首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The glutamine synthetases from several Pseudomonas species were purified to homogeneity, and their properties were compared with those reported for the enzymes from Escherichia coli and other gram-negative bacteria. The glutamine synthetase from Pseudomonas fluorescens was unique because it was nearly precipitated quantitatively as a homogeneous protein during dialysis of partially purified preparations against buffer containing 10 mM imidazole (pH 7.0) and 10 mM MnCl2. The glutamine synthetases from Pseudomonas putida and Pseudomonas aeruginosa were purified by affinity chromatography on Affi-blue gel. Dodecamerous forms of the E. coli and P. fluorescens glutamine synthetases had identical mobilities during polyacrylamide gel electrophoresis. Their dissociated subunits, however, migrated differently and were readily separated by electrophoresis on polyacrylamide gels containing 0.1% sodium dodecyl sulfate. This difference in subunit mobilities is not related to the state of adenylylation. Regulation of the Pseudomonas glutamine synthetase activity is mediated by an adenylylation-deadenylylation cyclic cascade system. A sensitive procedure was developed for measuring the average number of adenylylated subunits per enzyme molecule for the glutamine synthetase from P. fluorescens. This method takes advantage of the large differences in transferase activity of the adenylylated and unadenylylated subunits at pH 6.0 and of the fact that the activities of both kinds of subunits are the same at pH 8.45.  相似文献   

2.
In Escherichia coli cultures limited for phosphate, the number of ribosomal particles was reduced to a small percentage of its earlier peak value by the time the viable cell count began to drop; the 30S subunits decreased more than the 50S subunits. Moreover, the ribosomal activity was reduced even more: these cells no longer synthesized protein, and their extracts could not translate phage RNA unless ribosomes were added. The translation initiation factors also disappeared, suggesting that they become less stable when released from their normal attachment to 30S subunits. In contrast, elongation factors, aminoacyl-tRNA synthetases, and tRNA persisted. During further incubation, until viability was reduced to 10(-5), the ribosomal particles disappeared altogether, while tRNA continued to be preserved. These results suggest that an excessive loss of ribosomes (and of initiation factors) may be a major cause of cell death during prolonged phosphate starvation.  相似文献   

3.
Amino acid compositions of aspartyl- and valyl-tRNA synthetases from the muscles of long-fasting and normal rabbits were studied. Certain differences in amino acid content of fasted and normal rabbits were found. The possibility of incorrect aminoacylation was shown for the tRNA and amino-acyl-tRNA synthetases (ARS) from the muscles of experimental animals. The Km values of incorrect reactions increased with specific and nonspecific amino acids depending on the decreased affinity between specific and nonspecific substrates. At the same time Vmax of these reactions decreased. A presumable decrease in the specificity of ARS isolated from muscles of long-fasting rabbits can be one of the reasons of synthesis of the proteins with the different amino acid composition by the extremal states of the organism.  相似文献   

4.
In contrast to most aminoacyl-tRNA synthetases which are monomers or oligomers of a single polypeptide, Escherichia coli glycyl-tRNA synthetase has an alpha-2, beta-2 structure. The enzyme requires both subunits for catalysis of either adenylate or aminoacyl-tRNA synthesis. The head-to-tail arrangement of the alpha- and beta-chain coding regions in the genome suggests that the two-subunit protein may be tantamount to a single chain. We fused the carboxyl terminus of the alpha-chain to the amino terminus of the beta-chain, through a short peptide linker. Five different amino acid substitutions were placed in the linker. In all instances, the fusion polypeptide is stable in maxicell extracts. In a glyS null strain, a gene encoding any of the fusion proteins substitutes for the wild-type gene. Assays confirm that, in vitro, the engineered polypeptide fusion is active to within 2- to 3-fold of the wild-type, unfused chains. Oligomers of the fusion protein are observed and may be required for activity. Because the creation and limited manipulation of the artificial peptide linker region does not destroy the activity, we also conclude that the C-terminal part of the alpha-chain and the amino-terminal part of the beta-chain are not important for activity.  相似文献   

