首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
J A Kiel  J M Boels  G Beldman  G Venema 《Gene》1990,89(1):77-84
The nucleotide sequence of the Synechococcus sp. PCC7942 glgB gene has been determined. The gene contains a single open reading frame (ORF) of 2322 bp encoding a polypeptide of 774 amino acids (aa) with an Mr of 89,206. Extensive sequence similarity exists between the deduced aa sequence of the Synechococcus sp. glgB gene product and that of the Escherichia coli branching enzyme in the middle portions of the proteins (62% identical aa). In contrast, the N-terminal portions shared little homology. The sequenced region which follows glgB contains an ORF encoding 79 aa of the N terminus of a polypeptide that shares extensive sequence similarity (41% identical aa) with human and rat uroporphyrinogen decarboxylase. This suggests that the region downstream from glgB contains the hemE gene and, therefore, that the organization of genes involved in glycogen biosynthesis in Synechococcus sp. is different from that described for E. coli. A fusion gene was constructed between the 5' end of the Bacillus licheniformis penP gene and the Synechococcus sp. glgB gene. The fusion gene was efficiently expressed in the Gram+ micro-organism Bacillus subtilis and specified a branching enzyme with an optimal temperature for activity similar to the wild-type enzyme.  相似文献   

2.
The glycogen branching enzyme gene (glgB) from Pectobacterium chrysanthemi PY35 was cloned, sequenced, and expressed in Escherichia coli. The glgB gene consisted of an open reading frame of 2196bp encoding a protein of 731 amino acids (calculated molecular weight of 83,859Da). The glgB gene is upstream of glgX and the ORF starts the ATG initiation codon and ends with the TGA stop codon at 2bp upstream of glgX. The enzyme was 43-69% sequence identical with other glycogen branching enzymes. The enzyme is the most similar to GlgB of E. coli and contained the four regions conserved among the alpha-amylase family. The glycogen branching enzyme (GlgB) was purified and the molecular weight of the enzyme was estimated to be 84kDa by SDS-PAGE. The glycogen branching enzyme was optimally active at pH 7 and 30 degrees C.  相似文献   

3.
A mutant strain of Escherichia coli K-12, designated 618, accumulates glycogen at a faster rate than wild-type strain 356. The mutation affects the ADPglucose pyrophosphorylase regulatory properties (N. Creuzat-Sigal, M. Latil-Damotte, J. Cattaneo, and J. Puig, p. 647-680, in R. Piras and H. G. Pontis, ed., Biochemistry of the Glycocide Linkage, 1972). The enzyme is less dependent on the activator, fructose 1,6 bis-phosphate for activity and is less sensitive to inhibition by the inhibitor, 5'-AMP. The structural gene, glgC, for this allosteric mutant enzyme was cloned into the bacterial plasmid pBR322 by inserting the chromosomal DNA at the PstI site. The glycogen biosynthetic genes were selected by cotransformation of the neighboring asd gene into an E. coli mutant also defective in branching enzyme (glgB) activity. Two recombinant plasmids, pEBL1 and pEBL3, that had PstI chromosomal DNA inserts containing glgC and glgB were isolated. Branching enzyme and ADPglucose pyrophosphorylase activities were increased 240- and 40-fold, respectively, in the asd glgB mutant, E. coli K-12 6281. The E. coli K-12 618 mutant glgC gene product was characterized after transformation of an E. coli B ADPglucose pyrophosphorylase mutant with the recombinant plasmid pEBL3. The kinetic properties of the cloned ADPglucose pyrophosphorylase were similar to those of the E. coli K-12 618 enzyme. The inserted DNA in pEBL1 was arranged in opposite orientation to that in pEBL3.  相似文献   

