首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of viral disease symptoms on the behaviour of virus vectors has implications for disease epidemiology. Here we show that previously reported preferential colonization of potatoes infected by potato leafroll virus (genus Polerovirus) (luteovirus) (PLRV) by alatae of Myzus persicae, the principal aphid vector of PLRV, is influenced by volatile emissions from PLRV-infected plants. First, in our bioassays both differential immigration and emigration were involved in preferential colonization by aphids of PLRV-infected plants. Second, M. persicae apterae aggregated preferentially, on screening above leaflets of PLRV-infected potatoes as compared with leaflets from uninfected plants, or from plants infected with potato virus X (PVX) or potato virus Y (PVY). Third, the aphids aggregated preferentially on screening over leaflet models treated with volatiles collected from PLRV-infected plants as compared with those collected from uninfected plants. The specific cues eliciting the aphid responses were not determined, but differences between headspace volatiles of infected and uninfected plants suggest possible ones.  相似文献   

2.
Mixed viral infections of heterologous viruses such as Potato virus Y (family Potyviridae, genus Potyvirus, PVY) and Potato leafroll virus (family Luteoviridae, genus Polerovirus, PLRV) are a regular occurrence in Idaho's potato, Solanum tuberosum (L.), cropping systems. An increased number of plant samples from Idaho's potato fields over the past 2 yr has serologically tested positive for both PVY and PLRV via double antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA) and exhibited more severe symptoms than singly-infected plants (PVY or PLRV). Several studies have extensively examined the mixed infection phenomenon but to the best of our knowledge, none have examined the effect of such infections on vector biology and preference. Laboratory studies were conducted to examine the effect of mixed viral (PVY-PLRV) infection on the fecundity and preference of two of the most efficient PVY and PLRV vectors, the green peach aphid, Myzus persicae (Sulzer), and the potato aphid, Macrosiphum euphorbiae (Thomas) (Hemiptera: Aphididae). M. persicae and M. euphorbiae adults were clip-caged (one adult per cage) to leaflets of PVY, PLRV, PVY-PLRV-infected, and noninfected potato plants. The number of nymphs produced in all four treatments was recorded after 96 h. M. persicae and M. euphorbiae fecundity was significantly higher on mixed infected plants than on singly infected plants or noninfected plants. Preference of alatae and apterae of M. persicae and M. euphorbiae was determined with the use of settling bioassays. Both alatae and apterae of M. persicae and M. euphorbiae preferentially settled on PVY-PLRV-infected plants than on singly infected plants (PVY or PLRV) or noninfected plants.  相似文献   

3.
Potato leafroll virus (PLRV) causes one of the most serious aphid-transmitted diseases affecting yield and quality of potatoes, Solanum tuberosum (L.), grown in the United States. The green peach aphid, Myzus persicae (Sulzer), is considered to be by far the most efficient vector of this virus. Even the most strict aphid control strategy may not prevent the spread of PLRV unless measures also are taken to keep virus source plants within and outside the crop at a minimum. Hairy nightshade, Solanum sarrachoides (Sendtner), is one of the preferred weed hosts for green peach aphid. The potential of this weed as an aphid reservoir and virus source and its spread or perpetuation were investigated. With the use of double antibody sandwich enzyme-linked immunosorbent assay, it was confirmed that green peach aphid can transmit PLRV to hairy nightshade and that aphids can become viruliferous after feeding on infected hairy nightshade plants. Transmission from hairy nightshade to potato is 4 times the rate of potato to potato or potato to hairy nightshade. The green peach aphid preferred hairy nightshade over potato plants and reproduced at a higher rate on hairy nightshade than on potato. Therefore, a low level of PLRV-hairy nightshade infection could enhance the disease spread in the field.  相似文献   

