首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The influence of calcite precipitation on the phosphorus cycle in stratified hardwater lake was studied before and during experiments with a new restoration technique. Surveys of the chemical composition of water column and monitoring of settling particles of Lake Luzin (North–East) showed that calcite precipitation occurs each year over 2–3 periods during spring and summer. The change of the phosphorus content influenced the calcite precipitation intensity. The sedimentation fluxes of phorphorus and the calcite precipitation were closely associated. Based on the hypothesis that calcite precipitation acts as an improvement to the trophic state by enhancing the internal phosphorus sink, this new technology for lake restoration was developed. The hypolimnetic Ca(OH)2 addition during summer stratification in 1996–1997 induced the calcite precipitation in the deep water layer of Basin Carwitz of Lake Schmaler Luzin. The treatment also supported the natural calcite precipitation in the epilimnion. The annual total phosphorus content decreased from 0.46 tons in 1995 to 0.35 tons in 1997. The annual SRP content decreased from 0.02 tons in 1996 to 0.01 tons in 1997 after beginning the artificial calcite precipitation in 1996. The decrease of the annual Chl-a concentration in 1998 on 38% compared with that in 1996 pointed out the lake recovering. According to the one box model, the artificial calcite precipitation affected the P cycle in the lake by suppressing the P release from the sediments.  相似文献   

2.
Doremus  Craig  Clesceri  Lenore S. 《Hydrobiologia》1982,91(1):261-268
Rapid microbial metabolism and a large phosphorus uptake potential were observed in surface sediments of Lake George, New York. This sediment (termed the flocculent layer) also exhibited a phosphorus limited condition and a large reservoir of inorganic phosphorus associated with humic substances. These observations suggest that the empirically observed phosphorus retention in oligotrophic lake sediments may be promoted by a rapid cycling of phosphorus between microflora and its associated organic matter.  相似文献   

3.
1. Phosphorus (P) concentrations in the water column of lakes and wetlands are crucial to their trophic status and ecosystem function, but quantifying the processes controlling P concentrations in the field has been a difficult task. A site‐based, in‐lake method is described to partition major field processes controlling P concentration in a shallow lake. 2. It involves (i) in‐lake deployment of a suite of chambers that isolate in‐chamber activities from atmospheric sources, groundwater input and horizontal water movement; (ii) monitoring P concentrations and relevant water properties inside and outside the isolation chambers; and (iii) calculating the contribution of each individual process by simple mathematical deduction, so as to differentiate the contributions from the different sources. 3. The method was applied at nearshore and offshore sites in a seasonal, groundwater‐fed shallow lake on the Swan Coastal Plain, south‐western Australia, during winter refilling. Primary (atmospheric and groundwater) and secondary processes (e.g. circulation and sediment‐water interactions) were partitioned and quantified in terms of their contributions to water column P [as total P (TP; μg m?2 day?1)]. 4. Atmospheric and groundwater inputs were the two main processes contributing P loadings (1233 and 1010 μg P m?2 day?1), but their influence appeared restricted to the near‐shore site. The estimated influence on TP by mixing‐circulation, atmosphere and groundwater were 2.4–25 times higher near the lake margin as compared with the offshore site. The circulation and sediment‐water interactions decreased water column P at the marginal site, but increased P offshore because of subsequent P release from sediment and a concurrent increase in pH. 5. Results are consistent with data reported elsewhere, and the factors that could affect the accuracy of partitioning are discussed.  相似文献   

4.
The growth of pikeperch Sander lucioperca was studied in 41 lakes in central Finland. The backcalculated average total length of 3 year‐old pikeperch was used as an indicator of growth. The growth correlated positively with total phosphorus and water colour and negatively with lake area and depth. The reason for differences in growth may be differences in the amount of suitable food, foraging success or temperature dynamics in different lakes.  相似文献   

