首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Late blight caused by the oomycete Phytophthora infestans is the most destructive disease in potato cultivation worldwide. New, more virulent P. infestans strains have evolved which overcome the genetic resistance that has been introgressed by conventional breeding from wild potato species into commercial varieties. R genes (for single-gene resistance) and genes for quantitative resistance to late blight are present in the germplasm of wild and cultivated potato. The molecular basis of single-gene and quantitative resistance to late blight is unknown. We have cloned R1, the first gene for resistance to late blight, by combining positional cloning with a candidate gene approach. The R1 gene is member of a gene family. It encodes a protein of 1293 amino acids with a molecular mass of 149.4 kDa. The R1 gene belongs to the class of plant genes for pathogen resistance that have a leucine zipper motif, a putative nucleotide binding domain and a leucine-rich repeat domain. The most closely related plant resistance gene (36% identity) is the Prf gene for resistance to Pseudomonas syringae of tomato. R1 is located within a hot spot for pathogen resistance on potato chromosome V. In comparison to the susceptibility allele, the resistance allele at the R1 locus represents a large insertion of a functional R gene.  相似文献   

2.
The R3 locus of potato (Solanum tuberosum L.) confers full resistance to avirulent isolates of Phytophthora infestans, the causal agent of late blight. R3 resides in the distal part of chromosome 11 and segregates in a potato mapping population, from which a well-saturated amplified fragment length polymorphism map is available. Using a population of 1,748 plants, we constructed a high-resolution genetic map at the R3 locus. Using the combination of fine mapping and accurate disease testing with specific P. infestans isolates, we detected that the R3 locus is composed of two genes with distinct specificities. The two genes R3a and R3b are 0.4 cM apart and have both been introgressed from S. demissum, the 'donor' species of most characterized race-specific R genes to P. infestans. A natural recombinant between R3a and R3b was discovered in one accession of S. demissum. The synteny between the R3 locus and the tomato I2 locus is discussed.  相似文献   

3.
Late blight is the most devastating potato disease and it also causes serious yield loss in tomato.Several disease resistance genes (R genes) to late blight have been cloned from potato in the past decade.However,the resistance mechanisms remain elusive.Tomato and potato belong to the botanical family Solanaceace and share remarkably conserved genome structure.Since tomato is a model system in genetic and plant pathology research,we used tomato to develop a powerful mutant screening system that will greatly facilitate the analysis of the signaling pathway of resistance to Phytophthora infestans.First we proved that the R3a transgenic tomatoes developed specific hypersensitive cell death response (HR) to P.infestans strains carrying the corresponding avirulence gene Avr3a,indicating that the signaling pathway from the R3a-Avr3a recognition to HR is conserved between potato and tomato.Second,we generated transgenic tomatoes carrying both R3a and Avr3a genes,with the latter under the control of a glucocorticiod-inducible promoter.Dexamethasone induced expression of Avr3a and resulted in localized HR.This versatile system can be used to construct a mutant library to screen surviving mutants whose resistance signal transduction was interrupted,providing the basis to identify key genes involved in the resistance to late blight in Solanaceae.  相似文献   

4.
Massive resistance (R) gene stacking is considered to be one of the most promising approaches to provide durable resistance to potato late blight for both conventional and genetically modified breeding strategies. The R3 complex locus on chromosome XI in potato is an example of natural R gene stacking, because it contains two closely linked R genes (R3a and R3b) with distinct resistance specificities to Phytophthora infestans. Here, we report about the positional cloning of R3b. Both transient and stable transformations of susceptible tobacco and potato plants showed that R3b conferred full resistance to incompatible P. infestans isolates. R3b encodes a coiled-coil nucleotide-binding site leucine-rich repeat protein and exhibits 82% nucleotide identity with R3a located in the same R3 cluster. The R3b gene specifically recognizes Avr3b, a newly identified avirulence factor from P. infestans. R3b does not recognize Avr3a, the corresponding avirulence gene for R3a, showing that, despite their high sequence similarity, R3b and R3a have clearly distinct recognition specificities. In addition to the Rpi-mcd1/Rpi-blb3 locus on chromosome IV, the R3 locus on chromosome XI is the second example of an R-gene cluster with multiple genes recognizing different races of P. infestans.  相似文献   

