首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
When considering protein folding with a transient intermediate, a difficulty arises as to determination of the rates of separate transitions. Here we overcome this problem, using the kinetic studies of the unfolding/refolding reactions of the three-state protein apomyoglobin as a model. Amplitudes of the protein refolding kinetic burst phase corresponding to the transition from the unfolded (U) to intermediate (I) state, that occurs prior to the native state (N) formation, allow us to estimate relative populations of the rapidly converting states at various final urea concentrations. On the basis of these proportions, a complicated experimental chevron plot has been deconvolved into the urea-dependent rates of the I<-->N and U<-->N transitions to give the dependence of free energies of the main transition state and of all three (N, I, and U) stable states on urea concentration.  相似文献   

2.
The equilibrium and kinetic folding/unfolding of apomyoglobin (ApoMb) were studied at pH 6.2, 11 °C by recording tryptophan fluorescence. The equilibrium unfolding of ApoMb in the presence of urea was shown to involve accumulation of an intermediate state, which had a higher fluorescence intensity as compared with the native and unfolded states. The folding proceeded through two kinetic phases, a rapid transition from the unfolded to the intermediate state and a slow transition from the intermediate to the native state. The accumulation of the kinetic intermediate state was observed in a wide range of urea concentrations. The intermediate was detected even in the region corresponding to the unfolding limb of the chevron plot. Urea concentration dependence was obtained for the observed folding/unfolding rate. The shape of the dependence was compared with that of two-state proteins characterized by a direct transition from the unfolded to the native state.  相似文献   

3.
Kinetic and equilibrium studies of the folding and unfolding of the SH3 domain of the PI3 kinase, have been used to identify a folding intermediate that forms after the rate-limiting step on the folding pathway. Folding and unfolding, in urea as well as in guanidine hydrochloride (GdnHCl), were studied by monitoring changes in the intrinsic fluorescence or in the far-UV circular dichroism (CD) of the protein. The two probes yield non-coincident equilibrium transitions for unfolding in urea, indicating that an intermediate, I, exists in equilibrium with native (N) and unfolded (U) protein, during unfolding. Hence, the equilibrium unfolding data were analyzed according to a three-state N ↔ I ↔ U mechanism. An intermediate is observed also in kinetic unfolding studies, and its presence leads to the unfolding reaction in urea as well as in GdnHCl, occurring in two steps. The fast step is complete within the initial 11 ms of unfolding and manifests itself in a burst phase change in fluorescence. At high concentrations of GdnHCl, the entire change in fluorescence during unfolding occurs during the 11 ms burst phase. CD measurements indicate, however, that I retains N-like secondary structure. An analysis of the kinetic and thermodynamic data, according to a minimal three-state N ↔ I ↔ U mechanism, positions I after the rate-limiting transition state, TS1, of folding, on the reaction coordinate of folding in GdnHCl. Hence, I is not revealed when folding is commenced from U, regardless of the nature of the probe used to follow the folding reaction. Interrupted unfolding experiments, in which the protein is unfolded transiently in GdnHCl for various lengths of time before being refolded, showed that I refolds to N much faster than does U, confirms the analysis of the direct folding and unfolding experiments, that I is formed after the rate-limiting step of refolding in GdnHCl.  相似文献   

4.
Bollen YJ  Sánchez IE  van Mierlo CP 《Biochemistry》2004,43(32):10475-10489
The folding kinetics of the 179-residue Azotobacter vinelandii apoflavodoxin, which has an alpha-beta parallel topology, have been followed by stopped-flow experiments monitored by fluorescence intensity and anisotropy. Single-jump and interrupted refolding experiments show that the refolding kinetics involve four processes yielding native molecules. Interrupted unfolding experiments show that the two slowest folding processes are due to Xaa-Pro peptide bond isomerization in unfolded apoflavodoxin. The denaturant dependence of the folding kinetics is complex. Under strongly unfolding conditions (>2.5 M GuHCl), single exponential kinetics are observed. The slope of the chevron plot changes between 3 and 5 M denaturant, and no additional unfolding process is observed. This reveals the presence of two consecutive transition states on a linear pathway that surround a high-energy on-pathway intermediate. Under refolding conditions, two processes are observed for the folding of apoflavodoxin molecules with native Xaa-Pro peptide bond conformations, which implies the population of an intermediate. The slowest of these two processes becomes faster with increasing denaturant concentration, meaning that an unfolding step is rate-limiting for folding of the majority of apoflavodoxin molecules. It is shown that the intermediate that populates during refolding is off-pathway. The experimental data obtained on apoflavodoxin folding are consistent with the linear folding mechanism I(off) <==> U <==> I(on) <== > N, the off-pathway intermediate being the molten globule one that also populates during equilibrium denaturation of apoflavodoxin. The presence of such on-pathway and off-pathway intermediates in the folding kinetics of alpha-beta parallel proteins is apparently governed by protein topology.  相似文献   