5.
After a reduction of the external phosphorus loading to a lake, an internal loading from the sediments may delay the improvement of the water quality. The accepted method to combat internal loading is careful dredging of the upper sediment layers (Cooke et al., 1986), but this method is costly and time consuming. Addition of phosphorus binding agents to the sediments might offer an alternative. In the Netherlands the use of aluminum compounds, the most common phosphorus binding agent, for water quality improvement purposes is not favoured. Therefore a sediment treatment with a solution of iron(III)chloride was tested. Iron was chosen because it is considered to be a natural binder of phosphate. 100 g m–2 of Fe3+ were added to the sediments of the shallow (1.75 m average depth) and eutrophic Lake Groot Vogelenzang (The Netherlands) in October and November 1989. The iron(III)chloride solution was diluted 100 times with lake water and mixed with the surface sediments with a water jet.Following the addition the concentrations of total phosphorus (Fig. 1), chlorophyll-a and suspended solids decreased. This improvement of the water quality lasted for three months. After this time the total phosphorus concentration increased again, but remained at a lower level than in spring and summer of 1989. The phosphorus release rate from the sediments as measured from intact sediment cores decreased from 4 to 1.2 mg P m–2 d–1 (n = 5), and the bioavailability of the sediment phosphorus, as measured with bioassays, decreased from 34 to 23% (n = 5) shortly after the treatment. One year after the treatment the release rate was increased to 3 mg P m–2 d–1 (n = 5). Before treatment, the lake was thought to have a residence time of over one year. However, the chloride added to the lake disappeared according to a dilution rate of 0.03 d–1 or a retention time of about 35 days. A high external loading due to rapid flushing with phosphorus-rich water from surrounding lakes possibly prevented a more durable improvement in water quality. Another possibility is that the iron addition has lost its phosphate binding capacity due to reduction or binding with other anions like carbonate or sulphide. Therefore the suitability of the method to reduce internal loading and especially the long term availability of added iron to bind phosphorus needs additional proof.The treatment of the 18 ha area of Lake Groot Vogelenzang took three weeks. The operational costs were about US$ 125000. This is fast and cheap compared to dredging. Application of the technique is limited to those cases where the sediments are not polluted with micro-pollutants and the water depth need not be increased.  相似文献   

6.
1. The main focus of this study was to investigate the effects of single and multiple moderate doses of lime (slaked lime, Ca(OH)2, and/or calcite, CaCO3) on eutrophic hardwater lakes. This information would contribute to strategies to manage phytoplankton and macrophyte biomass in eutrophic lakes.
2. Water chemistry and biota were monitored for up to 7 years after initial lime treatment and results were compared with reference systems.
3. Complementary studies investigated the effect of lime on macrophytes in ponds, irrigation canals and microcosm experiments.
4. When water pH was kept within its natural range (≤ 10), single and multiple lime applications to lakes and ponds controlled macrophyte biomass, without negatively affecting invertebrate communities.
5. Single lime treatments at moderate dosages of lakes and ponds resulted in variable and mostly temporary changes in chlorophyll a (chl a ) and phosphorus (P) concentration. Although sediment P release was reduced in single-dose lakes during the first winter following treatment, reductions appeared temporary.
6. Multiple treatments of lakes and ponds were effective at reducing both chl a and P concentrations over longer periods. Mean winter P release rate was also reduced after initial treatment.
7. In laboratory studies, sediment cores were incubated with eight different treatments to assess P release. Redox-sensitive treatments were no more effective at lowering total P concentration in overlying water than some redox-insensitive treatments. Lime reduced total P concentrations, but was not as effective as treatments with alum.
8. The use of lime in managing macrophyte and phytoplankton biomass in shallow, hardwater lakes and ponds may be preferable over other treatments, because lime is economical and non-toxic as long as pH is kept within a natural range.  相似文献   

7.
小型浅水湖泊沉积物磷的赋存形态及其相关性分析   总被引:1,自引:0,他引:1  
以孔目湖沉积物为研究对象, 应用七步连续提取法测定其中的不同形态磷, 探讨了该湖泊沉积物中各赋存形态磷的分布特征, 并对其进行了相关性分析。结果表明: 该湖泊遭受的磷内源负荷比较大, 磷污染严重; 沉积物中TP含量在2338.63-2954.98 mg•kg-1, 平均为2671.37 mg•kg-1; 沉积物中各形态磷含量从高到低依次为: Fe-P>De-P>Ca-P> OP>Al-P>Oc-P>Ex-P, 分别占TP的53.9%、28.7%、8.8%、6.2%、1.2%、0.9%、0.3%; 生物有效磷含量为1583.59 mg•kg-1, 占TP的59.28%; 沉积物中TP与Fe-P极显著相关, Oc-P与Ca-P和OP与Ca-P均相关, 而TP与Ex-P、Al-P、Ca-P和OP相关性较差, 说明沉积物中TP含量主要来自于Fe-P。这一研究结果为揭示小型湖泊富营养化发生机制提供了数据及理论支撑。  相似文献   

