.2% glutaraldehyde fixation - V-ATPase vacuolar H+-ATPase - WEV water expulsion vacuole  相似文献   

10.
Summary Zoospores of the mosquito pathogenic fungusLagenidium giganteum preferentially attach to and encyst on the cuticular surface of the immature stages of many species of mosquitoes as the initial step in the infection process. Recognition by zoospores of specific chemical or physical signals on the cuticular surface triggers attachment. A number of compounds likely to be present on the surface of mosquito larvae were evaluated for efficacy in eliciting zoospore encystment. Free amino acids and oligomers, a number of phenolic and polyphenolic compounds and most carbohydrates did not induce encystment at concentrations less than 500 g/ml. Colloidal chitin and chitin films were also ineffective as was O-carboxy-methylchitin; however, glycol chitin and glycol chitosan induced rapid encystment at concentrations at or below 1 g/ml. Zoospores also attached to and encysted in great numbers on fibers of oxycellulose, but not on cellulose. Concanavalin A was the only lectin which induced encystment at concentrations less than 10 g/ml, which suggests that a glycoprotein with terminal mannose and/or glucose residues is involved in encystment. A number of phenols were metabolized by peroxidase on the zoospore surface. Addition of hydrogen peroxide to zoospore suspensions reduced the time needed to induce zoospore encystment by some phenols; however, there was no consistent relationship between the presence or absence of this synergistic effect and the ability ofL. giganteum peroxidase to metabolize a given substrate. The sterol-binding compound amphotericin B induced immediate encystment at 3.5 g/ml, suggesting that sterols, which are required for the induction of zoosporogenesis, were present on the zoospore membrane.  相似文献   

11.
A. W. Burr  G. W. Beakes 《Protoplasma》1994,181(1-4):142-163
Summary The importance of the surface structure and chemistry in zoospores and cysts of oomycetes is briefly reviewed and the organelle systems associated with encystment described. The surface structure and chemistry of primary and secondary zoospores and cysts ofSaprolegnia diclina (a representative saprophytic species) andS. parasitica (a representative salmonid fish pathogen) were explored using the lectins concanavilin A (Con A) and wheat germ agglutinin (WGA) and monoclonal antibodies (MAbs) raised against a mixed zoospore and cyst suspension ofS. parasitica. The binding of lectins and antibodies to spores was determined using immunofluorescence microscopy with fluorescein isothiocyanate-labelled probes and with electron microscopy with gold-conjugated probes applied to spore suspensions post-fixation. In both species Con A, which is specific for glucose and mannose sugars, bound to both the surface of primary and secondary zoospores (the surface glycocalyx) and their cyst coats and readily induced zoospore encystment. The binding to the cysts appeared to be mainly associated with the matrix material released from the primary and secondary encystment vesicles and which appeared to diminish with time. No binding to germ tube walls was observed with this lectin. The MAb labelling showed a generally similar binding pattern to the primary and secondary cysts to that observed with Con A, although the binding to zoospores was more variable. Primary zoospores bound the antibodies but secondary zoospores appeared less reactive. It is suggested that the MAbs share a common epitope with one or more of the Con A-binding components. In both species WGA, which is specific for amongst other things the sugar N-acetyl glucosamine, bound to localised apical patches on the primary zoospores. This lectin also binds to the ventral groove region of secondary zoospores ofS. diclina, which were induced to encyst by this lectin. In contrast secondary zoospores ofS. parasitica were not induced to encyst by the addition of WGA and showed a patchy dorsal binding with this lectin. WGA also binds to both the inner wall of discharged primary cysts and the young germ tube walls of both species. These observations are discussed both in relation to other oomycete spores and to their possible functional and ecological significance.Abbreviations BSA bovine serum albumin - Con A Concanavalin A - DBA Dolichos biflorus agglutinin - ELISA enzyme-linked immunosorbent assay - EM electron microscope - EV encystment vesicles - FCS foetal calf serum - FITC Fluorescein isothiocyanate - FV peripheral fibrillar vesicles - G+F 0.2% glutaraldehyde and 2.0% formaldehyde primary fixative solution - 2G 2% glutaraldehyde primary fixative - LM light microscopy - MAbs monoclonal antibodies - LPV large peripheral vesicles - PBS phosphate buffered saline - PCV flattened peripheral cisternae - PEV primary encystment vesicle - PIPES piperazine-N,N1-bis(2-ethane sulfonic acid) - PNA Ricinus communis agglutinin - RAM-FITC/Au10–20 Fluorescein isothiocyanate/gold (10 or 20 nm) labelled rabbit anti-mouse immunoglobulin - RCA Ricinus communis agglutinin - SEM scanning electron micrograph - SBA soybean agglutinin - SEV secondary encystment vesicles - TEM transmission electron micrograph - UEA I Ulex europaeus agglutinin - WGA wheat germ agglutinin  相似文献   

