共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Potential impacts of climate change on nitrogen transformations and greenhouse gas fluxes in forests: a soil transfer study 总被引:1,自引:0,他引:1
STEPHEN C. HART 《Global Change Biology》2006,12(6):1032-1046
Relatively little research has been conducted on how climate change may affect the structure and function of arid to semiarid ecosystems of the American Southwest. Along the slopes of the San Francisco Peaks of Arizona, USA, I transferred intact soil cores from a spruce‐fir to a ponderosa pine forest 730 m lower in elevation to assess the potential impacts of climate change on soil N cycling and trace gas fluxes. The low‐elevation site has a mean annual soil temperature about 2.5°C higher than the high‐elevation site. Net rates of N transformations and trace gas fluxes were measured in high‐elevation soil cores incubated in situ and soil cores transferred to the low‐elevation site. Over a 13‐month period, volumetric soil water content was similar in transferred soil cores relative to soil cores incubated in situ. Net N mineralization and nitrification increased over 80% in transferred soil cores compared with in situ soil cores. Soil transfer significantly increased net CO2 efflux (120%) and net CH4 consumption (90%) relative to fluxes of these gases from soil cores incubated in situ. Soil net N2O fluxes were relatively low and were not generally altered by soil transfer. Although the soil microbial biomass as a whole decreased in transferred soil cores compared with in situ soil cores after the incubation period, active bacterial biomass increased. Transferring soil cores from the low‐elevation to the high‐elevation site (i.e. simulated global cooling) commonly, but not consistently, resulted in the opposite effects on soil pools and processes. In general, soil containment (root trenching) did not significantly affect soil measurements. My results suggest that small increases in mean annual temperature can have large impacts on soil N cycling, soil–atmosphere trace gas exchanges, and soil microbial communities even in ecosystems where water availability is a major limiting resource. 相似文献
3.
Region-specific assessment of greenhouse gas mitigation with different manure management strategies in four agroecological zones 总被引:1,自引:0,他引:1
SVEN G. SOMMER JØRGEN E. OLESEN† SØREN O. PETERSEN† MARTIN R. WEISBJERG‡ LAURA VALLI§ LENA RODHE¶ FABRICE BÉLINE 《Global Change Biology》2009,15(12):2825-2837
Livestock farming systems are major sources of trace gases contributing to emissions of the greenhouse gases (GHG) nitrous oxide (N2 O) and methane (CH4 ), i.e. N2 O accounts for 10% and CH4 for 30% of the anthropogenic contributions to net global warming. This paper presents scenario assessments of whole-system effects of technologies for reducing GHG emissions from livestock model farms using slurry-based manure management. Changes in housing and storage practice, mechanical separation, and incineration of the solid fraction derived from separation were evaluated in scenarios for Sweden, Denmark, France, and Italy. The results demonstrated that changes in manure management can induce significant changes in CH4 and N2 O emissions and carbon sequestration, and that the effect of introducing environmental technologies may vary significantly with livestock farming practice and interact with climatic conditions. Shortening the in-house manure storage time reduced GHG emissions by 0–40%. The largest GHG reductions of 49 to, in one case, 82% were obtained with a combination of slurry separation and incineration, the latter process contributing to a positive GHG balance of the system by substituting fossil fuels. The amount and composition of volatile solids (VS) and nitrogen pools were main drivers in the calculations performed, and requirements to improve the assessment of VS composition and turnover during storage and in the field were identified. Nevertheless, the results clearly showed that GHG emission estimates will be unrealistic, if the assumed manure management or climatic conditions do not properly represent a given country or region. The results also showed that the mitigation potential of specific manure management strategies and technologies varied depending on current management and climatic conditions. 相似文献
4.