8.
  1. Urea accounts for half of global agricultural fertiliser applications, yet little is known of its role in eutrophication of freshwater ecosystems, nor how it interacts with phosphorus (P) in regulating phytoplankton composition, especially during spring and autumn.
  2. To identify when and how urea and P inputs interact across the ice-free period, we conducted seven monthly fertilisation experiments in 3,240-L mesocosms from ice-off to ice-formation in a hypereutrophic lake. In addition, we ran bioassays with ammonium (NH4+) to compare the effects of urea with those of NH4+, the immediate product of chemical decomposition of urea.
  3. Analysis of water-column chlorophyll a and biomarker pigments by high-performance liquid chromatography revealed that addition of inorganic P alone (100 µg P L–1 week–1) had no significant impact on either algal abundance or community composition in hypereutrophic Wascana Lake. Instead, fertilisation with urea (4 mg N L−1 week–1) alone, or in concert with P, significantly (p < 0.05) increased algal abundance in spring and much of summer, but not prior to ice formation in October. In particular, urea amendment enhanced abundance of cryptophytes, chlorophytes, and non-diazotrophic cyanobacteria during April and May, while fertilisation in summer and early autumn (September) increased only chlorophytes and non-diazotrophic cyanobacteria.
  4. Comparison of urea mesocosms with NH4+ bioassays demonstrated that urea lacked the inherent toxicity of NH4+ in cool waters, but that both compounds stimulated production during summer experiments.
  5. This study showed that urea pollution can degrade water quality in P-rich lakes across a variety of seasonal conditions, including spring, and underscores the importance of quantifying the timing and form of N inputs when managing P-rich freshwaters.
  相似文献   

9.
1. We conducted a statistical reassessment of data previously reported in the lake total phosphorus (TP) input/output literature (n = 305) to determine which lake characteristics are most strongly associated with lake phosphorus concentration and retention. We tested five different hypotheses for predicting lake TP concentrations and phosphorus retention. 2. The Vollenweider phosphorus mass loading model can be expressed as: TPout = TPin/(1 + στw), where TPin is the flow‐weighted input TP concentration, τw is the lake hydraulic retention time and σ is a first‐order rate constant for phosphorus loss. 3. The inflow‐weighted TP input concentration is a moderately strong predictor (r2 = 0.71) of lake phosphorus concentrations when using log–log transformed data. Lake TP retention is negatively correlated with lake hydraulic retention time (r2 = 0.35). 4. Of the approaches tested, the best fit to observed data was obtained by estimating σ as an inverse function of the lake's hydraulic retention time. Although this mass balance approach explained 84% of the variability in log–log transformed data, the prediction error for individual lakes was quite high. 5. Estimating σ as the ratio of a putative particle settling velocity to the mean lake depth yielded poorer predictions of lake TP (r2 = 0.77) than the approach described above, and in fact did not improve model performance compared with simply assuming that σ is a constant for all lakes. 6. Our results also demonstrate that changing the flow‐weighted input concentration should always have a directly proportionate impact on lake phosphorus concentrations, provided the type of phosphorus loaded (e.g. dissolved or particulate) does not vary.  相似文献   

10.
A sampler with a relatively high resolution has been developed, which allows interstitial water to be obtained from lake sediments at well defined depths, without serious disturbance of sediment structure. Oxidation effects are excluded. Sampling time is in the order of a day. Installation requires little additional equipment. The instrument has been developed for use in shallow lakes.  相似文献   