5.
Specific amino acid substitutions confer a temperature-sensitive-folding (tsf) phenotype to bacteriophage P22 coat protein. Additional amino acid substitutions, called suppressor substitutions (su), relieve the tsf phenotype. These su substitutions are proposed to increase the efficiency of procapsid assembly, favoring correct folding over improper aggregation. Our recent studies indicate that the molecular chaperones GroEL/ES are more effectively recruited in vivo for the folding of tsf:su coat proteins than their tsf parents. Here, the tsf:su coat proteins are studied with in vitro equilibrium and kinetic techniques to establish a molecular basis for suppression. The tsf:su coat proteins were monomeric, as determined by velocity sedimentation analytical ultracentrifugation. The stability of the tsf:su coat proteins was ascertained by equilibrium urea titrations, which were best described by a three-state folding model, N <--> I <--> U. The tsf:su coat proteins either had stabilized native or intermediate states as compared with their tsf coat protein parents. The kinetics of the I <--> U transition showed a decrease in the rate of unfolding and a small increase in the rate of refolding, thereby increasing the population of the intermediate state. The increased intermediate population may be the reason the tsf:su coat proteins are aggregation-prone and likely enhances GroEL-ES interactions. The N --> I unfolding rate was slower for the tsf:su proteins than their tsf coat parents, resulting in an increase in the native state population, which may allow more competent interactions with scaffolding protein, an assembly chaperone. Thus, the suppressor substitution likely improves folding in vivo through increased efficiency of coat protein-chaperone interactions.  相似文献   

6.
Sasahara K  Demura M  Nitta K 《Proteins》2002,49(4):472-482
The equilibrium and kinetic folding of hen egg-white lysozyme was studied by means of circular dichroism spectra in the far- and near-ultraviolet (UV) regions at 25 degrees C under the acidic pH conditions. In equilibrium condition at pH 2.2, hen lysozyme shows a single cooperative transition in the GdnCl-induced unfolding experiment. However, in the GdnCl-induced unfolding process at lower pH 0.9, a distinct intermediate state with molten globule characteristics was observed. The time-dependent unfolding and refolding of the protein were induced by concentration jumps of the denaturant and measured by using stopped-flow circular dichroism at pH 2.2. Immediately after the dilution of denaturant, the kinetics of refolding shows evidence of a major unresolved far-UV CD change during the dead time (<10 ms) of the stopped-flow experiment (burst phase). The observed refolding and unfolding curves were both fitted well to a single-exponential function, and the rate constants obtained in the far- and near-UV regions coincided with each other. The dependence on denaturant concentration of amplitudes of burst phase and both rate constants was modeled quantitatively by a sequential three-state mechanism, U<-->I<-->N, in which the burst-phase intermediate (I) in rapid equilibrium with the unfolded state (U) precedes the rate-determining formation of the native state (N). The role of folding intermediate state of hen lysozyme was discussed.  相似文献   

7.
The human serum albumin is known to undergo N <==> F (neutral to fast moving) isomerization between pH 7 and 3.5. The N < ==> F isomerization involves unfolding and separation of domain III from rest of the molecule. The urea denaturation of N isomer of HSA shows two step three state transition with accumulation of an intermediate state around 4.8-5.2 M urea concentration. While urea induced unfolding transition of F isomer of HSA does not show the intermediate state observed during unfolding of N isomer. Therefore, it provides direct evidence that the formation of intermediate in the unfolding transition of HSA involves unfolding of domain III. Although urea induced unfolding of F isomer of HSA appears to be an one step process, but no coincidence between the equilibrium transitions monitored by tryptophanyl fluorescence, tyrosyl fluorescence, far-UV CD and near-UV CD spectroscopic techniques provides decisive evidence that unfolding of F isomer of HSA is not a two state process. An intermediate state that retained significant amount of secondary structure but no tertiary structure has been identified (around 4.4 M urea) in the unfolding pathway of F isomer. The emission of Trp-214 (located in domain II) and its mode of quenching by acrylamide and binding of chloroform indicate that unfolding of F isomer start from domain II (from 0.4 M urea). But at higher urea concentration (above 1.6 M) both the domain unfold simultaneously and the protein acquire random coil structure around 8.0 M urea. Further much higher KSV of NATA (17.2) than completely denatured F isomer (5.45) of HSA (8.0 M urea) suggests the existence of residual tertiary contacts within local regions in random coil conformation (probably around lone Trp-214).  相似文献   