Anu Liikanen Eeva Ratilainen Sanna Saarnio Jukka Alm Pertti J. Martikainen Jouko Silvola 《Freshwater Biology》2003,48(3):500-511
SUMMARY 1. The effects of increasing CO2 and nitrogen loading and of a change in water table and temperature on littoral CH4, N2O and CO2 fluxes were studied in a glasshouse experiment with intact sediment cores including vegetation (mainly sedges), taken from a boreal eutrophic lake in Finland. Sediments with the water table held at a level of 0 or at ?15 cm were incubated in an atmosphere of 360 or 720 p.p.m. CO2 for 18 weeks. The experiment included fertilisation with NO3– and NH4+ (to a total 3 g N m?2). 2. Changes in the water table and temperature strongly regulated sediment CH4 and cCO2 fluxes (community CO2 release), but did not affect N2O emissions. Increase in the water table increased CH4 emissions but reduced cCO2 release, while increase in temperature increased emissions of both CO2 and CH4. 3. The raised CO2 increased carbon turnover in the sediments, such that cCO2 release was increased by 16–26%. However, CH4 fluxes were not significantly affected by raised CO2, although CH4 production potential (at 22 °C) of the sediments incubated at high CO2 was increased. In the boreal region, littoral CH4 production is more likely to be limited by temperature than by the availability of carbon. Raised CO2 did not affect N2O production by denitrification, indicating that this process was not carbon limited. 4. A low availability of NO3– did severely limit N2O production. The NO3– addition caused up to a 100‐fold increase in the fluxes of N2O. The NH4+ addition did not increase N2O fluxes, indicating low nitrification capacity in the sediments. 相似文献
5.
生物质炭化还田对稻田温室气体排放及土壤理化性质的影响 总被引:16,自引:0,他引:16
通过水稻种植田间试验,研究了水稻秸秆直接还田、水稻秸秆与生活垃圾炭化后还田对稻田温室气体CH4、CO2和N2O排放及土壤理化性质和水稻产量的影响.结果表明:与直接还田相比,秸秆炭化后还田可显著降低稻田CH4和N2O的累积排放量,降幅分别为64.2%~78.5%和16.3%~18.4%.与不添加生物炭相比,无论种植水稻与否,添加秸秆炭和垃圾炭均显著降低了稻田N2O的累积排放量;不种植水稻情况下,添加垃圾炭显著降低了稻田CO2的累积排放量,降幅为25.3%.秸秆炭对提高稻田土壤pH和速效钾含量的作用优于垃圾炭.两种生物炭均能显著提高稻田土壤有机碳含量,但对土壤容重、全氮、有效磷、阳离子交换量及水稻籽粒产量均未产生显著影响.与秸秆直接还田相比,秸秆炭化后还田对水稻增产的效果更佳. 相似文献
6.
Methane and nitrous oxide emissions from rice paddy fields as affected by nitrogen fertilisers and water management 总被引:27,自引:0,他引:27
Cai Zucong Xing Guangxi Yan Xiaoyuan Xu Hua Tsuruta Haruo Yagi Kazuyuki Minami Katsuyuki 《Plant and Soil》1997,196(1):7-14
Methane and N2O emissions affected by nitrogen fertilisers were measured simultaneously in rice paddy fields under intermittent irrigation in 1994. Ammonium sulphate and urea were applied at rates of 0 (control), 100 and 300 kg N ha-1. The results showed that CH4 emission, on the average, decreased by 42 and 60% in the ammonium sulphate treatments and 7 and 14% in the urea treatments at rates of 100 and 300 kg N ha-1, respectively, compared to the control. N2O emission increased significantly with the increase in the nitrogen application rate. N2O emission was higher from ammonium sulphate treatments than from the urea treatments at the same application rate. A trade-off effect between CH4 and N2O emission was clearly observed. The N2O flux was very small when the rice paddy plots were flooded, but peaked at the beginning of the disappearance of floodwater. In contrast, the CH4 flux peaked during flooding and was significantly depressed by mid-season aeration (MSA). The results suggest that it is important to evaluate the integrative effects of water management and fertiliser application for mitigating greenhouse gas emissions in order to attenuate the greenhouse effect contributed by rice paddy fields. 相似文献
7.