5.
Late blight, caused by the oomycete pathogen Phytophthora infestans, is the most devastating disease for potato cultivation. Here, we describe the positional cloning of the Rpi-blb1 gene from the wild potato species Solanum bulbocastanum known for its high levels of resistance to late blight. The Rpi-blb1 locus, which confers full resistance to complex isolates of P. infestans and for which race specificity has not yet been demonstrated, was mapped in an intraspecific S. bulbocastanum population on chromosome 8, 0.3 cM from marker CT88. Molecular analysis of a bacterial artificial chromosome (BAC) clone spanning the Rpi-blb1 locus identified a cluster of four candidate resistance gene analogues of the coiled coil, nucleotide-binding site, leucine-rich repeat (CC-NBS-LRR) class of plant resistance (R) genes. One of these candidate genes, designated the Rpi-blb1 gene, was able to complement the susceptible phenotype in a S. tuberosum and tomato background, demonstrating the potential of interspecific transfer of broad-spectrum late blight resistance to cultivated Solanaceae from sexually incompatible host species. Paired comparisons of synonymous and non-synonymous nucleotide substitutions between different regions of Rpi-blb1 paralogues revealed high levels of synonymous divergence, also in the LRR region. Although amino acid diversity between Rpi-blb1 homologues is centred on the putative solvent exposed residues of the LRRs, the majority of nucleotide differences in this region have not resulted in an amino acid change, suggesting conservation of function. These data suggest that Rpi-blb1 is relatively old and may be subject to balancing selection.  相似文献   

6.
The necessity to develop potato and tomato crops that possess durable resistance against the oomycete pathogen Phytophthora infestans is increasing as more virulent, crop-specialized and pesticide resistant strains of the pathogen are rapidly emerging. Here, we describe the positional cloning of the Solanum bulbocastanum-derived Rpi-blb2 gene, which even when present in a potato background confers broad-spectrum late blight resistance. The Rpi-blb2 locus was initially mapped in several tetraploid backcross populations, derived from highly resistant complex interspecific hybrids designated ABPT (an acronym of the four Solanum species involved:S. acaule, S. bulbocastanum, S. phureja and S. tuberosum), to the same region on chromosome 6 as the Mi-1 gene from tomato, which confers resistance to nematodes, aphids and white flies. Due to suppression of recombination in the tetraploid material, fine mapping was carried out in a diploid intraspecific S. bulbocastanum F1 population. Bacterial artificial chromosome (BAC) libraries, generated from a diploid ABPT-derived clone and from the resistant S. bulbocastanum parent clone, were screened with markers linked to resistance in order to generate a physical map of the Rpi-blb2 locus. Molecular analyses of both ABPT- and S. bulbocastanum-derived BAC clones spanning the Rpi-blb2 locus showed it to harbor at least 15 Mi-1 gene homologs (MiGHs). Of these, five were genetically determined to be candidates for Rpi-blb2. Complementation analyses showed that one ABPT- and one S. bulbocastanum-derived MiGH were able to complement the susceptible phenotype in both S. tuberosum and tomato. Sequence analyses of both genes showed them to be identical. The Rpi-blb2 protein shares 82% sequence identity to the Mi-1 protein. Significant expansion of the Rpi-blb2 locus compared to the Mi-1 locus indicates that intrachromosomal recombination or unequal crossing over has played an important role in the evolution of the Rpi-blb2 locus. The contrasting evolutionary dynamics of the Rpi-blb2/Mi-1 loci in the two related genomes may reflect the opposite evolutionary potentials of the interacting pathogens.  相似文献   

7.
Late blight, caused by Phytophthora infestans, is one of the most devastating diseases in cultivated potato. Breeding of new potato cultivars with high levels of resistance to P. infestans is considered the most durable strategy for future potato cultivation. In this study, we report the identification of a new late-blight resistance (R) locus from the wild potato species Solanum bulbocastanum. Using several different approaches, a high-resolution genetic map of the new locus was generated, delimiting Rpi-blb3 to a 0.93 cM interval on chromosome 4. One amplification fragment length polymorphism marker was identified that cosegregated in 1,396 progeny plants of an intraspecific mapping population with Rpi-blb3. For comparative genomics purposes, markers linked to Rpi-blb3 were tested in mapping populations used to map the three other late-blight R loci Rpi-abpt, R2, and R2-like also to chromosome 4. Marker order and allelic conservation suggest that Rpi-blb3, Rpi-abpt, R2, and R2-like reside in the same R gene cluster on chromosome 4 and likely belong to the same gene family. Our findings provide novel insights in the evolution of R gene clusters conferring late-blight resistance in Solanum spp.  相似文献   