8.
Finke JM  Jennings PA 《Biochemistry》2002,41(50):15056-15067
The thermodynamic stability and folding kinetics of the all beta-sheet protein interleukin-1beta were measured between 0 and 4 M GdmCl concentrations and pH 5-7. Native interleukin-1beta undergoes a 3.5 kcal/mol decrease in thermodynamic stability, Delta, as pH is increased from 5 to 7. The native state parameter m(NU), measuring protein destabilization/[GdmCl], remains constant between pH 5 and 7, indicating that the solvent-exposed surface area difference between the native state and unfolded ensemble is unchanged across this pH range. Similarly, pH changes between 5 and 7 decrease only the thermodynamic stability, DeltaG(H)2(O), and not the m-values, of the kinetic intermediate and transition states. This finding is shown to be consistent with transition state configurations which continue to be the high-energy configurations of the transition state in the face of changing stability conditions. A three-state folding mechanism U right arrow over left arrow I right arrow over left arrow N is shown to be sufficient in characterizing IL-1beta folding under all conditions studied. The m-values of refolding transitions are much larger than the m-values of unfolding transitions, indicating that that the fast, T(2) (U right arrow over left arrow I), and slow, T(1) (I right arrow over left arrow N), transition states are highly similar to the intermediate I and native state N, respectively. Many of the folding properties of interleukin-1beta are shared among other members of the beta-trefoil protein family, although clear differences can exist.  相似文献   

9.
The contributions of some amino acid residues in the A, B, G, and H helices to the formation of the folding nucleus and folding intermediate of apomyoglobin were estimated. The effects of point substitutions of Ala for hydrophobic amino acid residues on the structural stability of the native (N) protein and its folding intermediate (I), as well as on the folding/unfolding rates for four mutant apomyoglobin forms, were studied. The equilibrium and kinetic studies of the folding/unfolding rates of these mutant proteins in a wide range of urea concentrations demonstrated that their native state was considerably destabilized as compared with the wild-type protein, whereas the stability of the intermediate state changed moderately. It was shown that the amino acid residues in the A, G, and H helices contributed insignificantly to the stabilization of the apomyoglobin folding nucleus in the rate-limiting I ? N transition, taking place after the formation of the intermediate, whereas the residue of the B helix was of great importance in the formation of the folding nucleus in this transition.  相似文献   

10.
The reversible denaturation by urea of beta-lactamase from Staphylococcus aureus was followed in the presence and absence of ammonium sulphate by circular dichroism studies, difference absorption spectroscopy and measurement of enzyme activity. The multiple unfolding and refolding transitions demonstrate the existence of a thermodynamically stable state of intermediate conformation in equilibrium with the native (N) and fully unfolded (U) states. Its physical properties show that it is identical to the state H found on denaturation by guanidinium chloride. State H is 10.1 (+/-1.5) kJ mol-1 less stable than the native state and 10.1 (+/-1.6) kJ mol-1 more stable than the unfolded state. Ammonium sulphate shifts both the N in equilibrium H and H in equilibrium U transitions to concentrations of urea higher by 5.3 M per mole of sulphate. It has markedly different effects on the thermodynamic stabilities of states N and H, making delta G'N-H, O and delta G'H-U, O more negative by 41 kJ mol and 20 kJ mole, respectively, per mole of ammonium sulphate. The change in equilibrium constant for the N-H transition is reflected almost exclusively in a dramatic change of the unfolding rate constant, which is decreased by a factor of 10(11) on addition of 1.4 M-sulphate. The presence of the substrate benzyl penicillin has little effect on the equilibria or kinetics of the N-H transition. The results are discussed in terms of the nature of the N-H transition and of the ordering of intermediate states on the folding pathway.  相似文献   

