首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reoviruses contain a genome composed of 10 double-stranded RNA gene segments. A reovirus reassortant, 8B, derived from type 1 Lang (T1L) and type 3 Dearing (T3D), displayed a phenotype unlike that of either of its parents in that it efficiently induced numerous macroscopic external cardiac lesions in neonatal mice (B. Sherry, F. J. Schoen, E. Wenske, and B. N. Fields, J. Virol. 63:4840-4849, 1989). A panel of T1L/T3D reassortants and a panel of reassortants derived from 8B were used to determine whether novel T1L/T3D gene associations in 8B were responsible for its myocarditic phenotype. The results eliminated the possibility that any T1L/T3D gene combination found in 8B, from 2 genes to all 10 genes, was the explanation for its induction of cardiac lesions. This suggested that a mutation(s) in an 8B gene(s) might be responsible for induction of the myocarditis. Statistical analysis of experiments with 31 reassortants derived from 8B revealed a highly significant association (P = 0.002) of the 8B M1 gene with induction of cardiac lesions. The reovirus M1 gene encodes a viral core protein of unknown function, although evidence suggests a potential role in core structure and/or viral RNA synthesis. This represents the first report of the association of a viral gene with induction of myocarditis.  相似文献   

2.
The interaction of mammalian reoviruses with sialylated glycoproteins was studied and found to be highly serotype specific in that attachment of type 3 Dearing reovirus to murine L cell receptors could be strongly inhibited by bovine submaxillary mucin (BSM), fetuin, and alpha 1 acid glycoprotein, albeit at different efficiencies, whereas attachment of type 1 Lang reovirus was inhibited only by fetuin. We subsequently demonstrated, by using reassortants between type 3 and 1 reoviruses, that inhibition of reovirus attachment to cell receptors was specified by the viral attachment protein gene S1. Using a solid-phase binding assay, we further demonstrated that the ability of reovirus type 3 or reassortant 1HA3 and the inability of reovirus type 1 or reassortant 3HA1 to bind avidly to BSM was a property of the viral S1 genome segment and required the presence of sialic acid residues on BSM oligosaccharides. Taken together, these results demonstrated that there is a serotype-specific difference in the ability of the reovirus attachment protein, sigma 1, to interact with sialylated oligosaccharides of glycoproteins. Interaction of reovirus type 3 with sialylated oligosaccharides of BSM is dramatically affected by the degree of O-acetylation of their sialic acid residues, as indicated by the findings that chemical removal of O-acetyl groups stimulated reovirus type 3 attachment to BSM, whereas preferential removal of residues lacking or possessing reduced amounts of O-acetyl groups per sialic acid molecule with Vibrio cholerae sialidase abolished binding. We also demonstrated that BSM was 10 times more potent in inhibiting attachment of infectious reovirus to L cells than was V. cholerae-treated BSM. The results are consistent with the hypothesis that sialylated oligosaccharides on host cells or erythrocytes may act as binding sites or components of binding sites for type 3 reovirus through a specific interaction with the virus attachment protein.  相似文献   

3.
Molecular basis of bluetongue virus neutralization.   总被引:11,自引:6,他引:5       下载免费PDF全文
J Kahlon  K Sugiyama    P Roy 《Journal of virology》1983,48(3):627-632
Molecular and serological analyses of bluetongue virus serotypes 10 and 11 and their intertype reassortants indicate that the viral RNA segment L2 codes for the serotype-specific antigen. Individual RNA segments of parental and reassortant viruses were characterized by oligonucleotide fingerprint analyses. Analyses of their virion polypeptides by Cleveland peptide mapping (Cleveland et al., J. Biol. Chem. 252:1102-1106, 1977) demonstrated that the L2 gene segregated colinearly with the viral P2 protein, implicating it as the antigen that is responsible for the viral serotype specificity.  相似文献   

4.
Reovirus inhibition of cellular DNA synthesis: role of the S1 gene.   总被引:13,自引:9,他引:4       下载免费PDF全文
Type 3 reovirus inhibits L cell DNA synthesis, whereas type 1 reovirus exerts little or no effect on L cell DNA synthesis. By using recombinant viruses containing both type 1 and type 3 double-standard RNA segments, we determined that one double-stranded RNA segment, the reovirus type 3 S1 double-stranded RNA segment which encodes the viral hemagglutinin, segregates with and is responsible for the capacity of reovirus type 3 to inhibit L cell DNA synthesis.  相似文献   