11.
氮、磷对热带浅水湖泊惠州西湖蓝藻的控制   总被引:1,自引:0,他引:1  
周敏  刘正文 《生态科学》2012,31(2):115-120
湖泊富营养化常导致蓝藻生物量的增加,水质恶化.于2011年2月至12月对热带浅水湖泊惠州西湖六个湖区的蓝藻群落结构进行研究,以了解其时空变化特征及主要影响因素.结果表明,以沉水植物为优势的元妙观湖区与南南湖蓝藻无明显的优势种;平湖蓝藻优势种为银灰平裂藻(Merismopedia glauca)和湖丝藻(Limnothrix sp.),南丰湖、北丰湖和北南湖的主要优势种均为银灰平裂藻(Merismopedia glauca).平湖、南丰湖、北丰湖和北南湖蓝藻丰度及生物量存在显著的季节变化.相关分析显示惠州西湖夏季蓝藻生物量受氮、磷盐控制.冬季温度的影响,蓝藻生物量与氮、磷的相关性不显著.  相似文献   

12.
Better understanding of the occurrence of water phosphorus (P) at the water-sediment interface is vital to clarify P sources of origin in freshwater shallow lake ecosystems. This study focused on water-sediment interface systems and explored implicit indications of lake chemistry on water P based on a case study of Baiyangdian Lake, North China. 20 variables from 14 sampling sites collected for six months in two years were investigated, including sequentially extracted P fractions. Exploratory data analysis with multivariate statistical techniques and the index of P maximum solubilization potential were employed to examine interactions of water P and coexisting chemicals, and to accomplish pattern recognition of water-sediment interface systems. Results showed that nine key variables (temperature, conductivity, ammonium nitrogen, total nitrogen, sediment total P, metallic oxide bound P, organic P, aluminum and ferrum) were identified and ranked into four latent parameters (physical factors, nutrients, P species, and metals), accounting for 81% of water P variation. Accordingly, the recognized three patterns of water-sediment interface unraveled spatial partitioning for the domination of external or internal P sources. Four variables (temperature, sediment total P, metallic oxide bound P and organic P) were competent to classify patterns of water-sediment interface with 100% correct assignment of cases. Using two parameters (organic P and metallic oxide bound P), discriminant functions produced 85.7% correct assignations, indicating the importance of the two P species in explaining spatial heterogeneity of water P under oxic and alkaline circumstances. This study provides an operational zoning frame and implications for eutrophication management applicable to freshwater shallow lakes.  相似文献   

13.
Models to predict lake annual mean total phosphorus   总被引:1,自引:0,他引:1  
A lake is a product of processes in its watershed, and these relationships should be empirically quantifiable. Yet few studies have made that attempt. This study quantifies and ranks variables of significance to predict annual mean values of total phosphorus (TP) in small glacial lakes. Several new empirical models based on water chemistry variables, on map parameters of the lake and its catchment, and combinations of such variables are presented. Each variable provides only a limited (statistical) explanation of the variation in annual mean values of TP among lakes. The models are markedly improved by accounting for the distribution of the characteristics (e.g., the mires) in the watershed. The most important map parameters were the proportion of the watershed lying close to the lake covered by rocks and open land (as determined with the drainage area zonation method), relief of the drainage area, lake area and mean depth. These empirical models can be used to predict annual mean TP but only for lakes of the same type. The model based on map parameters (r 2=0.56) appears stable. The effects of other factors/variables not accounted for in the model (like redox-induced internal loading and anthropogenic sources) on the variation in annual mean TP may then be estimated quantitatively by residual analysis. A new mixed model (which combines a dynamic mass-balance approach with empirical knowledge) was also developed. The basic objective was to put the empirical results into a dynamic framework, thereby increasing predictive accuracy. Sensitivity tests of the mixed model indicate that it works as intended. However, comparisons against independent data for annual mean TP show that the predictive power of the mixed model is low, likely because crucial model variables, like sedimentation rate, runoff rate, diffusion rate and precipitation factor, cannot be accurately predicted. These model variables vary among lakes, but this mixed model, like most dynamic models, assumed that they are constants.  相似文献   