5.
Valyl-tRNA, tryptophanyl-tRNA, and seryl-tRNA synthetases from yellow lupin seeds Lupinus luteus were purified to homogeneity by ammonium sulfate fractionation, hydrophobic chromatography on aminohexyl-Sepharose column and affinity chromatography on tRNA-Sepharose column. Valyl-tRNA synthetase consists of one polypeptide chain of molecular weight 125000 as judged by Sephadex G-200 gel filtration and dodecylsulfate-polyacrylamide gel electrophoresis in the presence of reducing agent. Seryl-tRNA synthetase, Mr equals 110000, is composed of two 55000-Mr subunits. Tryptophanyl-tRNA synthetase exhibits molecular weight of 200000 on Sephadex G-200 and 37000 in dodecylsulfate-polyacrylamide gel electrophoresis. This indicates that tryptophanyl-tRNA synthetase consists of several subunits (probably four). Since the seryl-tRNA synthetase exhibits the same mobility on dodecylsulfate-polyacrylamide gels both in the presence and absence of reducing agent it is concluded that there is no covalent bond(s) between the subunits of the enzyme. There is also no covalent bond(s) between the subunits of tryptophanyl-tRNA synthetase. Effect of anti-sulfhydryl reagents, monovalent salts, pH and different buffers on activity of the three synthetases is described. Kinetic constants for the substrates of the synthetases are also given. dATP is a substrate for seryl-tRNA synthetase but not for valyl-tRNA and tryptophanyl-tRNA synthetases.  相似文献   

6.
The filament, that is helically arranged to form the bacterial spina, is composed of morphological subunits (oligomers) about 5.6 nm in width and 11 nm in length. The oligomers are asymmetrical in that the inner surface is grooved. Image analysis of negative-stained spinae ribbons indicates that the oligomers are paired, possibly beaded structures, the arrangement of which is easily distorted during preparation. In intact spinae, the oligomer orientation may be normal to the filament axis, but in collapsed freeze-etched spinae, the oligomers are inclined at a constant angle of about 72 degrees to the filament axis.  相似文献   

7.
We have partially purified the messenger RNAs for yeast arginyl-, aspartyl-, valyl-, alpha and beta subunits of phenylalanyl-tRNA synthetases in order to study their biosynthesis and ultimately, to isolate their genes. Sucrose gradient fractionation of poly U-Sepharose selected mRNAs resulted in a ten fold enrichment of the in vitro translation activity of these mRNAs. The translation products of messenger RNAs for arginyl- and valyl-tRNA synthetases have the same molecular weight as the purified enzymes; translation of aspartyl-tRNA synthetase messenger RNA yielded a 68 kD molecular weight polypeptide (while the purified cristallisable enzyme appears as a 64-66 kD doublet, which, as we showed is a proteolysis product). The translation of the mRNAs for alpha and beta phenylalanyl-tRNA synthetase gave polypeptides having the same molecular weight as those obtained from the purified enzyme, but the major translation products are slightly heavier, indicating that they may be translated as precursors. As estimated from centrifugation experiments mRNAs of arginyl-, aspartyl-, alpha and beta subunits of phenylalanyl-tRNA synthetase were 1700-2000 nucleotides long, indicating that alpha and beta are translated from two different mRNAs.  相似文献   

8.
Aminoacyl-tRNA synthetases (aaRSs) play a key role in deciphering the genetic message by producing charged tRNAs and are equipped with proofreading mechanisms to ensure correct pairing of tRNAs with their cognate amino acid. Duplicated aaRSs are very frequent in Nature, with 25,913 cases observed in 26,837 genomes. The oligomeric nature of many aaRSs raises the question of how the functioning and oligomerization of duplicated enzymes is organized. We characterized this issue in a model prokaryotic organism that expresses two different threonyl-tRNA synthetases, responsible for Thr-tRNAThr synthesis: one accurate and constitutively expressed (T1) and another (T2) with impaired proofreading activity that also generates mischarged Ser-tRNAThr. Low zinc promotes dissociation of dimeric T1 into monomers deprived of aminoacylation activity and simultaneous induction of T2, which is active for aminoacylation under low zinc. T2 either forms homodimers or heterodimerizes with T1 subunits that provide essential proofreading activity in trans. These findings evidence that in organisms with duplicated genes, cells can orchestrate the assemblage of aaRSs oligomers that meet the necessities of the cell in each situation. We propose that controlled oligomerization of duplicated aaRSs is an adaptive mechanism that can potentially be expanded to the plethora of organisms with duplicated oligomeric aaRSs.  相似文献   