11.
Recent 15N and 13C spin-relaxation dispersion studies of fast-folding mutants of the Fyn SH3 domain have established that folding proceeds through a low-populated on-pathway intermediate (I) where the central beta-sheet is at least partially formed, but without interactions between the NH2- and COOH-terminal beta-strands that exist in the folded state (F). Initial studies focused on mutants where Gly48 is replaced; in an effort to establish whether this intermediate is a general feature of Fyn SH3 folding a series of 15N relaxation experiments monitoring the folding of Fyn SH3 mutants N53P/V55L and A39V/N53P/V55L are reported here. For these mutants as well, folding proceeds through an on-pathway intermediate with similar features to those observed for G48M and G48V Fyn SH3 domains. However, the 15N chemical shifts extracted for the intermediate indicate pronounced non-native contacts between the NH2 and COOH-terminal regions not observed previously. The kinetic parameters extracted for the folding of A39V/N53P/V55L Fyn SH3 from the three-state folding model F<-->I<-->U are in good agreement with folding and unfolding rates extrapolated to zero denaturant obtained from stopped-flow experiments analyzed in terms of a simplified two-state folding reaction. The folding of the triple mutant was studied over a wide range of temperatures, establishing that there is no difference in heat capacities between F and I states. This confirms a compact folding intermediate structure, which is supported by the 15N chemical shifts of the I state extracted from the dispersion data. The temperature-dependent relaxation data simplifies data analysis because at low temperatures (< 25 degrees C) the unfolded state (U) is negligibly populated relative to I and F. A comparison between parameters extracted at low temperatures where the F<-->I exchange model is appropriate with those from the more complex, three-state model at higher temperatures has been used to validate the protocol for analysis of three-site exchange relaxation data.  相似文献   

12.
Denatured states of proteins, the starting points as well as the intermediates of folding in vivo, play important roles in biological function. In this context, we describe here urea unfolding and characterization of the denatured state of GTPase effector domain (GED) of dynamin created by 9.7 M urea. These are compared with similar data for guanidine induced denaturation reported earlier. The unfolding characteristics in the two cases, as measured by the optical probes, are significantly different, urea unfolding proceeding via an intermediate. The structural and motional characteristics, determined by NMR, of the two denatured states are also strikingly different. The urea-denatured state shows a combination of α- and β-preferences in contrast to the entirely β-preferences in the guanidine-denatured state. Higher 15N transverse relaxation rates suggest higher folding propensities in the urea-denatured state. The implications of these to GED folding are discussed.  相似文献   

13.
Urea-induced unfolding of lipoxygenase-1 (LOX1) at pH 7.0 was followed by enzyme activity, spectroscopic measurements, and limited proteolysis experiments. Complete unfolding of LOX1 in 9 M urea in the presence of thiol reducing or thiol modifying reagents was observed. The aggregation and oxidative reactions prevented the reversible unfolding of the molecule. The loss of enzyme activity was much earlier than the structural loss of the molecule during the course of unfolding, with the midpoint concentrations being 4.5 and 7.0 M for activity and spectroscopic measurements, respectively. The equilibrium unfolding transition could be adequately fitted to a three-state, two-step model (N left arrow over right arrow I left arrow over right arrow U) and the intermediate fraction was maximally populated at 6.3 M urea. The free energy change (DeltaG(H(2)O)) for the unfolding of native (N) to intermediate (I) was 14.2 +/- 0.28 kcal/mol and for the intermediate to the unfolded state (U) was 11.9 +/- 0.12 kcal/mol. The ANS binding measurements as a function of urea concentration indicated that the maximum binding of ANS was in 6.3 M urea due to the exposure of hydrophobic groups; this intermediate showed significant amount of tertiary structure and retained nearly 60% of secondary structure. The limited proteolysis measurements showed that the initiation of unfolding was from the C-terminal domain. Thus, the stable intermediate observed could be the C-terminal domain unfolded with exposed hydrophobic domain-domain interface. Limited proteolysis experiments during refolding process suggested that the intermediate refolded prior to completely unfolded LOX1. These results confirmed the role of cysteine residues and domain-domain interactions in the reversible unfolding of LOX1. This is the first report of the reversible unfolding of a very large monomeric, multi-domain protein, which also has a prosthetic group.  相似文献   