12.
Summary Vigorous agitation caused the zoospores of Phytophthora palmivora to undergo rapid synchronous encystment. The rate of encystment was determined by counting the number of cells with an alkali-resistant cyst wall. 50% of the zoospores formed an alkali-resistant cyst wall within 60 sec of agitation; after 120 sec, essentially all zoospores had encysted. The rate of spontaneous encystment in nonagitated suspensions was much slower. The flagella of nearly all zoospores disappeared within 30 sec of agitation, i.e. prior to the formation of an alkali-resistant cyst wall. Zoospores depend on internal reserves for synthesizing their cyst walls. Approximately 70% of the total carbohydrate in motile zoospores was extracted with water after treating the cells with 70% éthnol. During synchronous encystment, this carbohydrate fraction composed largely of glucans decreased markedly while the insoluble carbohydrate fraction (cyst wall glucan) increased correspondingly. Clearly, the conversion of cytoplasmic glucan into wall glucan plays a major role in zoospore encystment.  相似文献   

13.
Martha J. Powell 《Protoplasma》1994,181(1-4):123-141
Summary In development of the primitive fungi, chytridiomycetes, unwalled zoospores bearing single, posterior flagella are transformed into walled, round-cells which elaborate the thallus. Production, structural modification, or release of extracellular material are involved with each transition of developmental stage. This article reviews the variety and developmental changes of extracellular materials found at the cell surface of chytridiomycetes. A cell coat, produced from Golgi-derived vesicles during zoosporogenesis, is visible around free swimming zoospores of some chytridiomycetes. How the zoospore surface receives and transduces signals is not widely explored, but it is known that fenestrated cisternae and simple cisternae, which are integrated into the microbody-lipid globule complex, are spatially and structurally associated with the plasma membrane and flagellar apparatus. This spatial association, as well as the cytochemical localization of calcium in fenestrated cisternae, suggest a mechanism for signal transduction and for regulation of zoospore motility. Zoospores become encased in a new layer of extracellular material as the zoospore encysts. Among some chytrids the source of this material is preexisting vesicles which fuse with the plasma membrane. Among other zoospores, a readily identifiable population of encystment vesicles is not apparent, demonstrating that there is no single pattern or mechanism for zoospore encystment in chytridiomycetes. Encysted zoospores developing into thalli, typically produce cell walls with a microfibrillar substructure. Ultrastructural analysis of walls reveals distinctive architecture and remarkable sculpturing which have been used in systematics of some members of chytridiomycetes. Nothing is known as to underlying controls of cytoskeletal elements and plasma membrane enzyme complexes in wall biogenesis. Many changes in cell surface structures accompany thallus maturation. Septa, many traversed with plasmodesmata, are produced in most chytrid thallus types. As sporangia and resting spores prepare for the production and release of zoospores, additional extracellular layers of material are frequently produced. Polarized deposits of extracellular material become discharge plugs, discharge vesicles, or endoopercula. Interstitial material is also released into cleavage furrows. Circumscissile or localized digestion of walls produce operculate or inoperculate exit ports for zoospore release. Cryofixation preserves more extensive extracellular material than does conventional chemical fixation, and broader application of cryofixation may radically alter our current view of cell surface structure. Thus chytridiomycetes exhibit a range in patterns for the occurrence and subsequent modifications of extracellular materials, even for members within the same order. The most universally recognized role for these extracellular materials is protection. Although there is a reasonable view of the types of extracellular material involved in chytridiomycete development, we have only limited understandings of their biogenesis or roles in regulation and communication, areas awaiting more investigations.Abbreviations DIC Nomarski-differential contrast optics - TEM transmission electron microscopy  相似文献   

