首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
The ssb gene of plasmid ColIb-P9.   总被引:9,自引:6,他引:3       下载免费PDF全文
The IncI1 plasmid ColIb-P9 was found to carry a single-stranded DNA-binding (SSB) protein gene (ssb) that maps about 11 kilobase pairs from the origin of transfer in the region transferred early during bacterial conjugation. The cloned gene was able to suppress the UV and temperature sensitivity of an ssb-1 strain of Escherichia coli K-12. The nucleotide sequence of the ColIb ssb gene was determined, giving a predicted molecular weight of 19,110 for the SSB protein. Sequence data show that ColIb ssb is very similar to the ssb gene on plasmid F, which is also known to map in the leader region. High-level expression of ssb on ColIb required derepression of the transfer (tra) genes and the activity of the positive regulatory system controlling these genes, suggesting that the SSB protein contributes to the conjugative processing of DNA. A mutant of ColIbdrd-1 carrying a Tn903-derived insertion in ssb was constructed, but it was unaffected in the ability to generate plasmid transconjugants and it was maintained apparently stably in donor cells both following mating and during vegetative growth. Hence, no biological role of ColIb SSB protein was detected. However, unlike the parental plasmid, such ColIb ssb mutants conferred a marked Psi+ (plasmid-mediated SOS inhibition) phenotype on recA441 and recA730 strains, implying a functional relationship between SSB and Psi proteins.  相似文献   

2.
Conjugative plasmids from various incompatibility groups which carry DNA homologous to the ssb gene of the F factor were found to have additional homology with the F factor. This region homologous with F was located on both sides of the ssb gene and occupied a considerable part of the leading region, i.e., the 12.9-kilobase portion of F transferred first during conjugation. This region was the only region of the F factor which has a homologous counterpart on many plasmids.  相似文献   

3.
Genes encoding single-stranded-DNA-binding proteins (SSBs) are carried by a variety of large self-transmissible plasmids, and it previously has been shown that these plasmid-borne genes can complement conditional lethal alleles of the ssb gene on the Escherichia coli chromosome for cellular viability. We have tested one of the plasmid-borne ssb genes, the ssf gene from the E. coli F factor, for its ability to complement total deletion of the chromosomal ssb gene for viability. We have found that ssf can complement the ssb deletion, but only when it is present on a high-copy-number plasmid. Cells that are totally dependent on the F-factor-encoded SSB for viability manifest growth properties indicative of problems in DNA replication.  相似文献   

4.
Summary Plasmid single-stranded DNA-binding protein genes complement the E. coli ssb-1 mutation, and partially restore capacity for DNA synthesis, DNA repair (direct role as well as role in SOS induction) and general recombination. Plasmid mutants derepressed for fertility derived from R1, R64 and R222 show a higher level of complementation compared to the parental repressed plasmids. Derepressed mutants of R222 synthesize more RNA which hybridizes with the ssb gene of the F factor than does the original R222 plasmid. This indicates that plasmid ssb genes are regulated coordinately with fertility genes.  相似文献   

5.
The amino acid sequence of the 13-kDa polypeptide (P116) encoded by the first gene of the trfA operon of IncP plasmid RK2 shows significant similarity to several known single-stranded DNA-binding proteins. We found that unregulated expression of this gene from its natural promoter (trfAp) or induced expression from a strong heterologous promoter (trcp) was sufficient to complement the temperature-sensitive growth phenotype of an Escherichia coli ssb-1 mutant. The RK2 ssb gene is the first example of a plasmid single-stranded DNA-binding protein-encoding gene that is coregulated with replication functions, indicating a possible role in plasmid replication.  相似文献   

6.
The Bacillus subtilis genome comprises two paralogous single-stranded DNA binding protein (SSB) genes, ssb and ywpH, which show distinct expression patterns. The main ssb gene is strongly expressed during exponential growth and is coregulated with genes encoding the ribosomal proteins S6 and S18. The gene organization rpsF-ssb-rpsR as observed in B. subtilis is found in many gram-positive as well as some gram-negative bacteria, but not in Escherichia coli. The ssb gene is essential for cell viability, and like other SSBs its expression is elevated during SOS response. In contrast, the paralogous ywpH gene is transcribed from its own promoter at the onset of stationary phase in minimal medium only. Its expression is ComK dependent and its gene product is required for optimal natural transformation.  相似文献   

7.
The molecular defect in DNA repair caused by ssb mutations (single-strand binding protein) was studied by analyzing DNA synthesis and DNA double-strand break production in UV-irradiated Escherichia coli delta uvrB strains. The presence of the ssb-113 mutation produced a large inhibition of DNA synthesis and led to the formation of double-strand breaks, whereas the ssb-1 mutation produced much less inhibition of DNA synthesis and fewer double-strand breaks. We suggest that the single-strand binding protein plays an important role in the replication of damaged DNA, and that it functions by protecting single-stranded parental DNa opposite daughter-strand gaps from nuclease attack.  相似文献   