S. J. LIVESLEY R. KIESE† P. MIEHLE C. J. WESTON‡ K. BUTTERBACH-BAHL† S. K. ARNDT 《Global Change Biology》2009,15(2):425-440
Soils provide the largest terrestrial carbon store, the largest atmospheric CO2 source, the largest terrestrial N2O source and the largest terrestrial CH4 sink, as mediated through root and soil microbial processes. A change in land use or management can alter these soil processes such that net greenhouse gas exchange may increase or decrease. We measured soil–atmosphere exchange of CO2, N2O and CH4 in four adjacent land‐use systems (native eucalypt woodland, clover‐grass pasture, Pinus radiata and Eucalyptus globulus plantation) for short, but continuous, periods between October 2005 and June 2006 using an automated trace gas measurement system near Albany in southwest Western Australia. Mean N2O emission in the pasture was 26.6 μg N m−2 h−1, significantly greater than in the natural and managed forests (< 2.0 μg N m−2 h−1). N2O emission from pasture soil increased after rainfall events (up to 100 μg N m−2 h−1) and as soil water content increased into winter, whereas no soil water response was detected in the forest systems. Gross nitrification through 15N isotope dilution in all land‐use systems was small at water holding capacity < 30%, and under optimum soil water conditions gross nitrification ranged between < 0.1 and 1.0 mg N kg−1 h−1, being least in the native woodland/eucalypt plantation < pine plantation < pasture. Forest soils were a constant CH4 sink, up to −20 μg C m−2 h−1 in the native woodland. Pasture soil was an occasional CH4 source, but weak CH4 sink overall (−3 μg C m−2 h−1). There were no strong correlations (R < 0.4) between CH4 flux and soil moisture or temperature. Soil CO2 emissions (35–55 mg C m−2 h−1) correlated with soil water content (R < 0.5) in all but the E. globulus plantation. Soil N2O emissions from improved pastures can be considerable and comparable with intensively managed, irrigated and fertilised dairy pastures. In all land uses, soil N2O emissions exceeded soil CH4 uptake on a carbon dioxide equivalent basis. Overall, afforestation of improved pastures (i) decreases soil N2O emissions and (ii) increases soil CH4 uptake. 相似文献
8.
CLAUDIA WAGNER-RIDDLE ADRIANA FURON NICOLE L. MCLAUGHLIN IVAN LEE JOHN BARBEAU SUSANTHA JAYASUNDARA GARY PARKIN PETER von BERTOLDI JON WARLAND 《Global Change Biology》2007,13(8):1722-1736
No‐tillage (NT), a practice that has been shown to increase carbon sequestration in soils, has resulted in contradictory effects on nitrous oxide (N2O) emissions. Moreover, it is not clear how mitigation practices for N2O emission reduction, such as applying nitrogen (N) fertilizer according to soil N reserves and matching the time of application to crop uptake, interact with NT practices. N2O fluxes from two management systems [conventional (CP), and best management practices: NT + reduced fertilizer (BMP)] applied to a corn (Zea mays L.), soybean (Glycine max L.), winter‐wheat (Triticum aestivum L.) rotation in Ontario, Canada, were measured from January 2000 to April 2005, using a micrometeorological method. The superimposition of interannual variability of weather and management resulted in mean monthly N2O fluxes ranging from − 1.9 to 61.3 g N ha−1 day−1. Mean annual N2O emissions over the 5‐year period decreased significantly by 0.79 from 2.19 kg N ha−1 for CP to 1.41 kg N ha−1 for BMP. Growing season (May–October) N2O emissions were reduced on average by 0.16 kg N ha−1 (20% of total reduction), and this decrease only occurred in the corn year of the rotation. Nongrowing season (November–April) emissions, comprised between 30% and 90% of the annual emissions, mostly due to increased N2O fluxes during soil thawing. These emissions were well correlated (r2= 0.90) to the accumulated degree‐hours below 0 °C at 5 cm depth, a measure of duration and intensity of soil freezing. Soil management in BMP (NT) significantly reduced N2O emissions during thaw (80% of total reduction) by reducing soil freezing due to the insulating effects of the larger snow cover plus corn and wheat residue during winter. In conclusion, significant reductions in net greenhouse gas emissions can be obtained when NT is combined with a strategy that matches N application rate and timing to crop needs. 相似文献
9.