4.
Enzyme-linked immunosorbent assay (ELISA) was adapted for the efficient detection and assay of potato leafroll virus (PLRV) in aphids. Best results were obtained when aphids were extracted in 0.05 M phosphate buffer, pH 7.0, and the extracts incubated at 37 °C for 1 h before starting the assay. Using batches of 20 green peach aphids (Myzus persicae), about 0.01 ng PLRV/aphid could be detected. The virus could also be detected in single aphids allowed a 1-day acquisition access period on infected potato leaves. The PLRV content of aphids depended on the age of potato source-plants and the position of source leaves on them. It increased with increase in acquisition access period up to 7 days but differed considerably between individual aphids. A maximum of 7 ng PLRV/aphid was recorded but aphids more usually accumulated about 0.2 ng PLRV per day. When aphids were allowed acquisition access periods of 1–3 days, and then caged singly on Physalis floridana seedlings for 3 days, the PLRV content of each aphid, measured subsequently, was not strongly correlated with the infection of P. floridana. The concentration of PLRV in leaf extracts differed only slightly when potato plants were kept at 15, 20, 25 or 30 °C for 1 or 2 wk, but the virus content of aphids kept on leaves at the different temperatures decreased with increase of temperature. PLRV was transmitted readily to P. floridana at all temperatures, but by a slightly smaller proportion of aphids, and after a longer latent period, at 15 °C than at 30 °C. The PLRV content of M. persicae fed on infected potato leaves decreased with increasing time after transfer to turnip (immune to PLRV). The decrease occurred in two phases, the first rapid and the second very slow. In the first phase the decrease was faster, briefer and greater at 25 and 30 °C than at 15 and 20 °C. No evidence was obtained that PLRV multiplies in M. persicae. These results are compatible with a model in which much of the PLRV in aphids during the second phase is in the haemocoele, and transmission is mainly limited by the rate of passage of virus particles from haemolymph to saliva. The potato aphid, Macrosiphum euphorbiae, transmitted PLRV much less efficiently than M. persicae. Its inefficiency as a vector could not be ascribed to failure to acquire or retain PLRV, or to the degradation of virus particles in the aphid. Probably only few PLRV particles pass from the haemolymph to saliva in this species. The virus content of M. euphorbiae collected from PLRV-infected potato plants in the field increased from early June to early July, and then decreased. PLRV was detected both in spring migrants collected from the plants and in summer migrants caught in yellow water-traps. PLRV was also detected in M. persicae collected from infected plants in July and August, and in trapped summer migrants, but their PLRV content was less than that of M. euphorbiae, and in some instances was too small for unequivocal detection.  相似文献   

5.
Potato leafroll virus (PLRV; genus Polerovirus, family Luteoviridae) is a persistently transmitted circulative virus that depends on aphids for spreading. The primary vector of PLRV is the aphid Myzus persicae (Sulzer) (Homoptera: Aphididae). Solanum tuberosum L. potato cv. Kardal (Solanaceae) has a certain degree of resistance to M. persicae: young leaves seem to be resistant, whereas senescent leaves are susceptible. In this study, we investigated whether PLRV‐infection of potato plants affected aphid behaviour. We found that M. persicae's ability to differentiate headspace volatiles emitted from PLRV‐infected and non‐infected potato plants depends on the age of the leaf. In young apical leaves, no difference in aphid attraction was found between PLRV‐infected and non‐infected leaves. In fact, hardly any aphids were attracted. On the contrary, in mature leaves, headspace volatiles from virus infected leaves attracted the aphids. We also studied the effect of PLRV‐infection on probing and feeding behaviour (plant penetration) of M. persicae using the electrical penetration graph technique (DC system). Several differences were observed between plant penetration in PLRV‐infected and non‐infected plants, but only after infected plants showed visual symptoms of PLRV infection. The effects of PLRV‐infection in plants on the behaviour of M. persicae, the vector of the virus, and the implications of these effects on the transmission of the virus are thoroughly discussed.  相似文献   