14.
Particulate phosphorus sedimentation at the river inflow to a lake   总被引:1,自引:0,他引:1  
Lech Kufel 《Hydrobiologia》1993,251(1-3):269-274
Sedimentation at the Krutynia River inflow to Lake Kujno was closely related to hydrological regime. The highest sedimentation rates, recorded in spring, decreased during summer by two orders of magnitude. Granulometric segregation of settling seston along the inflow zone was related to differentiation of phoshorus content. Smaller particles were richer in P, producing a gradient of increasing P concentrations in the settling material. A substantial loss of P from polyphosphate and various organic fractions was found after settlement of river suspensoids. Mechanisms of P losses are discussed and possibilities of P retention within the inflow zone are considered.  相似文献   

15.
不同退耕年限下菜子湖湿地土壤磷素组分特征变化   总被引:6,自引:3,他引:6  
选取菜子湖区不同退耕年限(2、5、8、10a和20a)湿地为研究对象,以仍耕作油菜地和原始湿地为参照,分析了土壤全磷(TP)、有效磷(AP)、有机磷(OP)和无机磷(IP)各形态含量,探讨退耕还湖后湿地土壤磷素组分特征变化规律。结果表明:研究区土壤无机磷各形态含量大小顺序为:铁磷(Fe-P:73.55—391.76 mg/kg)钙磷(Ca-P:21.64—108.04 mg/kg)闭蓄态磷(O-P:17.15—29.57 mg/kg)铝磷(Al-P:5.84—25.97 mg/kg),其中Fe-P占了土壤无机磷总量的54.20%—74.13%;退耕还湖2—8a期间,湿地土壤Al-P、Fe-P和O-P含量有逐渐降低趋势,而退耕8—20a后逐渐上升,以Fe-P为主的这3形态磷左右着退耕后土壤无机磷的变化;Ca-P随退耕年限增加整体呈上升趋势,对土壤无机磷的贡献逐渐增加;无机磷占土壤全磷的比例为35.90%—67.27%,主导着退耕后湿地土壤全磷变化;有机磷占土壤全磷的17.82%—50.51%,在退耕2a后下降,随后开始逐渐上升,对退耕后湿地土壤磷库恢复的贡献逐渐增加;其中Fe-P、O-P和Al-P控制着退耕后土壤磷素有效性变化。退耕后水文条件、植被生长和土壤黏粒含量变化不仅影响退耕后湿地土壤磷素组分特征,也影响着退耕后湿地土壤磷素有效性。  相似文献   

16.
1. Monitoring at fortnightly to monthly intervals of a very shallow, lowland lake over 24 years has enabled the time course of recovery from nutrient enrichment to be investigated after high external P loading of the lake (>10 g P m?2 year?1) was reduced between 1977 and 1980. 2. The lake showed a relatively rapid response during the spring and early summer, with a reduction in phytoplankton biomass occurring after 5 years when soluble reactive phosphorus concentration was <10 μg L?1. 3. However, during the later summer the response was delayed for 15 years because of sustained remobilisation of phosphorus from the sediment. The greater water clarity in spring and a gradual shift from planktonic to benthic algal growth may be related to the reduction in internal loading after 15 years. 4. Changes in the phytoplankton community composition were also observed. Centric diatoms became less dominant in the spring, and the summer cyanobacteria populations originally dominated by non‐heterocystous species (Limnothrix/Planktothrix spp.) almost disappeared. Heterocystous species (Anabaena spp. and Aphanizomenon flosaquae) were slower to decline, but after 20 years the phytoplankton community was no longer dominated by cyanobacteria. 5. There were no substantial changes in food web structure following re‐oligotrophication. Total zooplankton biomass decreased but body size of Daphnia hyalina, the largest zooplankton species in the lake, remained unchanged, suggesting that the fish population remained dominated by planktivorous species. 6. Macrophyte growth was still largely absent after 20 years, although during the spring water clarity may have become sufficient for macrophytes to re‐establish.  相似文献   