The influence of forest stand age in a Picea sitchensis plantation on (1) soil fluxes of three greenhouse gases (GHGs – CO2, CH4 and N2O) and (2) overall net ecosystem global warming potential (GWP), was investigated in a 2‐year study. The objective was to isolate the effect of forest stand age on soil edaphic characteristics (temperature, water table and volumetric moisture) and the consequent influence of these characteristics on the GHG fluxes. Fluxes were measured in a chronosequence in Harwood, England, with sites comprising 30‐ and 20‐year‐old second rotation forest and a site clearfelled (CF) some 18 months before measurement. Adjoining unforested grassland (UN) acted as a control. Comparisons were made between flux data, soil temperature and moisture data and, at the 30‐year‐old and CF sites, eddy covariance data for net ecosystem carbon (C) exchange (NEE). The main findings were: firstly, integrated CO2 efflux was the dominant influence on the GHG budget, contributing 93–94% of the total GHG flux across the chronosequence compared with 6–7% from CH4 and N2O combined. Secondly, there were clear links between the trends in edaphic factors as the forest matured, or after clearfelling, and the emission of GHGs. In the chronosequence sites, annual fluxes of CO2 were lower at the 20‐year‐old (20y) site than at the 30‐year‐old (30y) and CF sites, with soil temperature the dominant control. CH4 efflux was highest at the CF site, with peak flux 491±54.5 μg m−2 h−1 and maximum annual flux 18.0±1.1 kg CH4 ha−1 yr−1. No consistent uptake of CH4 was noted at any site. A linear relationship was found between log CH4 flux and the closeness of the water table to the soil surface across all sites. N2O efflux was highest in the 30y site, reaching 108±38.3 μg N2O‐N m−2 h−1 (171 μg N2O m−2 h−1) in midsummer and a maximum annual flux of 4.7±1.2 kg N2O ha−1 yr−1 in 2001. Automatic chamber data showed a positive exponential relationship between N2O flux and soil temperature at this site. The relationship between N2O emission and soil volumetric moisture indicated an optimum moisture content for N2O flux of 40–50% by volume. The relationship between C : N ratio data and integrated N2O flux was consistent with a pattern previously noted across temperate and boreal forest soils. 相似文献
10.
PINGPING WU JINJIAN LIU YANGCHUN XU QIRONG SHEN JIANWEN ZOU SHIWEI GUO 《Global Change Biology》2011,17(6):2196-2210
The impact of agricultural management on global warming potential (GWP) and greenhouse gas intensity (GHGI) is not well documented. A long‐term fertilizer experiment in Chinese double rice‐cropping systems initiated in 1990 was used in this study to gain an insight into a complete greenhouse gas accounting of GWP and GHGI. The six fertilizer treatments included inorganic fertilizer [nitrogen and phosphorus fertilizer (NP), nitrogen and potassium fertilizer (NK), and balanced inorganic fertilizer (NPK)], combined inorganic/organic fertilizers at full and reduced rate (FOM and ROM), and no fertilizer application as a control. Methane (CH4) and nitrous oxide (N2O) fluxes were measured using static chamber method from November 2006 through October 2009, and the net ecosystem carbon balance was estimated by the changes in topsoil (0–20 cm) organic carbon (SOC) density over the 10‐year period 1999–2009. Long‐term fertilizer application significantly increased grain yields, except for no difference between the NK and control plots. Annual topsoil SOC sequestration rate was estimated to be 0.96 t C ha?1 yr?1 for the control and 1.01–1.43 t C ha?1 yr?1 for the fertilizer plots. Long‐term inorganic fertilizer application tended to increase CH4 emissions during the flooded rice season and significantly increased N2O emissions from drained soils during the nonrice season. Annual mean CH4 emissions ranged from 621 kg CH4 ha?1 for the control to 1175 kg CH4 ha?1 for the FOM plots, 63–83% of which derived from the late‐rice season. Annual N2O emission averaged 1.15–4.11 kg N2O–N ha?1 in the double rice‐cropping systems. Compared with the control, inorganic fertilizer application slightly increased the net annual GWPs, while they were remarkably increased by combined inorganic/organic fertilizer application. The GHGI was lowest for the NP and NPK plots and highest for the FOM and ROM plots. The results of this study suggest that agricultural economic viability and GHGs mitigation can be simultaneously achieved by balanced fertilizer application. 相似文献
11.