9.
M Lazard  M Mirande  J P Waller 《Biochemistry》1985,24(19):5099-5106
Native isoleucyl-tRNA synthetase and a structurally modified form of methionyl-tRNA synthetase were purified to homogeneity following trypsinolysis of the high molecular weight complex from sheep liver containing eight aminoacyl-tRNA synthetases. The correspondence between purified isoleucyl-tRNA synthetase and the previously unassigned polypeptide component of Mr 139 000 was established. It is shown that dissociation of this enzyme from the complex has no discernible effect on its kinetic parameters. Both isoleucyl- and methionyl-tRNA synthetases contain one zinc ion per polypeptide chain. In both cases, removal of the metal ion by chelating agents leads to an inactive apoenzyme. As the trypsin-modified methionyl-tRNA synthetase has lost the ability to associate with other components of the complex [Mirande, M., Kellermann, O., & Waller, J. P. (1982) J. Biol. Chem. 257, 11049-11055], the zinc ion is unlikely to be involved in complex formation. While native purified isoleucyl-tRNA synthetase displays hydrophobic properties, trypsin-modified methionyl-tRNA synthetase does not. It is suggested that the assembly of the amino-acyl-tRNA synthetase complex is mediated by hydrophobic domains present in these enzymes.  相似文献   

10.
alphaA-Crystallin, a member of the small heat shock protein (sHsp) family, is a large multimeric protein composed of 30-40 identical subunits. Its quaternary structure is highly dynamic, with subunits capable of freely and rapidly exchanging between oligomers. We report here the development of a fluorescence resonance energy transfer method for measuring structural compatibility between alphaA-crystallin and other proteins. We found that Hsp27 and alphaB-crystallin readily exchanged with fluorescence-labeled alphaA-crystallin, but not with other proteins structurally unrelated to sHsps. Truncation of 19 residues from the N terminus or 10 residues from the C terminus of alphaA-crystallin did not significantly change its subunit organization or exchange rate constant. In contrast, removal of the first 56 or more residues converts alphaA-crystallin into a predominantly small multimeric form consisting of three or four subunits, with a concomitant loss of exchange activity. These findings suggest residues 20-56 are essential for the formation of large oligomers and the exchange of subunits. Similar results were obtained with truncated Hsp27 lacking the first 87 residues. We further showed that the exchange rate is independent of alphaA-crystallin concentration, suggesting subunit dissociation may be the rate-limiting step in the exchange reaction. Our findings reveal a quarternary structure of alphaA-crystallin, consisting of small multimers of alphaA-crystallin subunits in a dynamic equilibrium with the oligomeric complex.  相似文献   

11.
In fall and winter, the liver of the winter flounder produces large amounts of alanine-rich (60 mol %) antifreeze proteins for export to the circulation. We have examined the tRNA in the liver to see if the seasonal production of antifreeze protein is accompanied by changes in tRNAAla isoacceptors. Total tRNA from the liver of winter fish showed an approximate 40% increase in alanine acceptor capacity over tRNA from summer fish. In contrast, the acceptor capacities for other amino acids showed no seasonal difference. When labeled alanyl-tRNAs were separated by reverse phase chromatography-5 chromatography, a large proportion of the increase in alanine acceptor capacity was in one of three main peaks. Measurements of the optimum temperatures for various flounder amino-acyl-tRNA synthetases suggest that alanyl-tRNA synthetase functions best between 0 and 5 degrees C, which is the sea water temperature when antifreeze protein synthesis occurs, while prolyl- and valyl-tRNA synthetases are most active between 20 and 30 degrees C. These differences in temperature optima and the seasonal variation in tRNAAla levels and isoaccepting species may both serve to optimize antifreeze protein production by increasing the translational efficiency of its mRNA.  相似文献   

12.
Several types of non-equilibrium phenomena have been observed in microtubule polymerization, including dynamic instability, assembly overshoot and oscillations. They can be interpreted in terms of interactions between tubulin subunits (= alpha, beta heterodimers), microtubules, and a third state, oligomers, which represent intermediates between microtubule disassembly and the regeneration of assembly-competent subunits by GTP. Here we examine the role of oligomers by varying conditions that stabilize or destabilize microtubules and/or oligomers. By varying their ratio one can drive tubulin assembly either into steady-state microtubules or oligomers. These regimens of assembly conditions are separated by a region where microtubules oscillate. The oscillations can be simulated by computer modelling, based on a reaction scheme involving the three states of tubulin and nucleotide exchange on tubulin subunits, but not on microtubules or oligomers.  相似文献   