8.
利用抑制差减杂交技术分离马铃薯晚疫病抗性相关基因   总被引:15,自引:1,他引:15  
田振东  柳俊  谢从华 《遗传学报》2003,30(7):597-605
以晚疫病病原菌混合小种接种处理48h的马铃薯水平抗性材料(R-gene-free)叶片为目的材料,以未处理材料作为对照,用抑制差减杂交技术构建了一个富集晚疫病抗性相关基因的差减文库。应用反向Northern技术对840个克隆进行斑点杂交筛选,筛选出150个病原诱导后信号明显增强的克隆。26个片段测序结果表明:部分片段基因功能与抗病性明显相关。7个差异表达片段与GenBank EST数据库中已有晚疫病原诱导马铃薯叶片得到的EST有很高同源性(达95%~100%);部分片段核苷酸或氨基酸序列分别与番茄、烟草、拟南芥等的EST序列或氨基酸序列有较高同源性;另有4个基因片段在GenBank EST数据库中未找到明显的同源序列,可能为新发现的基因片段。  相似文献   

9.
Potato defends against Phytophthora infestans infection by resistance (R)-gene-based qualitative resistance as well as a quantitative field resistance. R genes are renowned to be rapidly overcome by this oomycete, and potato cultivars with a decent and durable resistance to current P. infestans populations are hardly available. However, potato cultivar Sarpo Mira has retained resistance in the field over several years. We dissected the resistance of 'Sarpo Mira' in a segregating population by matching the responses to P. infestans RXLR effectors with race-specific resistance to differential strains. The resistance is based on the combination of four pyramided qualitative R genes and a quantitative R gene that was associated with field resistance. The qualitative R genes include R3a, R3b, R4, and the newly identified Rpi-Smira1. The qualitative resistances matched responses to avirulence (AVR)3a, AVR3b, AVR4, and AVRSmira1 RXLR effectors and were overcome by particular P. infestans strains. The quantitative resistance was determined to be conferred by a novel gene, Rpi-Smira2. It was only detected under field conditions and was associated with responses to the RXLR effector AvrSmira2. We foresee that effector-based resistance breeding will facilitate selecting and combining qualitative and quantitative resistances that may lead to a more durable resistance to late blight.  相似文献   

10.
Phytophthora infestans is a devastating phytopathogenic oomycete that causes late blight on tomato and potato. Recent genome sequencing efforts of P. infestans and other Phytophthora species are generating vast amounts of sequence data providing opportunities to unlock the complex nature of pathogenesis. However, accurate annotation of Phytophthora genomes will be a significant challenge. Most of the information about gene structure in these species was gathered from a handful of genes resulting in significant limitations for development of ab initio gene-calling programs. In this study, we collected a total of 150 bioinformatically determined near full-length cDNA (FLcDNA) sequences of P. infestans that were predicted to contain full open reading frame sequences. We performed detailed computational analyses of these FLcDNA sequences to obtain a snapshot of P. infestans gene structure, gauge the degree of sequence conservation between P. infestans genes and those of Phytophthora sojae and Phytophthora ramorum, and identify patterns of gene conservation between P. infestans and various eukaryotes, particularly fungi, for which genome-wide translated protein sequences are available. These analyses helped us to define the structural characteristics of P. infestans genes using a validated data set. We also determined the degree of sequence conservation within the genus Phytophthora and identified a set of fast evolving genes. Finally, we identified a set of genes that are shared between Phytophthora and fungal phytopathogens but absent in animal fungal pathogens. These results confirm that plant pathogenic oomycetes and fungi share virulence components, and suggest that eukaryotic microbial pathogens that share similar lifestyles also share a similar set of genes independently of their phylogenetic relatedness.  相似文献   

11.
Late blight, caused by the notorious pathogen Phytophthora infestans, is a devastating disease of potato (Solanum tuberosum) and tomato (Solanum lycopersicum), and during the 1840s caused the Irish potato famine and over one million fatalities. Currently, grown potato cultivars lack adequate blight tolerance. Earlier cultivars bred for resistance used disease resistance genes that confer immunity only to some strains of the pathogen harboring corresponding avirulence gene. Specific resistance gene-mediated immunity and chemical controls are rapidly overcome in the field when new pathogen races arise through mutation, recombination, or migration from elsewhere. A mitogen-activated protein kinase (MAPK) cascade plays a pivotal role in plant innate immunity. Here we show that the transgenic potato plants that carry a constitutively active form of MAPK kinase driven by a pathogen-inducible promoter of potato showed high resistance to early blight pathogen Alternaria solani as well as P. infestans. The pathogen attack provoked defense-related MAPK activation followed by induction of NADPH oxidase gene expression, which is implicated in reactive oxygen species production, and resulted in hypersensitive response-like phenotype. We propose that enhancing disease resistance through altered regulation of plant defense mechanisms should be more durable and publicly acceptable than engineering overexpression of antimicrobial proteins.  相似文献   