XUNHUA ZHENG ZAIXING ZHOU YUESI WANG JIANGUO ZHU† YULONG WANG‡ JIN YUE§ YI SHI§ KAZUHIKO KOBAYASHI¶ KAZUYUKI INUBUSHI YAO HUANG SHENGHUI HAN ZHONGJUN XU BAOHUA XIE KLAUS BUTTERBACH-BAHL LIANXIN YANG‡ 《Global Change Biology》2006,12(9):1717-1732
Using the free‐air CO2 enrichment (FACE) techniques, we carried out a 3‐year mono‐factorial experiment in temperate paddy rice fields of Japan (1998–2000) and a 3‐year multifactorial experiment in subtropical paddy rice fields in the Yangtze River delta in China (2001–2003), to investigate the methane (CH4) emissions in response to an elevated atmospheric CO2 concentration (200±40 mmol mol?1 higher than that in the ambient atmosphere). No significant effect of the elevated CO2 upon seasonal accumulative CH4 emissions was observed in the first rice season, but significant stimulatory effects (CH4 increase ranging from 38% to 188%, with a mean of 88%) were observed in the second and third rice seasons in the fields with or without organic matter addition. The stimulatory effects of the elevated CO2 upon seasonal accumulative CH4 emissions were negatively correlated with the addition rates of decomposable organic carbon (P<0.05), but positively with the rates of nitrogen fertilizers applied in either the current rice season (P<0.05) or the whole year (P<0.01). Six mechanisms were proposed to explain collectively the observations. Soil nitrogen availability was identified as an important regulator. The effect of soil nitrogen availability on the observed relation between elevated CO2 and CH4 emission can be explained by (a) modifying the C/N ratio of the plant residues formed in the previous growing season(s); (b) changing the inhibitory effect of high C/N ratio on plant residue decomposition in the current growing season; and (c) altering the stimulatory effects of CO2 enrichment upon plant growth, as well as nitrogen uptake in the current growing season. This study implies that the concurrent enrichment of reactive nitrogen in the global ecosystems may accelerate the increase of atmospheric methane by initiating a stimulatory effect of the ongoing dramatic atmospheric CO2 enrichment upon methane emissions from nitrogen‐poor paddy rice ecosystems and further amplifying the existing stimulatory effect in nitrogen‐rich paddy rice ecosystems. 相似文献
12.
13.
《农业工程》2014,34(4):204-212
The green credentials of hydroelectricity in terms of greenhouse-gas (GHG) emissions have been tarnished with the finding of the researches on GHG emissions from hydroelectric reservoirs in the last two decades. Substantial amounts of GHGs release from the tropical reservoirs, especially methane (CH4) from Brazil’s Amazonian areas. CH4 contributes strongly to climate change because it has a global warming potential (GWP) 24 times higher than carbon dioxide (CO2) on a per molecule basis over a 100-year time horizon. GHGs may emit from reservoirs through four different pathways to the atmosphere: (1) diffusive flux at the reservoir surface, (2) gas bubble flux in the shallow zones of a reservoir, (3) water degassing flux at the outlet of the powerhouse downstream of turbines and spillways, and (4) flux across the air–water interface in the rivers downstream of the dams. This paper reviewed the productions and emissions of CH4, CO2, and N2O in reservoirs, and the environmental variables influencing CH4 and CO2 emissions were also summarized. Moreover, the paper combined with the progress of GHG emissions from Three Gorges Reservoir and proposed three crucial problems to be resolved on GHG emissions from reservoirs at present, which would be benefit to estimate the total GHG emissions from Three Gorges Reservoir accurately. 相似文献
14.
KERRY J. DINSMORE MICHAEL F. BILLETT UTE M. SKIBA ROBERT M. REES JULIA DREWER CAROLE HELFTER 《Global Change Biology》2010,16(10):2750-2762
Peatland streams have repeatedly been shown to be highly supersaturated in both CO2 and CH4 with respect to the atmosphere, and in combination with dissolved (DOC) and particulate organic carbon (POC) represent a potentially important pathway for catchment greenhouse gas (GHG) and carbon (C) losses. The aim of this study was to create a complete C and GHG (CO2, CH4, N2O) budget for Auchencorth Moss, an ombrotrophic peatland in southern Scotland, by combining flux tower, static chamber and aquatic flux measurements from 2 consecutive years. The sink/source strength of the catchment in terms of both C and GHGs was compared to assess the relative importance of the aquatic pathway. During the study period (2007–2008) the catchment functioned as a net sink for GHGs (352 g CO2‐Eq m?2 yr?1) and C (69.5 g C m?2 yr?1). The greatest flux in both the GHG and C budget was net ecosystem exchange (NEE). Terrestrial emissions of CH4 and N2O combined returned only 4% of CO2 equivalents captured by NEE to the atmosphere, whereas evasion of GHGs from the stream surface returned 12%. DOC represented a loss of 24% of NEE C uptake, which if processed and evaded downstream, outside of the catchment, may lead to a significant underestimation of the actual catchment‐derived GHG losses. The budgets clearly show the importance of aquatic fluxes at Auchencorth Moss and highlight the need to consider both the C and GHG budgets simultaneously. 相似文献
15.