4.
Glycogen branching enzyme (GlgB, EC 2.4.1.18) catalyzes the third step of glycogen biosynthesis by the cleavage of an alpha-(1,4)-glucosidic linkage and subsequent transfer of cleaved oligosaccharide to form a new alpha-(1,6)-branch. A single glgB gene Rv1326c is present in Mycobacterium tuberculosis. The predicted amino acid sequence of GlgB of M. tuberculosis has all the conserved regions of alpha-amylase family proteins. The overall amino acid identity to other GlgBs ranges from 48.5 to 99%. The glgB gene of M. tuberculosis was cloned and expressed in Escherichia coli. The recombinant protein was purified to homogeneity using metal affinity and ion exchange chromatography. The recombinant protein is a monomer as evidenced by gel filtration chromatography, is active as an enzyme, and uses amylose as the substrate. Enzyme activity was optimal at pH 7.0, 30 degrees C and divalent cations such as Zn2+ and Cu2+ inhibited activity. CD spectroscopy, proteolytic cleavage and mass spectroscopy analyses revealed that cysteine residues of GlgB form structural disulfide bond(s), which allow the protein to exist in two different redox-dependent conformational states. These conformations have different surface hydrophobicities as evidenced by ANS-fluorescence of oxidized and reduced GlgB. Although the conformational change did not affect the branching enzyme activity, the change in surface hydrophobicity could influence the interaction or dissociation of different cellular proteins with GlgB in response to different physiological states.  相似文献   

5.
6.
A 6-kb DNA fragment of the Rhodobacter sphaeroides 2.4.1 glg operon was cloned from a genomic library using a polymerase chain reaction probe coding for part of the ADP-glucose pyrophosphorylase (glgC) gene. The DNA fragment was sequenced and found to harbor complete open reading frames for the glgC and glgA (glycogen synthase) genes and partial sequences corresponding to glgP (glycogen phosphorylase) and glgX (glucan hydrolase/transferase) genes. The genomic fragment also contained an apparent truncated sequence corresponding to the C-terminus of the glgB gene (branching enzyme). The presence of active branching enzyme activity in crude sonicates of Rb. sphaeroides cells indicates that the genome contains a full-length glgB at another location. The structure of this operon in relation to other glg operons is further discussed. The deduced sequence of the ADP-glucose pyrophosphorylase enzyme is compared to other known ADP-glucose pyrophosphorylase sequences and discussed in relation to the allosteric regulation of this enzyme family. The glgC gene was subcloned in the vector pSE420 (Invitrogen) for high-level expression in E. coli. The successful overexpression of the recombinant enzyme allowed for the purification of over 35 mg of protein from 10 g of cells, representing a dramatic improvement over enzyme isolation from the native strain. The recombinant enzyme was purified to near homogeneity and found to be physically, immunologically, and kinetically identical to the native enzyme, verifying the fidelity of the cloning step.  相似文献   

7.
A gene coding for a xylanase activity of alkalophilic Aeromonas sp. no. 212 (ATCC 31085) was cloned in Escherichia coli HB101 with pBR322. Plasmid pAX1 was isolated from transformants producing xylanase, and the xylanase gene was located in a 6.0 kb Hind III fragment. The pAX1-encoded xylanase activity in E. coli HB101 was about 80 times higher than that of xylanase L in alkalophilic Aeromonas sp. no. 212. About 40% of the enzyme activity was observed in the periplasmic space of E. coli HB101. The pAX1-encoded xylanase had the same enzymic properties as those of xylanase L produced by alkalophilic Aeromonas sp. no. 212, but its molecular weight was lower (135 000 vs 145 000, as estimated by SDS polyacrylamide gel electrophoresis).  相似文献   

8.
The recA gene of Synechococcus sp. strain PCC 7002 was detected and cloned from a lambda gtwes genomic library by heterologous hybridization by using a gene-internal fragment of the Escherichia coli recA gene as the probe. The gene encodes a 38-kilodalton polypeptide which is antigenically related to the RecA protein of E. coli. The nucleotide sequence of a portion of the gene was determined. The translation of this region was 55% homologous to the E. coli protein; allowances for conservative amino acid replacements yield a homology value of about 74%. The cyanobacterial recA gene product was proficient in restoring homologous recombination and partial resistance to UV irradiation to recA mutants of E. coli. Heterologous hybridization experiments, in which the Synechococcus sp. strain PCC 7002 recA gene was used as the probe, indicate that a homologous gene is probably present in all cyanobacterial strains.  相似文献   