12.
In this study, we report the isolation of a defensin gene, lm-def, isolated from the Andean crop 'maca' (Lepidium meyenii) with activity against the pathogen Phytophthora infestans responsible of late blight disease of the potato and tomato crops. The lm-def gene has been isolated by polymerase chain reaction (PCR) using degenerate primers corresponding to conserved regions of 13 plant defensin genes of the Brassicaceae family assuming that defensin genes are highly conserved among cruciferous species. The lm-def gene belongs to a small multigene family of at least 10 members possibly including pseudogenes as assessed by genomic hybridization and nucleotide sequence analyses. The deduced mature Lm-Def peptide is 51 amino acids in length and has 74-94% sequence identity with other plant defensins of the Brassicaceae family. The Lm-Def peptide was produced as a fusion protein using the pET-44a expression vector and purified using an immobilized metal ion affinity chromatography. The recombinant protein (NusA:Lm-Def) exhibited in vitro activity against P. infestans. The NusA:Lm-Def protein caused growth inhibition and hyphal damage at concentration not greater than 0.4 microM. In contrast, the NusA protein alone expressed and purified similarly did not show any activity against P. infestans. Therefore, these results indicate that the lm-def gene isolated from maca belong to the plant defensin family with activity against P. infestans. Its expression in potato, as a transgene, might help to control the late blight disease caused by P. infestans with the advantage of being of plant origin.  相似文献   

13.
Fridman E  Zamir D 《Plant physiology》2003,131(2):603-609
Comparative analysis of complex developmental pathways depends on our ability to resolve the function of members of gene families across taxonomic groups. LIN5, which belongs to a small gene family of apoplastic invertases in tomato (Lycopersicon esculentum), is a quantitative trait locus that modifies fruit sugar composition. We have compared the genomic organization and expression of this gene family in the two distantly related species: tomato and Arabidopsis. Invertase family members reside on segmental duplications in the near-colinear genomes of tomato and potato (Solanum tuberosum). These chromosomal segments are syntenically duplicated in the model plant Arabidopsis. On the basis of phylogenetic analysis of genes in the microsyntenic region, we conclude that these segmental duplications arose independently after the separation of the tomato/potato clade from Arabidopsis. Rapid regulatory divergence is characteristic of the invertase family. Interestingly, although the processes of gene duplication and specialization of expression occurred separately in the two species, synteny-based orthologs from both clades acquired similar organ-specific expression. This similar expression pattern of the genes is evidence of comparable evolutionary constraints (parallel evolution) rather than of functional orthology. The observation that functional orthology cannot be identified through analysis of expression similarity highlights the caution that needs to be exercised in extrapolating developmental networks from a model organism.  相似文献   

14.
15.
Cross-species comparative genomics approaches have been employed to map and clone many important disease resistance (R) genes from Solanum species-especially wild relatives of potato and tomato. These efforts will increase with the recent release of potato genome sequence and the impending release of tomato genome sequence. Most R genes belong to the prominent nucleotide binding site-leucine rich repeat (NBS-LRR) class and conserved NBS-LRR protein motifs enable survey of the R gene space of a plant genome by generation of resistance gene analogs (RGA), polymerase chain reaction fragments derived from R genes. We generated a collection of 97 RGA from the disease-resistant wild potato S. bulbocastanum, complementing smaller collections from other Solanum species. To further comparative genomics approaches, we combined all known Solanum RGA and cloned solanaceous NBS-LRR gene sequences, nearly 800 sequences in total, into a single meta-analysis. We defined R gene diversity bins that reflect both evolutionary relationships and DNA cross-hybridization results. The resulting framework is amendable and expandable, providing the research community with a common vocabulary for present and future study of R gene lineages. Through a series of sequence and hybridization experiments, we demonstrate that all tested R gene lineages are of ancient origin, are shared between Solanum species, and can be successfully accessed via comparative genomics approaches.  相似文献   

16.
A potato molecular-function map for carbohydrate metabolism and transport   总被引:17,自引:7,他引:10  
Molecular-linkage maps based on functional gene markers (molecular-function maps) are the prerequisite for a candidate-gene approach to identify genes responsible for quantitative traits at the molecular level. Genetic linkage between a quantitative trait locus (QTL) and a candidate-gene locus is observed when there is a causal relationship between alleles of the candidate gene and the QTL effect. Functional gene markers can also be used for marker-assisted selection and as anchors for structural and functional comparisons between distantly related plant species sharing the same metabolic pathways. A first molecular-function map with 85 loci was constructed in potato based on 69 genes. Priority was given to genes operating in carbohydrate metabolism and transport. Public databases were searched for genes of interest from potato, tomato, or other plant species. DNA sequence information was used to develop PCR-based marker assays that allowed the localization of corresponding potato genes on existing RFLP linkage maps. Comparing the molecular-function map for genes operating in carbohydrate metabolism and transport with a QTL map for tuber starch content indicates a number of putative candidate genes for this important agronomic trait. Received: 19 March 2000 / Accepted: 16 May 2000  相似文献   