6.
Between 1962 and 1967 spread of potato leaf roll virus (PLRV) and the pattern of potato crop infestation by common potato aphids was investigated at sites in the counties of East Lothian, West Lothian, Midlothian and Berwickshire. Within this area aphid activity and the extent of PLRV spread varied considerably both within years and between years.
Macrosiphum euphorbiae activity as measured by the angle of colonization method was as well correlated with PLRV spread as that for Myzus persicae , and in certain years Aulacorthum solani and Aphis fabae may become common enough to have an effect. Spread was not well correlated with site altitude or with distance from the market garden area of Musselburgh, previously thought to be the main regional overwintering centre for aphids. Evidence is presented of the more general distribution of market gardening in the area which may account for these variations. Results from infector units of different sizes and bulk samples suggest, as do earlier findings, that in southern Scotland PLRV spread is mainly from sources within the crop. The practical implications for potato certification in the region are discussed.  相似文献   

7.
Parasitic hymenoptera of potato aphids were collected and identified in 2000 and 2001 in 11 potato fields in Belgium. Nine Aphidiidae species, parasiting seven aphid species, were found: Aphidius ervi, Aphidius matricariae, Aphidius picipes, Binodoxys angelicae, Diaeretiella rapae, Praon abjectum, Praon gallicium, Praon volucre and Toxares deltiger. A. ervi and A. picipes were the dominant and sub-dominant species, with 54% and 28% of the primary parasite collected, respectively. Both species and T. deltiger were found on Aphis nasturti, Aulacorthum solani, Macrosiphum euphorbiae and Myzus persicae, the four most important aphid potato in Belgium. Parasitism rate of A. nasturtii and, to a lesser extent, M. euphorbiae was low compared to A. solani and M. persicae. Parasitism of A. solani was particularly high, with 63.5% in 2000 and 89.2% in 2001, and this species was the preferred host of several Aphidiid species. The abundance of alternative hosts as other crops pest aphids or non-pest aphids on wild plants in agroecosystems could explains the efficacy of these species. The biological control of A. nasturtii and M. euphorbiae by parasitic hymenoptera was poorer, and several studies need to be undertaken to find suitable parasitic hymenoptera species effective on these aphids and agro-environmental measures able to promote them.  相似文献   

8.
温度对桃蚜和马铃薯长管蚜实验种群生命表参数的影响   总被引:1,自引:0,他引:1  
【目的】桃蚜Myzus persicae (Sulzer)和马铃薯长管蚜Macrosiphum euphorbiae (Thomas)是2种主要的马铃薯害虫。本研究旨在明确温度对这两种马铃薯蚜虫生长发育、存活、繁殖及种群增长的影响。【方法】在室内测定了5个温度(10, 15, 20, 25和30℃)下桃蚜和马铃薯长管蚜的生长发育、存活和繁殖指标,并组建了4个恒温条件下(10,15,20和25℃)的实验种群生命表。【结果】在10~25℃范围内,2种蚜虫的若蚜期、世代历期、成蚜寿命和产蚜期等均随温度的升高而缩短,而30℃高温抑制了其发育、存活和繁殖。2种蚜虫的平均世代历期(T)随温度的升高而缩短,桃蚜和马铃薯长管蚜分别从10℃的30.08 d和35.35 d缩短至25℃的14.28 d和12.95 d。桃蚜的净增殖率(R0)在15℃时最高(86.00),其次为20℃(73.75),再次为25℃(62.49),最低为10℃(51.00);马铃薯长管蚜的R0在15℃最高(58.97),其次为10℃(51.98),再次为20℃(48.94),最低为25℃(12.36)。桃蚜的内禀增长率(rm)随温度的升高而增大,从最小10℃的0.1307增大到25℃的0.2896;马铃薯长管蚜的rm在20℃时最大(0.2182),其次为25℃(0.1942),再次为15℃(0.1485),最小为10℃(0.1118)。在相同的温度下,桃蚜的发育速率、净增殖率和内禀增长率均高于马铃薯长管蚜。【结论】温度对2种马铃薯蚜虫的生长发育、存活、繁殖及种群增长有显著的影响,桃蚜在马铃薯上的种群增长能力强于马铃薯长管蚜。这一结果为马铃薯蚜虫预测模型的建立奠定了必要的基础,并解释了桃蚜在马铃薯上发生数量多于马铃薯长管蚜的原因。  相似文献   