5.
Reovirus serotype 1 Lang can be recovered in high titer from the intestines of neonatal mice up to day 8 after peroral inoculation. By contrast, reovirus serotype 3 Dearing cannot be recovered from intestinal tissue past day 4 after peroral inoculation. This difference between the two reoviruses was mapped by using reassortants generated from nonmutagenized laboratory stocks. When the L2 and S1 genes of reovirus serotype 3 Dearing were present in reassortants, the reassortants behaved like serotype 3 Dearing in exhibiting a decreased capacity to be recovered from intestinal tissue. Likewise, viruses which contained the L2 and S2 genes from serotype 1 Lang exhibited an enhanced capacity to grow and survive, which is characteristic of serotype 1 Lang. Thus, the capacity of reovirus to survive in intestinal tissue was determined by the L2 and S1 genes.  相似文献   

6.
S Noble  M L Nibert 《Journal of virology》1997,71(10):7728-7735
NTPase activities in mammalian reovirus cores were examined under various conditions that permitted several new differences to be identified between strains type 1 Lang (T1L) and type 3 Dearing (T3D). One difference concerned the ratio (at pH 8.5) of ATP hydrolysis at 50 degrees C to that at 35 degrees C. A genetic analysis using T1L x T3D reassortant viruses implicated the L3 and M1 gene segments in this difference, with M1 influencing ATPase activity most strongly at high temperatures. L3 and M1 encode the core proteins lambda1 and mu2, respectively. Another difference concerned the absolute levels of GTP hydrolysis by cores at 45 degrees C and pH 6.5. A genetic analysis using T1L x T3D reassortants implicated the M1 gene as the sole determinant of this difference. The results of these experiments, coupled with previous findings (S. Noble and M. L. Nibert, J. Virol. 71:2182-2191, 1997), suggest either that a single type of NTPase in cores is strongly influenced by two different core proteins--lambda1 and mu2--or that cores contain two different types of NTPase influenced by the two proteins. The findings appear relevant for understanding the complex functions of reovirus cores in RNA synthesis and capping.  相似文献   

7.
Physical and chemical characterization of an avian reovirus.   总被引:12,自引:8,他引:4       下载免费PDF全文
  相似文献   

8.
9.
In this study, we investigated the relationship between reovirus-induced apoptosis and viral growth. Madin-Darby canine kidney (MDCK) epithelial cells infected with prototype reovirus strains type 1 Lang (T1L) or type 3 Dearing (T3D) were found to undergo apoptosis, and T3D induced apoptosis of MDCK cells to a substantially greater extent than T1L. By using T1L x T3D reassortant viruses, we found that differences in the capacities of these strains to induce apoptosis are determined by the viral S1 and M2 gene segments. These genes encode viral outer-capsid proteins that play important roles in viral entry into cells. T1L grew significantly better in MDCK cells than T3D, and these differences in growth segregated with the viral L1 and M1 gene segments. The L1 and M1 genes encode viral core proteins involved in viral RNA synthesis. Bcl-2 overexpression in MDCK cells inhibited reovirus-induced apoptosis but did not substantially affect reovirus growth. These findings indicate that differences in the capacities of reovirus strains to induce apoptosis and grow in MDCK cells are determined by different viral genes and that premature cell death by apoptosis does not limit reovirus growth in MDCK cells.  相似文献   