Effect of nitrogen fertilizers and moisture content on CH4 and N2O fluxes in a humisol: Measurements in the field and intact soil cores 总被引:1,自引:0,他引:1
Peter F. Dunfield Edward Topp Christian Archambault Roger Knowles 《Biogeochemistry》1995,29(3):199-222
Field and laboratory studies were conducted to determine effects of nitrogen fertilizers and soil water content on N2O and CH4 fluxes in a humisol located on the Central Experimental Farm of Agriculture Canada, Ottawa. Addition of 100 kg N ha–1 as either urea or NaNO3 had no significant effect on soil CH4 flux measured using chambers. Fertilization with NaNO3 resulted in a significant but transitory stimulation of N2O production. Inorganic soil N profiles and the potential nitrification rate suggested that much of the NH
4
+
from urea hydrolysis was rapidly nitrified. CH4 fluxes measured using capped soil cores agreed well with fluxes measured using field chambers, and with fluxes calculated from soil gas concentration gradients using Fick's diffusion law. This humisol presents an ideal, unstructured, vertically homogeneous system in which to study gas diffusion, and the influence of gas-filled porosity on CH4 uptake. In soil cores gradually saturated with H2O, the relationship of CH4 flux to gas-filled porosity was an exponential rise to a maximum. Steepening CH4 concentration gradients partially compensated for the decreasing diffusion coefficient of CH4 in soil matrix air as water content increased, and diffusion limitation of CH4 oxidation occurred only at water contents > 130% (dry weight), or gas-filled porosities < 0.2.Corresponding author 相似文献
16.
As society faces the urgent need to mitigate climate change, it is critical to understand how various ecosystems contribute to the climate, and to express these contributions in terms that are meaningful to policymakers, economists, land managers, and other nonscience interest holders. Efforts to mitigate climate change call for quantification of the full greenhouse gas (GHG) effects of land use decisions, yet we lack an appropriate metric of the full GHG implications of maintaining a given ecosystem over a multiple year time frame. Here, we propose the concept of greenhouse gas value (GHGV) of ecosystems, which accounts for potential GHG release upon clearing of stored organic matter, annual GHG flux, and probable GHG exchanges resulting from disturbance. It treats these ecosystem–atmosphere exchanges in a time‐sensitive manner, thereby providing an appropriate framework for computing of the GHG consequences of any land use decision. To illustrate this concept, we provide estimates of the GHGV of various biome types (based on data compiled from the literature), disturbance regimes, and decisions on the treatment of time. We show that natural ecosystems generally have high GHGV's, whereas managed ecosystems generally have lower or negative GHGV's; that GHGV decreases with increasing probability of disturbance, and that decisions on the treatment of time can be important, affecting some ecosystem types more strongly than others. In addition, we show how GHGV may be used to quantify the full GHG effects of land‐use or land‐cover change in a thorough and rigorous manner. Finally, we provide comparisons of GHGV to other major paradigms for valuing the GHG contributions of ecosystems, showing that – for many purposes –GHGV is the most appropriate method of quantifying the GHG services of ecosystems. 相似文献
17.
Estimation of nitrous oxide, nitric oxide and ammonia emissions from croplands in East, Southeast and South Asia 总被引:23,自引:0,他引:23
Agricultural activities have greatly altered the global nitrogen (N) cycle and produced nitrogenous gases of environmental significance. More than half of all chemical N fertilizer produced globally is used in crop production in East, Southeast and South Asia, where rice is central to nutrition. Emissions of nitrous oxide (N2O), nitric oxide (NO) and ammonia (NH3) from croplands in this region were estimated by considering background emission and emissions resulting from N added to croplands, including chemical N, animal manure, biologically fixed N and N in crop residues returned to fields. Background emission fluxes of N2O and NO from croplands were estimated to be 1.22 and 0.57 kg N ha?1 yr?1, respectively. Separate fertilizer‐induced emission factors were estimated for upland fields and rice fields. Total N2O emission from croplands in the study region was estimated to be 1.19 Tg N yr?1, with 43% contributed by background emissions. The average fertilizer‐induced N2O emission, however, accounts for only 0.93% of the applied N, which is less than the default IPCC value of 1.25%, because of the low emission factor from paddy fields. Total NO emission was 591 Gg N yr?1 in the study region, with 40% from background emissions. The average fertilizer‐induced NO emission factor was 0.48%. Total NH3 emission was estimated to be 11.8 Tg N yr?1. The use of urea and ammonium bicarbonate and the cultivation of rice led to a high average NH3 loss rate from chemical N fertilizer in the study region. Emissions were displayed at a 0.5° × 0.5° resolution with the use of a global landuse database. 相似文献
18.