9.
Potato aphid, Macrosiphum euphorbiae (Homoptera: Aphididae), is an abundant potato pest and vector of potato leaf-roll virus and potato virus Y in Maine and other potato growing areas. We investigated the circadian rhythmicity of its movement towards host plant odor. Effects of daily cycle (day or night) and illumination (light or dark) on the proportion of aphids colonizing potato leaflets were determined in a Petri plate arena and in a Y-tube olfactometer. In Petri dishes, both daily cycle and light had a highly significant effect on plant colonization. Increasing temperature reduced aphid colonization of the leaflets. In the olfactometer, light had a significant effect on the proportion of aphids walking towards the host plant. Interaction between time and light was also statistically significant, with the effect of illumination being smaller during the day than during the night. Our results suggest that circadian rhythm in host-finding behavior of the potato aphid is regulated by both exogenous and endogenous mechanisms.  相似文献   

10.
大田和实验室研究均表明矿物油的施用可有效降低蚜虫对非持久性病毒的传播。我们分别于矿物油喷施马铃薯植株24 h和7 d后,调查其对马铃薯长管蚜Macrosiphum euphorbiae行为的影响;采用暗室生测法调查了蚜虫对处理的植物挥发性化合物的反应;采用刺探电位技术(EPG)评价了矿物油处理对蚜虫取食行为的影响。结果表明:矿物油处理导致植物对寄主的引诱作用失效,这种效果至少持续24 h。矿物油处理马铃薯植株24 h和7 d后,蚜虫对处理植株的取食行为发生改变。开始记录至第1次刺探所需时间降低,但只在处理7 d后显著降低,提示矿物油处理有助于蚜虫口针的穿刺。然而,流涎阶段以及韧皮部汁液吸食阶段(摄食阶段)显著缩短。本研究中观察到的蚜虫行为的改变不能充分解释施用矿物油的大田中为什么出现7 d 的保护作用,因此可能还存在其他的机制。  相似文献   

11.
Transgenic plants expressing protease inhibitors (PIs) have emerged in recent years as an alternative strategy for pest control. Beneficial insects such as parasitoids may therefore be exposed to these entomotoxins either via the host or by direct exposure to the plant itself. With the objective of assessing the effects of PIs towards aphid parasitoids, bioassays using soybean Bowman-Birk inhibitor (SbBBI) or oryzacystatin I (OCI) on artificial diet were performed on Macrosiphum euphorbiae-Aphelinus abdominalis system. OCI significantly reduced nymphal survival of the potato aphid M. euphorbiae and prevented aphids from reproducing. This negative effect was much more pronounced than with other aphid species. On the contrary, SbBBI did not affect nymphal viability but significantly altered adult demographic parameters. Enzymatic inhibition assays showed that digestive proteolytic activity of larvae and adults of Aphelinus abdominalis predominantly relies on serine proteases and especially on chymotrypsin-like activity. Immunoassays suggested that OCI bound to aphid proteins and accumulated in aphid tissues, whereas SbBBI remained unbound in the gut. Bioassays using M. euphorbiae reared on artificial diets supplemented with both OCI and SbBBI showed a fitness impairment of Aphelinus abdominalis that developed on intoxicated aphids. However, only SbBBI was detected in parasitoid larvae, while no PI could be detected in adult parasitoids that emerged from PI-intoxicated aphids. The potential impact of PI-expressing plants on aphid parasitoids and their combined efficiency for aphid control are discussed.  相似文献   

12.
Arbitrary green peach aphid, Myzus persicae (Sulzer), action thresholds (0, 5, 10, 20, and 40 aphids per 100 leaves) were tested in 3 yr of field experimentation to determine if they could be maintained and if they would significantly impact aphid densities and limit the incidence of potato leafroll virus (PLRV). In 1997 and 1998, significant linear relationships between thresholds and final percentage of PLRV (expressed as the percentage of tubers infected with PLRV) were observed: there was a trend toward lower PLRV incidence with decreasing action threshold in 1999. There were significant relationships between thresholds and mean number of apterous aphids in 1998 and 1999, indicating that reduction of PLRV resulted from reduced within-field spread by apterae. In almost all cases, aphid densities exceeded threshold levels from one week to the next, clearly showing that the thresholds could not be maintained. Over all experiments, four to nine seasonal applications of methamidophos were warranted by the magnitude of the threshold. Imidacloprid applied at planting to the zero aphid threshold reduced the number of methamidophos applications from nine in the insecticide-at-detection treatment to five. A revised within-field green peach aphid management plan is recommended that includes systemic insecticide applied at planting, aphid sampling every 3-4 d, and foliar insecticide application following aphid detection.  相似文献   