10.
The reovirus group C temperature-sensitive mutant tsC447, whose defect maps to the S2 gene, which encodes the major core protein sigma 2, fails to assemble core particles at the nonpermissive temperature. To identify other proteins that may interact with sigma 2 during assembly, we generated and examined 10 independent revertants of the mutant. To determine which gene(s) carried a compensatory suppressor mutation(s), we generated intertypic reassortants between wild-type reovirus serotype 1 Lang and each revertant and determined the temperature sensitivities of the reassortants by efficiency-of-plating assays. Results of the efficiency-of-plating analyses indicated that reversion of the tsC447 defect was an intragenic process in all revertants. To identify the region(s) of sigma 2 that had reverted, we determined the nucleotide sequences of the S2 genes. In all revertant sequences examined, the G at nucleotide position 1166 in tsC447 had reverted to the A present in the wild-type sequence. This reversion leads to the restoration of a wild-type asparagine (in place of a mutant aspartic acid) at amino acid 383 in the sigma 2 sequence. These results collectively indicate that the functional lesion in tsC447 is Asp-383 and that this lesion cannot be corrected by alterations in other core proteins. These observations suggest that this region of sigma 2, which may be important in mediating assembly of the core particle, does not interact significantly with other reovirus proteins.  相似文献   

11.
Genetic reassortment of mammalian reoviruses in mice.   总被引:10,自引:10,他引:0       下载免费PDF全文
Reassortments between type 1 (Lang) and type 3 (Dearing) reoviruses were isolated from suckling mice infected perorally with an inoculum containing both type 1 and type 3 viruses. A total of five distinct reassortants (designated as E1 through E5) were isolated from animals during the course of the experiment. Two reassortants (E1 and E2) represented the majority of the reassortants isolated. The majority of genes of types E1 and E2 were derived from type 1 (Lang). However, E1 had an M2 gene and an S1 gene derived from type 3 (Dearing), while E2 had M2 and S2 genes derived from type 3 (Dearing). Thus, nonrandom reassortment between mammalian reoviruses can be demonstrated in vivo.  相似文献   

12.
Mammalian orthoreoviruses (reoviruses) are ubiquitous viral agents that infect cells in respiratory and enteric tracts. The frequency and nature of human cellular immunoregulatory responses against reovirus are unknown. Here we establish systems to detect and quantify reovirus-induced cytokine and chemokine recall responses using primary cultures of virus-infected peripheral blood mononuclear cells (PBMC) and two widely used reovirus serotypes, type 1 Lang (T1L) and type 3 Dearing (T3D) reexposure in vitro. In cultures from 44 healthy adults, reovirus induced exceptionally strong CD4 and CD8 T-cell-dependent gamma interferon (IFN-γ) recall responses concomitant with intense interleukin 10 (IL-10) production. These responses were elicited independently of viral replication. Surprisingly, paired analyses of subject responses to these two common serotypes revealed that while both elicit intense Th1-dominated immunity, median T3D-driven responses were 2.2-fold weaker (P = 0.0004) than those elicited by T1L. Recall responses evoked by these viral serotypes differed markedly in their mechanism of regulation. T3D IL-10 and IFN-γ responses were CD4 and CD8 dependent and blocked by interfering with CD86 costimulation but were CD80 independent. T1L responses were consistently CD28 and CD80/86 independent. Thus, despite extensive genetic and morphological similarities between reovirus serotypes, the nature and intensity of the human recall responses as well as the control mechanisms regulating them are clearly distinct.  相似文献   

13.
The reovirus ς1s protein is a 14-kDa nonstructural protein encoded by the S1 gene segment. The S1 gene has been linked to many properties of reovirus, including virulence and induction of apoptosis. Although the function of ς1s is not known, the ς1s open reading frame is conserved in all S1 gene sequences determined to date. In this study, we identified and characterized a variant of type 3 reovirus, T3C84-MA, which does not express ς1s. To facilitate these experiments, we generated two monoclonal antibodies (MAbs) that bind different epitopes of the ς1s protein. Using these MAbs in immunoblot and immunofluorescence assays, we found that L929 (L) cells infected with T3C84-MA do not contain ς1s. To determine whether ς1s is required for reovirus infection of cultured cells, we compared the growth of T3C84-MA and its parental strain, T3C84, in L cells and Madin-Darby canine kidney (MDCK) cells. After 48 h of growth, yields of T3C84-MA were equivalent to yields of T3C84 in L cells and were fivefold lower than yields of T3C84 in MDCK cells. After 7 days of growth following adsorption at a low multiplicity of infection, yields of T3C84-MA and T3C84 did not differ significantly in either L cells or MDCK cells. To determine whether ς1s is required for apoptosis induced by reovirus infection, T3C84-MA and T3C84 were tested for their capacity to induce apoptosis, using an acridine orange staining assay. In these experiments, the percentages of apoptotic cells following infection with T3C84-MA and T3C84 were equivalent. These findings indicate that nonstructural protein ς1s is not required for reovirus growth in cell culture and does not influence the capacity of reovirus to induce apoptosis. Therefore, reovirus replication does not require the full complement of virally encoded proteins.  相似文献   