Natural wetlands are critically important to global change because of their role in modulating atmospheric concentrations of CO2, CH4, and N2O. One 4‐year continuous observation was conducted to examine the exchanges of CH4 and N2O between three wetland ecosystems and the atmosphere as well as the ecosystem respiration in the Sanjiang Plain in Northeastern China. From 2002 to 2005, the mean annual budgets of CH4 and N2O, and ecosystem respiration were 39.40 ± 6.99 g C m?2 yr?1, 0.124 ± 0.05 g N m?2 yr?1, and 513.55 ± 8.58 g C m?2 yr?1 for permanently inundated wetland; 4.36 ± 1.79 g C m?2 yr?1, 0.11 ± 0.12 g N m?2 yr?1, and 880.50 ± 71.72 g C m?2 yr?1 for seasonally inundated wetland; and 0.21 ± 0.1 g C m?2 yr?1, 0.28 ± 0.11 g N m?2 yr?1, and 1212.83 ± 191.98 g C m?2 yr?1 for shrub swamp. The substantial interannual variation of gas fluxes was due to the significant climatic variability which underscores the importance of long‐term continuous observations. The apparent seasonal pattern of gas emissions associated with a significant relationship of gas fluxes to air temperature implied the potential effect of global warming on greenhouse gas emissions from natural wetlands. The budgets of CH4 and N2O fluxes and ecosystem respiration were highly variable among three wetland types, which suggest the uncertainties in previous studies in which all kinds of natural wetlands were treated as one or two functional types. New classification of global natural wetlands in more detailed level is highly expected. 相似文献
19.
J. P. HOBEN R. J. GEHL N. MILLAR P. R. GRACE G. P. ROBERTSON 《Global Change Biology》2011,17(2):1140-1152
Row‐crop agriculture is a major source of nitrous oxide (N2O) globally, and results from recent field experiments suggest that significant decreases in N2O emissions may be possible by decreasing nitrogen (N) fertilizer inputs without affecting economic return from grain yield. We tested this hypothesis on five commercially farmed fields in Michigan, USA planted with corn in 2007 and 2008. Six rates of N fertilizer (0–225 kg N ha?1) were broadcast and incorporated before planting, as per local practice. Across all sites and years, increases in N2O flux were best described by a nonlinear, exponentially increasing response to increasing N rate. N2O emission factors per unit of N applied ranged from 0.6% to 1.5% and increased with increasing N application across all sites and years, especially at N rates above those required for maximum crop yield. At the two N fertilizer rates above those recommended for maximum economic return (135 kg N ha?1), average N2O fluxes were 43% (18 g N2O–N ha?1 day?1) and 115% (26 g N2O–N ha?1 day?1) higher than were fluxes at the recommended rate, respectively. The maximum return to nitrogen rate of 154 kg N ha?1 yielded an average 8.3 Mg grain ha?1. Our study shows the potential to lower agricultural N2O fluxes within a range of N fertilization that does not affect economic return from grain yield. 相似文献
20.
Effect of experimental nitrogen load on methane and nitrous oxide fluxes on ombrotrophic boreal peatland 总被引:8,自引:0,他引:8
Nykänen Hannu Vasander Harri Huttunen Jari T. Martikainen Pertti J. 《Plant and Soil》2002,242(1):147-155
Methane (CH4) and nitrous oxide (N2O) dynamics were studied in a boreal Sphagnum fuscum pine bog receiving annually (from 1991 to 1996) 30 or 100 kg NH4NO3-N ha–1. The gas emissions were measured during the last three growing seasons of the experiment. Nitrogen treatment did not affect the CH4 fluxes in the microsites where S. fuscum and S. angustifolium dominated. However, addition of 100 kg NH4NO3-N ha–1 yr–1 increased the CH4 emission from those microsites dominated by S. fuscum. This increase was associated with the increase in coverage of cotton grass (Eriophorum vaginatum) induced by the nitrogen treatment. The differences in the CH4 emissions were not related to the CH4 oxidation and production potentials in the peat profiles. The N2O fluxes were negligible from all microsites. Only minor short-term increases occurred after the nitrogen addition. 相似文献