14.
Folding of the 123 amino acid residue Greek key protein apo-pseudo azurin from Thiosphaera pantotropha has been examined using stopped-flow circular dichroism in 0.5 M Na2SO4 at pH 7.0 and 15 degrees C. The data show that the protein folds from the unfolded state with all eight proline residues in their native isomers (seven trans and one cis) to an intermediate within the dead-time of the stopped-flow mixing (50 ms). The urea dependence of the rates of folding and unfolding of the protein were also determined. The ratio of the folding rate to the unfolding rate (extrapolated into water) is several orders of magnitude too small to account for the equilibrium stability of the protein, consistent with the population of an intermediate. Despite this, the logarithm of the rate of folding versus denaturant concentration is linear. These data can be rationalised by the population of an intermediate under all refolding conditions. Accordingly, kinetic and equilibrium measurements were combined to fit the chevron plot to an on-pathway model (U <==> I <==> N). The fit shows that apo-pseudoazurin rapidly forms a compact species that is stabilised by 25 kJ/mol before folding to the native state at a rate of 2 s-1. Although the data can also be fitted to an off-pathway model (I <==> U <==> N), the resulting kinetic parameters indicate that the protein would have to fold to the native state at a rate of 86,000 s-1 (a time constant of only 12 microseconds). Similarly, models in which this intermediate is bypassed also lead to unreasonably fast refolding rates. Thus, the intermediate populated during the refolding of apo-pseudoazurin appears to be obligate and on the folding pathway. We suggest, based on this study and others, that some intermediates play a critical role in limiting the search to the native state.  相似文献   

15.
N52I iso-2 cytochrome c is a variant of yeast iso-2 cytochrome c in which asparagine substitutes for isoleucine 52 in an alpha helical segment composed of residues 49-56. The N52I substitution results in a significant increase in both stability and cooperativity of equilibrium unfolding, and acts as a "global suppressor" of destabilizing mutations. The equilibrium m-value for denaturant-induced unfolding of N52I iso-2 increases by 30%, a surprisingly large amount for a single residue substitution. The folding/unfolding kinetics for N52I iso-2 have been measured by stopped-flow mixing and by manual mixing, and are compared to the kinetics of folding/unfolding of wild-type protein, iso-2 cytochrome c. The results show that the observable folding rate and the guanidine hydrochloride dependence of the folding rate are the same for iso-2 and N52I iso-2, despite the greater thermodynamic stability of N52I iso-2. Thus, there is no linear free-energy relationship between mutation-induced changes in stability and observable refolding rates. However, for N52I iso-2 the unfolding rate is slower and the guanidine hydrochloride dependence of the unfolding rate is smaller than for iso-2. The differences in the denaturant dependence of the unfolding rates suggest that the N52I substitution decreases the change in the solvent accessible hydrophobic surface between the native state and the transition state. Two aspects of the results are inconsistent with a two-state folding/unfolding mechanism and imply the presence of folding intermediates: (1) observable refolding rate constants calculated from the two-state mechanism by combining equilibrium data and unfolding rate measurements deviate from the observed refolding rate constants; (2) kinetically unresolved signal changes ("burst phase") are observed for both N52I iso-2 and iso-2 refolding. The "burst phase" amplitude is larger for N52I iso-2 than for iso-2, suggesting that the intermediates formed during the "burst phase" are stabilized by the N52I substitution.  相似文献   

16.
The folding of CheY mutant F14N/V83T was studied at 75 residues by NMR. Fluorescence, NMR, and sedimentation equilibrium studies at different urea and protein concentrations reveal that the urea-induced unfolding of this CheY mutant includes an on-pathway molten globule-like intermediate that can associate off-pathway. The populations of native and denatured forms have been quantified from a series of 15N-1H HSQC spectra recorded under increasing concentrations of urea. A thermodynamic analysis of these data provides a detailed picture of the mutant's unfolding at the residue level: (1) the transition from the native state to the molten globule-like intermediate is highly cooperative, and (2) the unfolding of this state is sequential and yields another intermediate showing a collapsed N-terminal domain and an unfolded C-terminal tail. This state presents a striking similarity to the kinetic transition state of the CheY folding pathway.  相似文献   

17.
Studies of the folding pathway of large proteins whose kinetics is complicated due to the formation of several intermediate states are most frequently impeded or totally impossible because of rapid folding phase occurring during instrument dead time. In this paper the obtaining of energy characteristics of one of such proteins—carbonic anhydrase B—is reported. Tryptophan fluorescence and absorption methods have been used to measure the folding and unfolding kinetics of carbonic anhydrase B at different urea concentrations. In spite of the fact that the formation of the initial intermediate state of this protein takes place during the instrument dead time, the population of this state has been estimated in a wide range of urea concentrations. The use of the population of the rapidly formed intermediate state and the effective rates of slow phases of the protein folding/unfolding permitted us to calculate free energies of all the protein states and the height of energy barriers between them. It has been shown that folding of carbonic anhydrase B can be described by a consecutive reaction scheme. The possibility to obtain energy characteristics of carbonic anhydrase would allow studying structural characteristics of both intermediate and transition states via site-directed mutations.  相似文献   