17.
Lake Harutori is a brackish meromictic lake with a steep physicochemical gradient in shallow water. Anoxic water below the chemocline has been characterized by high concentrations of sulfide (>10 mM) and methane (>1.5 mM). Previously, we reported that uncultured bacteria in the SEEP-SRB1 group were major sulfate reducers in the lake [21], but knowledge of sulfur oxidation and methane metabolism was scarce. In this current study, the Lake Harutori microbial community structure in the mixolimnion (at depths of 1.5 m and 3.0 m), upper chemocline (3.5 m), and monimolimnion (4.5 m) was further investigated by 16S rRNA gene amplicon sequencing and catalyzed reporter deposition fluorescence in situ hybridization (CARD-FISH). Reads of type I and II methanotrophs were retrieved mainly from 3.5 m and above. Methanotrophic bacteria detected by CARD-FISH accounted for 3.1% of DAPI-stained cells at 3.5 m. Detection frequencies of reads affiliated with the genera Sulfurimonas and Thiomicrorhabdus, which are known to comprise sulfur oxidizers, were relatively high at 3.5 m. Methanogenic archaeal reads were retrieved from the monimolimnion and they affiliated with the genus Methanosaeta. CARD-FISH counts indicated that the cells of Methanosaeta/Methanosarcina/Methanomicrobiales accounted for up to 0.8% of the DAPI-stained cells in the monimolimnion. On the other hand, many of the reads retrieved primarily from the monimolimnion were affiliated with phylogenetically novel uncultured groups.  相似文献   

18.
Wang  R. L.  Williams  W. D. 《Hydrobiologia》2001,457(1-3):17-24
Biogeochemical studies were undertaken of a 65-cm long sediment core from Lake Cantara South, South Australia. 14C determinations indicated that the sediments had been deposited over 2000 years. Changes with sediment depth in the concentration or ratio of the following were determined: (i) total organic carbon, total carbonate (inorganic) carbon, total sulfur, total carbon, total inorganic and organic sulfur, atomic C/N, and sulfate/chloride; (ii) n-alkanes; (iii) a highly branched isoprenoid alkane, and (iv) steroids. Interpretation of the changes with sediment depth indicated the nature of changes that took place when the system changed from a protected marine lagoon to an isolated (athalassic) saline lake. This change took place about 1000 years ago.  相似文献   

19.
对武汉东湖大型围隔和围栏中的水生植被和不同形态的磷近2年的调查分析结果表明:在围隔中的水生维管束植物得到恢复、生物量明显大于对照区的情况下,水中的总磷(TP)、溶解活性磷(DRP)、颗粒性磷(PP)浓度明显低于对照区,水生维管束植物的良好生长是导致磷浓度降低的主要因素,总溶解磷(TDP)、溶解非活性磷(DNP)浓度则与对照区无显著差异;围隔(栏)及对照区中TP、PP的浓度秋高冬低,TDP浓度秋、冬季较高,春、夏季较低,DNP浓度春季较高,冬季较低;TP中PP含量约为TDP的4-6倍,DRP与DNP的含量相近或稍有差别。  相似文献   

20.
1. Fish community structure and habitat distribution of the abundant species roach, perch and ruffe were studied in Lake Nordborg (Denmark) before (August 2006) and after (August 2007) aluminium treatment to reduce internal phosphorus loading. 2. Rapid changes in fish community structure, abundance and habitat distribution occurred following a decline in in‐lake phosphorus concentrations from 280 to 37 μg P L?1 and an increase in Secchi depth transparency from 1.1 to 1.9 m (August). The proportion of perch in overnight gill net catches increased, whilst roach decreased, and the average weight of all key species increased. 3. The habitat distribution of perch and roach changed from a high proportion in the upper pelagic and littoral zones in 2006, towards enhanced proportions in the deeper pelagic and profundal zone in 2007. The abundance of large‐bodied zooplankton increased and the abundance of benthic invertebrates decreased in the same period, suggesting that the habitat shift was not induced by food limitation. 4. Ruffe shifted from the littoral and upper profundal zones towards the deep profundal zone, likely reflecting an increased predation risk in the littoral zone and better oxygen conditions in the deep profundal. 5. Our results indicate that enhanced risk of predation in the upper pelagic and the littoral zones and perhaps improved oxygen concentrations in the deeper profundal zone at decreasing turbidity are responsible for the observed habitat shift. The results indicate that fish respond rapidly to changes in nutrient state, both in terms of community structure and habitat use.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号