14.
15.
When 2-day-old rats were inoculated subcutaneously with the R2 strain of reovirus type 3 or with a class B (352) or class C (447) temperature-sensitive (ts) mutant, 5 to 10% of the animals died from acute encephalitis within 12 days. Approximately half of the survivors recovered rapidly and grew normally, but the remainder became runted. Two phases of infection are distinguished in the animals: an acute phase during which infectious virus reaches a maximum titer in brain and other tissues by 10 days p.i. and thes runting of the rats and the slow disappearance of virus from their brains over a period of 2 months or so. Virus isolated from chronically infected brains generally retained the genetic character (ts or wild type) of the inoculated virus, but two exceptions to this are described. Defective virions lacking the L1 segment of the viral genome (L1 defectives) were generated in rat brains during the acute phase of infection. Defective virus was also generated during the chronic phase, but during this period defectives were found with multiple segments deleted from the genome in addition to L1 defectives. In another type of experiment defective virus exerted a marked protective effect when inoculated intracerebrally with R2 virus. In the absence of defectives all animals died, but in their presence 17 of 23 animals survived and 15 of 23 became runted and chronically infected. The formation and evolution of defective particles in the brains of these rats were similar to those found in rats chronically infected after subcutaneous inoculation of reovirus. We conclude that the formation of defective virus particles may play a role in the initiation and maintenance of chronic neutropic infections with reovirus.  相似文献   

16.
Cells infected with mammalian reoviruses often contain large perinuclear inclusion bodies, or "factories," where viral replication and assembly are thought to occur. Here, we report a viral strain difference in the morphology of these inclusions: filamentous inclusions formed in cells infected with reovirus type 1 Lang (T1L), whereas globular inclusions formed in cells infected with our laboratory's isolate of reovirus type 3 Dearing (T3D). Examination by immunofluorescence microscopy revealed the filamentous inclusions to be colinear with microtubules (MTs). The filamentous distribution was dependent on an intact MT network, as depolymerization of MTs early after infection caused globular inclusions to form. The inclusion phenotypes of T1L x T3D reassortant viruses identified the viral M1 genome segment as the primary genetic determinant of the strain difference in inclusion morphology. Filamentous inclusions were seen with 21 of 22 other reovirus strains, including an isolate of T3D obtained from another laboratory. When the mu2 proteins derived from T1L and the other laboratory's T3D isolate were expressed after transfection of their cloned M1 genes, they associated with filamentous structures that colocalized with MTs, whereas the mu2 protein derived from our laboratory's T3D isolate did not. MTs were stabilized in cells infected with the viruses that induced filamentous inclusions and after transfection with the M1 genes derived from those viruses. Evidence for MT stabilization included bundling and hyperacetylation of alpha-tubulin, changes characteristically seen when MT-associated proteins (MAPs) are overexpressed. Sequencing of the M1 segments from the different T1L and T3D isolates revealed that a single-amino-acid difference at position 208 correlated with the inclusion morphology. Two mutant forms of mu2 with the changes Pro-208 to Ser in a background of T1L mu2 and Ser-208 to Pro in a background of T3D mu2 had MT association phenotypes opposite to those of the respective wild-type proteins. We conclude that the mu2 protein of most reovirus strains is a viral MAP and that it plays a key role in the formation and structural organization of reovirus inclusion bodies.  相似文献   