13.
Abstract.  Aphids ( Myzus persicae , Macrosiphum euphorbiae and Aulacorthum solani ) are reared on potato plants with phloem sucrose concentrations reduced by up to two-fold by expressing the antisense of the sucrose-H+ symporter ( StSUT1 ) gene. The performance of My. persicae and A. solani on the antisense plants is comparable or superior to that on the wild-type plants, but Ma. euphorbiae increases more slowly on the antisense plants than on the wild-type and fails to feed from the antisense line with the lowest phloem sucrose concentration. Electrical monitoring by electical penetration graphs reveals that Ma. euphorbiae either do not locate the sieve elements or withdraw their stylets prematurely from the sieve elements of these plants. This difference between Ma. euphorbiae and the other aphid species may reflect interspecific variation in response both to the low phloem sucrose in transgenic plants and to pleiotropic effects of the transgene on the wider physiology of the plants. All aphid species perform well on plants with phloem sucrose concentrations that, when administered via chemically-defined diets, support little or no aphid growth. These results illustrate the need for caution in extrapolating conclusions reached for diet-reared aphids to aphids on plants, and demonstrate the importance of plant-based experiments for studies of the nutritional physiology of aphids.  相似文献   

14.
Abstract:  The effect of a genetically modified eggplant line expressing oryzacystatin on Myzus persicae (Sulzer) and Macrosiphum euphorbiae (Thomas) was examined. The transgenic eggplant reduced the net reproductive rate ( R 0), the instantaneous rate of population increase ( r ), and the finite rate of population increase ( λ ) of both aphids species compared with a control eggplant line. The mean generation time ( T ) of the aphids was unaffected by the transgenic plants. Age-specific mortality rates of M. persicae and M. euphorbiae were higher on transgenic plants. These results indicate that expression of oryzacystatin in eggplant has a negative impact on population growth and mortality rates of M. persicae and M. euphorbiae and could be a source of plant resistance for pest management of these aphids.  相似文献   

15.
16.
Temperature both before and after aphid inoculation with potato leafroll virus (PLRV) greatly influenced the susceptibility of potato plants to infection and virus accumulation, as evaluated with ELISA using cultivars with different ratings for the resistance to PLRV. Pre-incubation at 15 compared to 27 °C increased the susceptibility of plants to infection and a subsequent PLRV accumulation. The virus was detected by ELISA in a greater proportion of plants and reached a higher concentration, when the plants were kept at 27 than at 15 °C after inoculation. The mean ELISA values obtained with PLRV-infected plants in the 15/27 combination of the pre-/post-inoculation temperatures over the period 1—6 wks after inoculation were significantly higher than those in the 27/27, 15/15 and 27/15 treatments, and the values obtained in the 27/27 treatment were significantly higher than those in the 15/15 and 27/15 ones. A hypersensitive-like intolerance reaction to PLRV occurred in the resistant cv. Irga only in the plants kept at 27 °C after inoculation.  相似文献   

17.
Surveys in the years 1954-56 showed that potato crops in most districts of eastern Scotland were infested by the aphids Myzus persicae (Sulz.), Macrosiphum euphorbiae (Thomas) and Aulacorthum solani (Kltb.). Crops in different districts became infested by Myzus persicae at different times and to different extents, and these differences seemed consistent between years. Crops in the Edinburgh area were colonized between mid-May and mid-June, whereas crops in north Perthshire escaped infestation until the end of July or mid-August. The time and degree of infestation by M. persicae seems correlated with distance from sites where this aphid overwinters. Trap records show that many alate M. persicae disperse from outdoor brassica and early potato crops in the Edinburgh area between mid-July and mid-August, a period during which potato crops in Fife, Angus and Perthshire usually become infested. The freedom of crops in the better seed-producing areas from widespread infection by potato leaf roll and Y viruses is probably associated with lateness of aphid infestation rather than scarcity of aphid vectors.  相似文献   