13.
Significant advances have been made in the past few years in our understanding of the mechanism of synthesis of fatty acids, the structural organization of fatty acid synthetase complexes and the mechanism of regulation of activity of these enzyme systems. Numerous fatty acid synthetase complexes have been purified to homogeneity and the mechanism of synthesis of fatty acids by these enzyme systems has been ascertained from tracer, and recently, kinetic studies. The results obtained by these methods are in complete agreement. Furthermore, the kinetic results have indicated that fatty acid synthesis proceeds by a seven-site ping-pong mechanism. Several of the fatty acid synthetases have been dissociated completely to nonidentical half-molecular weight subunit species and these have been separated by affinity chromatography. From one of these subunits acyl carrier protein has been obtained. Whether the nonidentical subunits can be dissociated into individual proteins or whether these subunits are each comprised of one peptide is still a matter of controversy. However, it appears to us that each of the half-molecular weight subunits is indeed comprised of individual proteins. Studies on the regulation of activity of fatty acid synthetase complexes of avian and mammalian liver have resulted in the separation by affinity chromatography of three species (apo, holo-a and holo-b) of fatty acid synthetase. Since these species have radically different enzyme activities they may provide a mechanism of short-term regulation of fatty acid synthetase activity. Other studies have shown that the quantity of avian and mammalian liver fatty acid synthetases is controlled by a change in the rate of synthesis of this enzyme complex. This change in the rate of synthesis of enzyme complex is under the control of insulin and glucagon. The former hormone increases the rate of enzyme synthesis, whereas the latter decreases it. Further studies on fatty acid synthetase complexes will undoubtedly concentrate upon more refined aspects of the structural organization of these enzyme systems, including the sequencing of acyl carrier proteins, the effects of protein-protein interaction on the kinetics of the partial reactions of fatty acid synthesis catalyzed by separated enzymes of the complex, the mechanism of hormonal regulation of fatty acid synthetase activity and x-ray diffraction analysis of subunits and complex.  相似文献   

14.
J D Dignam  M P Deutscher 《Biochemistry》1979,18(14):3165-3170
A protein was purified from rat liver which stimulated a number of liver aminoacyl-tRNA synthetases. This stimulatory factor was identical with the "tRNA activator" of Dickman & Boll [(1976) Biochemistry 15, 3925] in its mechanism of action and chemical properties, although it was considerably more purified. The two preparations stimulated synthetases by virtue of their pyrophosphatase activity which destroyed the potent inhibitor, PPi, that was present in the reaction mixtures. This PPi was either generated during the reaction or was introduced by contamination of the tRNA or ATP preparations. The degree of inhibition of PPi was strongly influenced by assay conditions, being most effective at low amino acid concentrations, at low pH, and in the presence of heterologous tRNAs. By use of certain assay conditions, PPi concentrations as low as 2 microM could inhibit some synthetases close to 50%. The pitfalls associated with some assay conditions commonly used for aminoacyl-tRNA synthetases are discussed. These studies raise questions about the physiological significance of many previously described aminoacyl-tRNA synthetase stimulatory factors.  相似文献   

15.
The glutamyl-tRNA synthetase has been purified to homogeneity from Escherichia coli with a yield of about 50%. It is a monomer with a molecular weight of 56,000 and has the same kinetic properties as those of the alpha chain of the dimeric alphabeta-glutamyl-tRNA synthetase described previously (Lapointe, J., and S?ll, D. (1972) J. Biol. Chem. 247, 4966-4974). It is the smallest amino-acyl-tRNA synthetase purified from E. coli and contains no important sequence repetition. It is also the only monomeric aminoacyl-tRNA synthetase reported so far to contain no major sequence duplication. Considering its structural and mechanistic similarities with the glutaminyl- and the arginyl-tRNA synthetases of E. coli, we propose the existence of a relation between the true monomeric character of the glutamyl-tRNA synthetase (as opposed to monomers with sequence duplications) and its requirement for tRNA in the activation of glutamate. A single sulfhydryl group of the native enzyme reacts with 5,5'-dithiobis(2-nitrobenzoic acid) causing no loss of enzymatic activity, whereas four such groups per enzyme react in the presence of 4 M guanidine HCl.  相似文献   

16.
1. Only two aminoacyl-tRNA synthetases from Chinese hamster ovary cells are found associated with ribosomes and polyribosomes. 2. Phenylalanyl-tRNA synthetase activity is found with the 60S subunit, 80S monoribosome and individual polyribosomes. An additional 15S form of the enzyme is also seen. 3. Lysyl-tRNA synthetase activity is found in a form of about 20S and associated with ribosomal subunits and polyribosomes. The ribosomal subunits having lysyl-tRNA synthetase activity are about 6S larger than the bulk of the ribosomal subunits. 4. The lysyl- and phenylalanyl-tRNA synthetases found in different complexes have differential sensitivity to EDTA and centrifugation properties.  相似文献   