9.
A branching enzyme (EC 2.4.1.18) gene was isolated from an extremely thermophilic bacterium, Rhodothermus obamensis. The predicted protein encodes a polypeptide of 621 amino acids with a predicted molecular mass of 72 kDa. The deduced amino acid sequence shares 42-50% similarity to known bacterial branching enzyme sequences. Similar to the Bacillus branching enzymes, the predicted protein has a shorter N-terminal amino acid extension than that of the Escherichia coli branching enzyme. The deduced amino acid sequence does not appear to contain a signal sequence, suggesting that it is an intracellular enzyme. The R. obamensis branching enzyme was successfully expressed both in E. coli and a filamentous fungus, Aspergillus oryzae. The enzyme showed optimum catalytic activity at pH 6.0-6.5 and 65 degrees C. The enzyme was stable after 30 min at 80 degrees C and retained 50% of activity at 80 degrees C after 16 h. Branching activity of the enzyme was higher toward amylose than toward amylopectin. This is the first thermostable branching enzyme isolated from an extreme thermophile.  相似文献   

10.
The gene encoding alkaline phosphatase from the psychrotrophic bacterium Shewanella sp. SIB1 was cloned, sequenced, and overexpressed in Escherichia coli. The recombinant protein was purified and its enzymatic properties were compared with those of E. coli alkaline phosphatase (APase), which shows an amino acid sequence identity of 37%. The optimum temperature of SIB1 APase was 50 degrees C, lower than that of E. coli APase by 30 degrees C. The specific activity of SIB1 APase at 50 degrees C was 3.1 fold higher than that of E. coli APase at 80 degrees C. SIB1 APase lost activity with a half-life of 3.9 min at 70 degrees C, whereas E. coli APase lost activity with a half-life of >6 h even at 80 degrees C. Thus SIB1 APase is well adapted to low temperatures. Comparison of the amino acid sequences of SIB1 and E. coli APases suggests that decreases in electrostatic interactions and number of disulfide bonds are responsible for the cold-adaptation of SIB1 APase.  相似文献   

11.
12.
Although the branching enzyme (EC 2.4.1.18) is a member of the alpha-amylase family, the characteristics are not understood. The thermostable branching enzyme gene from Bacillus stearothermophilus TRBE14 was cloned and expressed in Escherichia coli. The branching enzyme was purified to homogeneity, and various enzymatic properties were analyzed by our improved assay method. About 80% of activity was retained when the enzyme was heated at 60 degrees C for 30 min, and the optimum temperature for activity was around 50 degrees C. The enzyme was stable in the range of pH 7.5 to 9.5, and the optimum pH was 7.5. The nucleotide sequence of the gene was determined, and the active center of the enzyme was analyzed by means of site-directed mutagenesis. The catalytic residues were tentatively identified as two Asp residues and a Glu residue by comparison of the amino acid sequences of various branching enzymes from different sources and enzymes of the alpha-amylase family. When the Asp residues and Glu were replaced by Asn and Gln, respectively, the branching enzyme activities disappeared. The results suggested that these three residues are the catalytic residues and that the catalytic mechanism of the branching enzyme is basically identical to that of alpha-amylase. On the basis of these results, four conserved regions including catalytic residues and most of the substrate-binding residues of various branching enzymes are proposed.  相似文献   

13.
The degradation of the herbicides EPTC (S-ethyl dipropylthiocarbamate) and atrazine (2-chloro-4-ethyl-amino-6-isopropylamino-1,3,5-triazine) is associated with an indigenous plasmid in Rhodococcus sp. strain TE1. Plasmid DNA libraries of Rhodococcus sp. strain TE1 were constructed in a Rhodococcus-Escherichia coli shuttle vector, pBS305, and transferred into Rhodococcus sp. strain TE3, a derivative of Rhodococcus sp. strain TE1 lacking herbicide degradation activity, to select transformants capable of growing on EPTC as the sole source of carbon (EPTC+). Analysis of plasmids from the EPTC+ transformants indicated that the eptA gene, which codes for the enzyme required for EPTC degradation, residues on a 6.2-kb KpnI fragment. The cloned fragment also harbored the gene required for atrazine N dealkylation (atrA). The plasmid carrying the cloned fragment could be electroporated into a number of other Rhodococcus strains in which both eptA and atrA were fully expressed. No expression of the cloned genes was evident in E. coli strains. Subcloning of the 6.2-kb fragment to distinguish between EPTC- and atrazine-degrading genes was not successful.  相似文献   