18.
The effects of neem (Azadirachta indica A. Juss) seed kernel extracts (NSKE) and azadirachtin on the ability of Myzus persicae (Sulz.) to transmit potato leafroll luteovirus (PLRV) was studied. Moreover, it was investigated whether treatments with these compounds would exert an effect on larval growth and mortality, and on the aphid intracellular symbionts. Endosymbiotic bacteria play an essential role in the performance of aphids, and in luteovirus transmission by aphids. NSKE and azadirachtin were offered to one-day-old M. persicae nymphs via a membrane feeding system. The neem metabolites displayed a 100% mortality at doses higher than 2560 ppm. At intermediate doses, ranging between 320 and 2560 ppm, larval growth and mortality were affected in a dose-dependent manner. The transmission of PLRV by M. persicae was inhibited by 55–90%. The endosymbiont population of the aphid was clearly affected by a treatment with neem metabolites as the release of their most abundant protein, Buchnera GroEL, into the haemocoel of the aphid was inhibited. Moreover, morphological aberrations on the bacterial endosymbionts were observed in aphids which fed on 2560 ppm of azadirachtin. At doses lower than 160 ppm of NSKE or azadirachtin, the endosymbiont population of M. persicae, and mortality, growth and feeding behaviour were similar to that of the untreated groups of aphids. However, PLRV transmission was still inhibited by 40–70%. The possible targets of the neem metabolites in the aphid are discussed.  相似文献   

19.
Snowdrop lectin (Galanthus nivalis agglutinin, GNA), has been shown to confer partial resistance to two potato aphids Myzus persicae and Aulacorthum solani, when incorporated in artificial diet and/or expressed in transgenic potato. First-tier laboratory-scale experiments were conducted to assess the potential effect of GNA on the aphid parasitoid Aphelinus abdominalis. GNA (0.1% w/v) was successfully delivered to Macrosiphum euphorbiae via artificial diet and induced a reduced growth rate and increased mortality compared to aphids fed a control diet. As aphid parasitoid larvae are endophagous, they may be exposed to GNA during their larval development and potential "chronic toxicity" on A. abdominalis was investigated. The amounts of GNA present in aphid and parasitoid tissues were estimated by western blotting. Results suggest that parasitoids excrete most of the GNA ingested. Sublethal effects of GNA on several parasitoid fitness parameters (parasitism success, parasitoid development and size, emergence success, progeny survival and sex ratio) were studied. No direct detrimental effect of GNA on A. abdominalis was observed. However, GNA had an indirect host-size-mediated effect on the sex ratio and the size of parasitoids developing in GNA-fed aphids. This work highlights the need to determine the exact "causes and effects" when assessing the ecological impact of transgenic plants on non-target beneficial insects. Such bioassays form the basis of a tiered risk assessment moving from laboratory studies assessing individuals towards field-scale experiments assessing populations.  相似文献   

20.
Sticky traps, water traps and leaf samples were used to monitor aphid populations at 32 sites in southwestern Australia between October and May for four seasons between 1988–92. Twenty-seven sites were located in potato, Solanum tuberosum L., crops, with five others located in mixed vegetable crops or pastures. Sites were located in an area of approximately 90,000 km2, and encompassed most of the potato growing areas of the region. Thirty-four species of aphids were detected. Potato-colonising aphids found were Myzus persicae, Aulacorthum solani, Macrosiphum euphorbiae and Aphis craccivora. M. persicae was the most widespread, and its seasonal distribution in southwestern Australia is presented. Fewer M. persicae were recorded and it arrived later in the season for 2 of 3 years at southern sites than northern sites. At sites where both sticky traps and leaf sampling were used, leaf sampling often detected M. persicae before they were found on traps. Results suggest that potato crops grown on the southern coast will be least vulnerable to infection by aphid-borne viruses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号