17.
Aminoacyl-tRNA synthetases (ARSs) ligate amino acids to their cognate tRNAs. It has been suggested that mammalian ARSs are linked to the EF-1 complex for efficient channeling of aminoacyl tRNAs to ribosome. Here we systemically investigated possible interactions between human ARSs and the subunits of EF-1 (alpha, beta, gamma, and delta) using a yeast two-hybrid assay. Among the 80 tested pairs, leucyl- and histidyl-tRNA synthetases were found to make strong and specific interaction with the EF-1gamma and beta while glu-proly-, glutaminyl-, alanyl-, aspartyl-, lysyl-, phenylalanyl-, glycyl-, and tryptophanyl-tRNA synthetases showed moderate interactions with the different EF-1 subunits. The interactions of leucyl- and histidyl-tRNA synthetase with the EF-1 complex were confirmed by immunoprecipitation and in vitro pull-down experiments. Interestingly, the aminoacylation activities of these two enzymes, but not other ARSs, were stimulated by the cofactor of EF-1, GTP. These data suggest that a systematic interaction network may exist between mammalian ARSs and EF-1 subunits probably to enhance the efficiency of in vivo protein synthesis.  相似文献   

18.
The effects of a variety of detergents and neutral salts on the structure of the eukaryotic high molecular mass aminoacyl-tRNA synthetase complex have been directly determined by observing alterations in the composition, sedimentation behavior, and electron microscopic appearance of the rabbit reticulocyte complex. The intact complex is shown to exhibit the enzymatic activities, polypeptide composition, relative stoichiometry, and morphological features that are characteristic of this eukaryotic multienzyme particle. The structure of the high molecular mass aminoacyl-tRNA synthetase complex is seen to be resistant to both ionic and nonionic detergents. However, both 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate and deoxycholate induce formation of large protein aggregates. In contrast, the chaotropic salts LiCl and NaSCN both selectively remove individual polypeptides from the high molecular mass aminoacyl-tRNA synthetase complex and promote formation of specific particulate subcomplexes which have distinct sizes, polypeptide compositions, and structural features. These data support the view that many of the protein interactions within the high molecular mass amino-acyl-tRNA synthetase complex are hydrophobic in nature. This study also provides direct evidence that the complex contains a core of tightly interacting synthetases onto which the remaining polypeptides are arrayed. The structural alterations observed here may account for the ability of these reagents to markedly inhibit several enzymatic activities within the complex.  相似文献   

19.
This paper describes a time-resolved X-ray scattering study of microtubule assembly by synchrotron radiation. The method is complementary to light scattering but allows a better distinction between oligomeric and polymeric assembly states. With an improved rapid temperature jump device, it is shown that temperature-induced microtubule assembly is preceded by prenucleation and nucleation events involving oligomers of tubulin, in analogy with earlier results from near-equilibrium temperature scans. In general, the two phases closely overlap, but in certain conditions they can be observed separately. The prenucleation events seen by X-rays can be described as a rapid temperature-dependent equilibrium, with ring oligomers dissociating into smaller oligomers and subunits at elevated temperature. Different solution conditions affect mainly the time lag between the prenucleation and nucleation phases; this in turn determines the apparent magnitude of the prenucleation steps. By contrast, the temperature dependence of the equilibrium between the prenucleation oligomers shows little influence on solution conditions. The results suggest that the ring-forming and tubule-forming assembly modes of tubulin are governed by different interactions between subunits, although they may be based on a pool of similar intermediates.  相似文献   

20.
Phosphofructokinase (EC 2.7.1.11) from Trypanosoma (Trypanozoon) brucei brucei was purified to homogeneity by using a three-step procedure that may be performed within 1 day. Proteolysis, which removes a fragment of Mr approx. 2000, may occur during the purification, but this can be prevented by including antipain, an inhibitor of cysteine proteinases, in the buffers during the purification. The subunits of the enzyme appear to be identical in size, with an Mr of 49 000. The Mr of the native enzyme was estimated to be approx. 220 000, suggesting a tetrameric structure. Kinetic studies showed the activity to depend hyperbolically on the concentration of ATP but sigmoidally on the concentration of fructose 6-phosphate. Although cyclic AMP, AMP and ADP stimulated the enzyme activity at low concentrations of fructose 6-phosphate, the last two nucleotides were inhibitory at high concentrations of this substrate. Phosphoenolpyruvate behaved as an allosteric inhibitor of the phosphofructokinase. Citrate, fructose 1,6-bisphosphate, fructose 2,6-bisphosphate and Pi did not influence significantly the activity of the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号