14.
解毒酶基因在蓝藻中的克隆与表达   总被引:13,自引:0,他引:13  
用抗性库蚊酯酶基因B1的cDNA片段插入质粒pRL-439中的强启动子之后,再与穿梭表达载体pDC-8相连构建成大肠杆菌蓝藻穿梭表达载体pDC-B1,然后通过三亲接合转移法将pDC-B1转入蓝藻Synechococcus sp. PCC7942中,经新霉素筛选获遗传稳定的转基因藻株;纯化单藻落在液体中扩大培养,提取蓝藻质粒,Southern杂交确证B1cDNA已转入受体细胞;用酯酶的特异性底物β-乙酸萘酯(β-NA)检测B1的表达,转基因藻对β-NA的降解明显高于野生藻,证明酯酶B1基因在转基因藻中得到表达。  相似文献   

15.
The xylanase gene of Streptomyces flavogriseus was cloned in pUC8 plasmid and expressed in Escherichia coli lysogenic for lambda cI857. lambda-Induced lysis of E. coli at 42 degrees C allowed efficient release of cloned enzyme activity in extracellular environment. The xylanase gene was located in the 0.8-kb HindIII fragment and coded for 18,000 Mr xylanase.  相似文献   

16.
Alcaligenes faecalis penicillin G acylase is more stable than the Escherichia coli enzyme. The activity of the A. faecalis enzyme was not affected by incubation at 50 degrees C for 20 min, whereas more than 50% of the E. coli enzyme was irreversibly inactivated by the same treatment. To study the molecular basis of this higher stability, the A. faecalis enzyme was isolated and its gene was cloned and sequenced. The gene encodes a polypeptide that is characteristic of periplasmic penicillin G acylase (signal peptide-alpha subunit-spacer-beta subunit). Purification, N-terminal amino acid analysis, and molecular mass determination of the penicillin G acylase showed that the alpha and beta subunits have molecular masses of 23.0 and 62.7 kDa, respectively. The length of the spacer is 37 amino acids. Amino acid sequence alignment demonstrated significant homology with the penicillin G acylase from E. coli A unique feature of the A. faecalis enzyme is the presence of two cysteines that form a disulfide bridge. The stability of the A. faecalis penicillin G acylase, but not that of the E. coli enzyme, which has no cysteines, was decreased by a reductant. Thus, the improved thermostability is attributed to the presence of the disulfide bridge.  相似文献   

17.
The rnhA gene encoding RNase HI from a psychrotrophic bacterium, Shewanella sp. SIB1, was cloned, sequenced and overexpressed in an rnh mutant strain of Escherichia coli. SIB1 RNase HI is composed of 157 amino acid residues and shows 63% amino acid sequence identity to E.coli RNase HI. Upon induction, the recombinant protein accumulated in the cells in an insoluble form. This protein was solubilized and purified in the presence of 7 M urea and refolded by removing urea. Determination of the enzymatic activity using M13 DNA-RNA hybrid as a substrate revealed that the enzymatic properties of SIB1 RNase HI, such as divalent cation requirement, pH optimum and cleavage mode of a substrate, are similar to those of E.coli RNase HI. However, SIB1 RNase HI was much less stable than E.coli RNase HI and the temperature (T(1/2)) at which the enzyme loses half of its activity upon incubation for 10 min was approximately 25 degrees C for SIB1 RNase HI and approximately 60 degrees C for E.coli RNase HI. The optimum temperature for the SIB1 RNase HI activity was also shifted downward by 20 degrees C compared with that of E.coli RNase HI. Nevertheless, SIB1 RNase HI was less active than E.coli RNase HI even at low temperatures. The specific activity determined at 10 degrees C was 0.29 units/mg for SIB1 RNase HI and 1.3 units/mg for E.coli RNase HI. Site-directed mutagenesis studies suggest that the amino acid substitution in the middle of the alphaI-helix (Pro52 for SIB1 RNase HI and Ala52 for E.coli RNase HI) partly accounts for the difference in the stability and activity between SIB1 and E.coli RNases HI.  相似文献   