14.
Summary The oomycetes are a class of protists that produce biflagellate asexual zoospores. Members of the oomycetes have close phylogenetic affinities with the chromophyte algae and are widely divergent from the higher fungi. This review focuses on two genera,Phytophthora andPythium, which belong to the family Pythiaceae, and the order Peronosporales. These two genera contain many species that cause serious diseases in plants. Molecules on the surface of zoospores and cysts of these organisms are likely to play crucial roles in the infection of host plants. Knowledge of the properties of the surface of these cells should thus help increase our understanding of the infection process. Recent studies ofPhytophthora cinnamomi andPythium aphanidermatum have used lectins to analyse surface carbohydrates and have generated monoclonal antibodies (MAbs) directed towards a variety of zoospore and cysts surface components. Labelling studies with these probes have detected molecular differences between the surface of the cell body and of the flagella of the zoospores. They have been used to follow changes in surface components during encystment, including the secretion of an adhesive that bonds the spores to the host surface. Binding of lectin and antibody probes to the surface of living zoospores can induce encystment, giving evidence of cell receptors involved in this process. Freeze-substitution and immunolabelling studies have greatly augmented our understanding of the synthesis and assembly of the zoospore surface during zoosporogenesis. Synthesis of a variety of zoospore components begins when sporulation is induced. Cleavage of the multinucleate sporangium is achieved through the progressive extension of partitioning membranes, and a number of surface antigens are assembled onto the zoospore surface during cleavage. Comparisons of antibody binding to many isolates and species ofPhytophthora andPythium have revealed that surface components on zoospores and cysts exhibit a range of taxonomic specificities. Surface antigens or epitopes may occur on only a few isolates of a species; they may be species-specific, genus-specific or occur on the spores of both genera. Spore surface antigens thus promise to be of significant value for studies of the taxonomy and phylogeny of these protists, as well as for disease diagnosis.Abbreviations MAbs monoclonal antibodies - ConA Concanavalin A - SBA soybean agglutinin - WGA wheat germ agglutinin - gps glycoproteins  相似文献   

15.
《Experimental mycology》1989,13(4):348-355
A panel of monoclonal antibodies (MAbs) designated PA1 to PA8 has been raised against cell surface components of zoospores and cysts of the pathogenic fungusPythium aphanidermatum. The antibodies were selected on the basis of binding assays using indirect immunofluorescence. Four binding patterns were observed: PA1 labeled the entire zoospore surface including both flagella, PA2 binding was restricted to the anterior flagellum, PA3–PA6 bound to the adhesive cell coat secreted by zoospores during encystment, and PA7 and PA8 labeled zoospores and the cyst cell wall. Electron microscopic immunogold labeling of zoospores showed that PA2 bound to the mastigonemes on the anterior flagellum. The MAbs were tested for binding to zoospores and cysts of several isolates ofP. aphanidermatum, and to zoospores and cysts of several species ofPythium, Phystophthora, Aphanomyces, andSaprolegnia. The results showed that the antigens recognized by MAbs PA1–PA6 were restricted toP. aphanidermatum, whereas those recognized by PA7 and PA8 occurred on all species tested.  相似文献   

16.
Summary Scanning electron microscopy and transmission electron microscopy (carbon replicas) confirm the existence of a deep longitudinal groove on one side of the pyriform body of the zoospores of Phytophthora palmivora. Upon encystment the cell rounds off but the groove may be temporarily retained as a depression on the cyst surface. The carbon replicas revealed significant differences in outer surface texture: the zoospore surface is finely granular whereas the outer surface of both young and mature cysts are distinctly microfibrillar with only occasional patches of amorphous material.  相似文献   