17.
Type 1 reoviruses invade the intestinal mucosa of mice by adhering selectively to M cells in the follicle-associated epithelium and then exploiting M cell transport activity. The purpose of this study was to identify the apical cell membrane component and viral protein that mediate the M cell adherence of these viruses. Virions and infectious subviral particles of reovirus type 1 Lang (T1L) adhered to rabbit M cells in Peyer's patch mucosal explants and to tissue sections in an overlay assay. Viral adherence was abolished by pretreatment of sections with periodate and in the presence of excess sialic acid or lectins MAL-I and MAL-II (which recognize complex oligosaccharides containing sialic acid linked alpha2-3 to galactose). The binding of T1L particles to polarized human intestinal (Caco-2(BBe)) cell monolayers was correlated with the presence of MAL-I and MAL-II binding sites, blocked by excess MAL-I and -II, and abolished by neuraminidase treatment. Other type 1 reovirus isolates exhibited MAL-II-sensitive binding to rabbit M cells and polarized Caco-2(BBe) cells, but type 2 or type 3 isolates including type 3 Dearing (T3D) did not. In assays using T1L-T3D reassortants and recoated viral cores containing T1L, T3D, or no sigma1 protein, MAL-II-sensitive binding to rabbit M cells and polarized Caco-2(BBe) cells was consistently associated with the T1L sigma1. MAL-II-recognized oligosaccharide epitopes are not restricted to M cells in vivo, but MAL-II immobilized on virus-sized microparticles bound only to the follicle-associated epithelium and M cells. The results suggest that selective binding of type 1 reoviruses to M cells in vivo involves interaction of the type 1 sigma1 protein with glycoconjugates containing alpha2-3-linked sialic acid that are accessible to viral particles only on M cell apical surfaces.  相似文献   

18.
Kinetic analyses of infectivity loss during thermal inactivation of reovirus particles revealed substantial differences between virions and infectious subvirion particles (ISVPs), as well as between the ISVPs of reoviruses type 1 Lang (T1L) and type 3 Dearing (T3D). The difference in thermal inactivation of T1L and T3D ISVPs was attributed to the major surface protein mu1 by genetic analyses with reassortant viruses and recoated cores. Irreversible conformational changes in ISVP-bound mu1 were shown to accompany thermal inactivation. The thermal inactivation of ISVPs approximated first-order kinetics over a range of temperatures, permitting the use of Arrhenius plots to estimate activation enthalpies and entropies that account for the different behaviors of T1L and T3D. An effect similar to enthalpy-entropy compensation was additionally noted for the ISVPs of these two isolates. Kinetic analyses with other ISVP-like particles, including ISVPs of a previously reported thermostable mutant, provided further insights into the role of mu1 as a determinant of thermostability. Intact virions, which contain final sigma3 bound to mu1 as their major surface proteins, exhibited greater thermostability than ISVPs and underwent thermal inactivation with kinetics that deviated from first order, suggesting a role for final sigma3 in both these properties. The distinct inactivation behaviors of ISVPs are consistent with their role as an essential intermediate in reovirus entry.  相似文献   

19.
A reovirus variant, 8B, was isolated from a neonatal mouse which had been inoculated with a mixture of two reovirus strains: type 1 Lang (T1L) and type 3 Dearing (T3D) (E. A. Wenske, S.J. Chanock, L. Krata, and B. N. Fields, J. Virol. 56:613-616, 1985). 8B is a reassortant containing eight gene segments derived from the T1L parent and two gene segments derived from the T3D parent. Upon infection of neonatal mice, 8B produced a generalized infection characteristic of many reoviruses, but it also efficiently induced numerous macroscopic external cardiac lesions, unlike either of its parents. Microscopic examination of hearts from infected mice revealed myocarditis with necrotic myocytes and both polymorphonuclear and mononuclear cellular infiltration. Electron microscopy revealed viral arrays in necrotic myocytes and dystrophic calcification accompanying late lesions. Determination of viral titers in hearts from T1L-, T3D-, or 8B-infected mice indicated that growth was not the primary determinant of myocardial necrosis. Results from inoculations of athymic mice demonstrated that T cells were not a requirement for the 8B-induced myocarditis. Finally, 8B was more cytopathic than either of the parent viruses in cultured mouse L cells. Together, the data suggest that 8B-induced myocardial necrosis is due to a direct effect of reovirus on myocytes. Reovirus thus provides a useful model for the study of viral myocarditis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号