18.
The chemical unfolding transition of a protein was simulated, including the presence of an intermediate (I) in equilibrium with the native (N) and unfolded (U) states. The calculations included free energies of unfolding, DeltaGuw, in the range of 1.4 kcal/mol to 10 kcal/mol and three different global m-values. The simulations included a broad range of equilibrium constants for the N left arrow over right arrow I process. The dependence of the N <--> I equilibrium on the concentration of denaturant was also included in the simulations. Apparent DeltaGuw and m-values were obtained from the simulated unfolding transitions by fitting the data to a two-state unfolding process. The potential errors were calculated for two typical experimental situations: 1) the unfolding is monitored by a physical property that does not distinguish between native and intermediate states (case I), and 2) the physical property does not distinguish between intermediate and unfolded states (case II). The results obtained indicated that in the presence of an intermediate, and in both experimental situations, the free energy of unfolding and the m-values could be largely underestimated. The errors in DeltaGuw and m-values do not depend on the m-values that characterize the global N <--> U transition. They are dependent on the equilibrium constant for the N <--> I transition and its characteristic m1-value. The extent of the underestimation increases for higher energies of unfolding. Including no random error in the simulations, it was estimated that the underestimation in DeltaGuw could range between 25% and 35% for unfolding transitions of 3-10 kcal/mol (case I). In case II, the underestimation in DeltaGuw could be even larger than in case I. In the same energy range, a 50% error in the m-value could also take place. The fact that most of the mutant proteins are characterized by both a lower m-value and a lower stability than the wild-type protein suggests that in some cases the results could have been underestimated due to the application of the two-state assumption.  相似文献   

19.
Solution properties of beta recombinase were studied by circular dichroism and fluorescence spectroscopy, size exclusion chromatography, analytical ultracentrifugation, denaturant-induced unfolding and thermal unfolding experiments. In high ionic strength buffer (1 M NaCl) beta recombinase forms mainly dimers, and strongly tends to aggregate at ionic strength lower than 0.3 M NaCl. Urea and guanidinium chloride denaturants unfold beta recombinase in a two-step process. The unfolding curves have bends at approximately 5 M and 2.2 M in urea and guanidinium chloride-containing buffers. Assuming a three-state unfolding model (N2-->2I-->2U), the total free energy change from 1 mol of native dimers to 2 mol of unfolded monomers amounts to deltaG(tot) = 17.9 kcal/mol, with deltaG(N2-->2I) = 4.2 kcal/mol for the first transition and deltaG(I-->U) = 6.9 kcal/mol for the second transition. Using sedimentation-equilibrium analytical ultracentrifugation, the presence of beta recombinase monomers was indicated at 5 M urea, and the urea dependence of the circular dichroism at 222 nm strongly suggests that folded monomers represent the unfolding intermediate.  相似文献   

20.
Fang X  Pan T  Sosnick TR 《Biochemistry》1999,38(51):16840-16846
The folding thermodynamics of the catalytic domain from the Bacillus subtilis RNase P RNA is analyzed using circular dichroism and fluorescence spectroscopies, hydroxyl radical protection, and catalytic activity. Folding of this 255-nucleotide ribozyme can be described with three populated species: unfolded (U), intermediate (I), and native (N) states. The U-to-I transition primarily involves secondary structure formation, whereas the I-to-N transition is dominated by tertiary structure formation. The I-to-N transition is highly cooperative as indicated by the coincidence of the four probes applied here. Two isothermal methods are used to determine the stability of the N state relative to the I state at 10 and 37 degrees C. The first method measures the extent of Mg(2+)-induced folding without urea or at constant urea concentrations. The second method measures the extent of urea-induced unfolding at constant Mg(2+) concentrations. Via application of a cooperative binding analysis, the Mg(2+) transition midpoint (K(Mg)), the Hill constant (n), and the urea-dependent surface burial parameter (m value) determined by both methods are identical, indicating that they report the same, reversible folding event. Three conclusions can be drawn from these results. (i) The folding free energy of a Mg(2+)-dependent tertiary RNA structure can be described by the K(Mg) and n parameters according to a cooperative Mg(2+) binding model. (ii) The Hill constant for this tertiary RNA structure probably represents the differential number of Mg(2+) ions bound in the I-to-N transition. (iii) Under physiological conditions, the stability of this large ribozyme is similar to that of small globular proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号