17.
We used a positional cloning approach to isolate the Sw-5 disease resistance locus of tomato. Complementation experiments with overlapping cosmid clones enabled us to demonstrate that Sw-5 is a single gene locus capable of recognizing several tospovirus isolates and species. Analysis of the predicted Sw-5 protein suggests that it is a cytoplasmic protein, with a potential nucleotide binding site (NBS) domain and a C-terminal end consisting of leucine-rich repeats (LRRs). Based on its structural features, Sw-5 belongs to the class of NBS-LRR resistance genes that includes the tomato Mi, 12, and Prf genes; the Arabidopsis RPM1 gene; and the plant potato virus X resistance gene Rx. The overall similarity between the Sw-5 and Mi proteins of tomato suggests that a shared or comparable signal transduction pathway leads to both virus and nematode resistance in tomato. The similarity also supports the hypothesis that Sw-5 provides resistance via a hypersensitive response. Sw-5 is a member of a loosely clustered gene family in the telomeric region of chromosome 9. Members of this family map to other regions of chromosome 9 and also to chromosome 12, where several fungal, virus, and nematode genes have been mapped, suggesting that paralogs of Sw-5 may have evolved to provide different resistance specificities.  相似文献   

18.
Solanum is a diverse genus with over 200 species occupying a range of habitats from the Southwestern United States to Central Chile. Germplasm evaluations have focused on species that can be crossed with S. tuberosum, while Mexican diploid (2n = 2x = 24) Solanum species with an Endosperm Balance Number (EBN) of 1 have received less attention because of poor crossability due to their ploidy and EBN. Recent changes in Phytophthora infestans populations have increased the need for new sources of genetic resistance to this fungus. We have characterized resistance to P. infestans in the Mexican 2x(1EBN) species S. pinnatisectum. An interspecific hybrid between resistant S. pinnatisectum and susceptible S. cardiophyllum plants was backcrossed to S. cardiophyllum to generate a family segregating for late-blight resistance. The diploid (1EBN) genetic map generated with 99 RFLP markers revealed extensive synteny with previously published potato maps. A single dominant late-blight resistance locus (Rpi1) from S. pinnatisectum was mapped to chromosome 7, a region previously not associated with late-blight resistance. Characterization of the P.infestans isolate used for disease evaluations revealed that it possessed the avirulence gene corresponding to the R9 resistance locus, indicating that Rpi1 could possibly correspond to R9.  相似文献   

19.
Phytophthora infestans, the organism responsible for the Irish famine, causes late blight, a re-emerging disease of potato and tomato. Little is known about the molecular evolution of P. infestans genes. To identify candidate effector genes (virulence or avirulence genes) that may have co-evolved with the host, we mined expressed sequence tag (EST) data from infection stages of P. infestans for secreted and potentially polymorphic genes. This led to the identification of scr74, a gene that encodes a predicted 74-amino acid secreted cysteine-rich protein with similarity to the Phytophthora cactorum phytotoxin PcF. The expression of scr74 was upregulated approximately 60-fold 2 to 4 days after inoculation of tomato and was also significantly induced during early stages of colonization of potato. The scr74 gene was found to belong to a highly polymorphic gene family within P. infestans with 21 different sequences identified. Using the approximate and maximum likelihood (ML) methods, we found that diversifying selection likely caused the extensive polymorphism observed within the scr74 gene family. Pairwise comparisons of 17 scr74 sequences revealed elevated ratios of nonsynonymous to synonymous nucleotide-substitution rates, particularly in the mature region of the proteins. Using ML, all 21 polymorphic amino acid sites were identified to be under diversifying selection. Of these 21 amino acids, 19 are located in the mature protein region, suggesting that selection may have acted on the functional portions of the proteins. Further investigation of gene copy number and organization revealed that the scr74 gene family comprises at least three copies located in a region of no more than 300 kb of the P. infestans genome. We found evidence that recombination contributed to sequence divergence within at least one gene locus. These results led us to propose an evolutionary model that involves gene duplication and recombination, followed by functional divergence of scr74 genes. This study provides support for using diversifying selection as a criterion for identifying candidate effector genes from sequence databases.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号