17.
During encystment,Phytophthora cinnamomi zoospores bind firmly to the host surface. We have developed a microassay to study adhesion of the zoospores to solid surfaces, both biological and non-biological. The results show that timing of the acquisition of adhesiveness during encystment correlates closely with the secretion of high molecular weight glycoproteins. The adhesive phase is short lived, occurring between 1 and 4 min after induction of encystment. During this period, cells that come into contact with a variety of surfaces (glass, plastic, and onion epidermis) become firmly attached, while cells that come into contact with one of these substrata after this period are unable to bind. Our results also show that EGTA inhibits cyst adhesion, while addition of calcium promotes cyst adhesion, especially of cysts more than 4 min old. To help identify the cyst surface component involved in adhesion we tested a number of lectins for their ability to block cyst adhesion. Soybean agglutinin andHelix pomatia agglutinin, lectins which bind to the secreted high molecular weight glycoproteins, both inhibit adhesion in the presence and absence of the hapten sugar, indicating that inhibition was non-specific. Wheatgerm agglutinin, a lectin which does not bind to the cyst surface, also blocked adhesion non-specifically.  相似文献   

18.
19.
Summary Antibodies raised against the calcium-binding protein centrin, were used to identify and localise centrin containing structures in the flagellar apparatus of zoospores and cysts of the oomycetePhytophthora cinnamomi. Immunoblotting of extracts from zoospores indicates that theP. cinnamomi centrin homologue is a 20 kDa protein. Immunofluorescence microscopy with anti-centrin antibodies reveals labelling in the flagella, the basal body connector and co-localisation along the microtubular R1 root (formerly called AR3) that runs from the right side of the basal body of the anterior flagellum into the anterior of the zoospore close to the ventral surface. The centrin (R1cen) and tubulin components of the R1 root split into four loops on the right hand side of the ventral groove and rejoin along the left hand side of the groove. The R1 root continues down the left hand side of the zoospore past the basal bodies and parallel to the R4 root. We propose that at least inP. cinnamomi there is no R2 root. Immunogold labelling confirms that centrin is a component of the basal body connector complex. When the zoospores become spherical during encystment, the R1cen pivots by approximately 90 ° with respect to the nucleus.  相似文献   

20.
Some marine dinoflagellates form ecdysal cyst (=temporary cysts) as part of their life cycle or under unfavorable growth conditions. Whether the dinoflagellates form ecdysal cysts or not may influence susceptibility to parasitism. In this study, parasite prevalence relative to inoculum size of the parasitoid Parvilucifera infectans zoospores for two dinoflagellate hosts (i.e., Fragilidium duplocampanaeforme and Dinophysis acuminata), which have different life cycle strategies, was examined. Further, susceptibility of cysts to parasitism, encystment signal, duration of encystments, and effects of induced encystment on diel periodicity, using ecdysal cyst-forming F. duplocampanaeforme were explored. The percent hosts infected by P. infectans plotted as a function of inoculum size showed a sharp increase to a maximum in D. acuminata, but a gradual linear rise in F. duplocampanaeforme: while the parasite prevalence in D. acuminata increased to a maximum of 78.8 (±2.4%) by a zoospore:host ratio of 20:1, it in F. duplocampanaeforme only reached 8.9 (±0.3%), even at a zoospore:host ratio of 120:1. In F. duplocampanaeforme, infections were observed only in the vegetative cells and not observed in ecdysal cysts. When exposed to live, frozen, and sonicated zoospores and zoospore filtrate, F. duplocampanaeforme formed ecdysal cysts only when exposed to live zoospores, suggesting that temporary cyst formation in the dinoflagellate resulted from direct contact with zoospores. When the Parvilucifera zoospores attacked and struggled to penetrate F. duplocampanaeforme through its flagellar pore, the Fragilidium cell shed all thecal plates, forming a ‘thecal cloud layer’, in which the zoospores were caught and immobilized and thus could not penetrate anymore. The duration (35 ± 1.8 h) of ecdysal cysts induced with addition of zoospores was significantly longer than that (15 ± 0.8 h) of normally formed cysts (i.e., without addition of zoospores), thereby resulting in delayed growth as well as influencing the pattern of diel periodicity. The results from this study suggest that in addition to the classical predator-prey interaction and allelopathic interaction, parasitism and its accompanying defense can make the food web dynamics much more complicated than previously thought.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号