18.
Proteinase Ak.1 was produced during the stationary phase of Bacillus sp. Ak.1 cultures. It is a serine proteinase with a pI of 4.0, and the molecular mass was estimated to be 36.9 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The enzyme was stable at 60 and 70 degrees C, with half-lives of 13 h and 19 min at 80 and 90 degrees C, respectively. Maximum proteolytic activity was observed at pH 7.5 with azocasein as a substrate, and the enzyme also cleaved the endoproteinase substrate Suc-Ala-Ala-Pro-Phe-NH-Np (succinyl-alanyl-alanyl-prolyl-phenylalanine p-nitroanalide). Major cleavage sites of the insulin B chain were identified as Leu-15-Tyr-16, Gln-4-His-5, and Glu-13-Ala-14. The proteinase gene was cloned in Escherichia coli, and expression of the active enzyme was detected in the extracellular medium at 75 degrees C. The enzyme is expressed in E. coli as an inactive proproteinase at 37 degrees C and is converted to the mature enzyme by heating the cell-free media to 60 degrees C or above. The proproteinase was purified to homogeneity and had a pI of 4.3 and a molecular mass of 45 kDa. The NH2-terminal sequence was Ala-Ser-Asn-Asp-Gly-Val-Glu-, showing the exact signal peptide cleavage point. Heating the proenzyme resulted in the production of active proteinase with an NH2-terminal sequence identical to that of the native enzyme. The characteristics of the cloned proteinase were identical to those of the native enzyme.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
A gene coding for a thermostable extracellular alpha-amylase, carried by a 5.7 kb BamHI chromosomal DNA fragment isolated from Streptomyces thermoviolaceus strain CUB74, was cloned into Escherichia coli JM107 using, as a cloning vector, the high-copy-number plasmid pUC8. E. coli containing a recombinant plasmid pQR300 expressed the amylase gene and exported the enzyme into the periplasmic space and the culture medium. The amylase protein expressed by E. coli had the same molecular mass (50 kDa) as that expressed by the Streptomyces parent strain, which suggests that the enzyme is processed similarly by both strains. The amylase gene was also cloned into Streptomyces lividans TK24 using pIJ702 as vector. The enzyme was stable at 70 degrees C when CaCl2 was present.  相似文献   

20.
【目的】从海洋来源的罗尼氏弧菌菌株BY中克隆得到一个具有琼胶酶活性的新基因,并对其进行重组表达。【方法】对实验室保藏的产琼胶酶菌株BY进行16S rRNA基因序列分析,并构建系统发育树。根据已报道的琼胶酶基因序列的同源性,设计简并引物,利用降落PCR (Touch-down PCR)及染色体步移技术扩增琼胶酶基因序列全长,对基因序列进行生物信息学分析。将目的基因插入pET22a(+)载体,转化大肠杆菌BL21(DE3),对重组酶进行表达,利用DNS法测定了重组酶的酶活,对该重组琼胶酶酶学性质进行研究。【结果】克隆得到一条新的琼胶酶基因,命名为Vibrio sp. BY (GenBank登录号:AIW39921.1),Vibrio sp. BY基因序列全长2 232 bp,编码744个氨基酸,理论分子量为85 kD,Vibrio sp. BY的氨基酸序列基因库中与已知的琼胶酶氨基酸序列Vibrio sp. EJY3的相似度为86%。发酵液琼胶酶酶活力为71.73 U/mL,证明表达的蛋白为琼胶酶。酶学性质研究表明重组琼胶酶的最适温度及pH分别为50 °C和7.0,并且具有较好的稳定性。【结论】利用染色体步移技术克隆得到一条新的琼胶酶基因,并在大肠杆菌BL21(DE3)中实现了重组表达,为琼胶酶的应用奠定了基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号