8.
Previous studies from our laboratory have shown that an allele of the heat shock protein GroEL (groEL411) is able to specifically suppress some of the physiological defects of the single-stranded DNA-binding protein mutation ssb-1. A search for additional alleles of the groE genes which may act as suppressors for ssb mutations has led to the identification of groEL46 as a specific suppressor of ssb-113. It has very little or no effect on ssb-1 or ssb-3. All of the physiological defects of ssb-113, including temperature-sensitive growth, temperature-sensitive DNA synthesis, sensitivity to UV irradiation, methyl methanesulfonate, and bleomycin, and reduced recombinational capacity, are restored to wild-type levels. The ssb-113 allele, however, is unable to restore sensitivity of groEL46 cells to phage lambda. The mechanism of suppression of ssb-113 by groEL46 appears to differ from that of ssb-1 by groEL411. The data suggest that GroEL may interact with single-stranded DNA-binding protein in more than one domain.  相似文献   

9.
Streptomyces ATP nucleotide 3'-pyrophosphokinase is an extracellular, ribosome-independent, and stringent factor-mimic ppGpp synthetase with an unusually broad acceptor spectrum. The gene-containing DNA fragments cloned from chromosomal DNA of a producer S. morookaensis into pIJ699 and pUC plasmids were found to express the active enzyme in the transformed S. lividans TK24 and enteric E. coli JM109 and nitrogen-fixing Klebsiella pneumoniae M5a1 and 5022, respectively. Base sequence of the structural gene and the deduced amino acid sequence exhibited little homology to those of E. coli stringent factor and related proteins. Growth retardation was seen in some transformants.  相似文献   

10.
Fertility factor F confers bacterial conjugation, a process which involves at least 20 tra genes. Resistance plasmids such as R100, R6-5, and R1 have homology with F in the tra region. Conjugal transfer of these plasmids is, however, repressed, while transfer of F is constitutive. Repression of R transfer is due to the existence of the two genes, called finO and finP; constitutive transfer of F is believed to be due to a lack of finO in F. In this paper, we report the identification and DNA sequence of the finO gene of R100, encoding a protein of 21,265 daltons. We show that F does actually encode finO, but the gene has been inactivated by insertion of IS3. Lederberg and Tatum (Nature [London] 158:558, 1946), who discovered sexuality in bacteria, may have had an Escherichia coli K-12 strain harboring such an finO F factor, which facilitated the generation of recombinant progeny useful for genetic analysis of bacteria and established the foundation for molecular genetics.  相似文献   

11.
Aerobactin, a dihydroxamate siderophore produced by many strains of enteric bacteria, stimulated the growth of Neisseria gonorrhoeae FA19 and F62 in iron-limiting medium. However, gonococci did not produce detectable amounts of aerobactin in the Escherichia coli LG1522 aerobactin bioassay. We probed gonococcal genomic DNA with the cloned E. coli aerobactin biosynthesis (iucABCD), aerobactin receptor (iutA), and hydroxamate utilization (fhuCDB) genes. Hybridization was detected with fhuB sequences but not with the other genes under conditions which will detect 70% or greater homology. Similar results were obtained with 21 additional strains of gonococci by colony filter hybridization. A library of DNA from N. gonorrhoeae FA19 was constructed in the phasmid vector lambda SE4, and a clone was isolated that complemented the fhuB mutation in derivatives of E. coli BU736 and BN3307. These results suggest that fhuB is a conserved gene and may play a fundamental role in iron acquisition by N. gonorrhoeae.  相似文献   

12.
The replication origins of three large Bacillus thuringiensis plasmids, derived from B. thuringiensis HD263 subsp. kurstaki, have been cloned in Escherichia coli and sequenced. The replication origins, designated ori 43, ori 44, and ori 60, were isolated from plasmids of 43, 44, and 60 MDa, respectively. Each cloned replication origin exhibits incompatibility with the resident B. thuringiensis plasmid from which it was derived. Recombinant plasmids containing the three replication origins varied in their ability to transform strains of B. thuringiensis, Bacillus megaterium, and Bacillus subtilis. Analysis of the derived nucleotide and amino acid sequences indicates that the replication origins are nonhomologous, implying independent derivations. No significant homology was found to published sequences of replication origins derived from the single-stranded DNA plasmids of gram-positive bacteria, and shuttle vectors containing the three replication origins do not appear to generate single-stranded DNA intermediates in B. thuringiensis. The replication origin regions of the large plasmids are each characterized by a single open reading frame whose product is essential for replication in B. thuringiensis. The putative replication protein of ori 60 exhibits partial homology to the RepA protein of the Bacillus stearothermophilus plasmid pTB19. The putative replication protein of ori 43 exhibits weak but extensive homology to the replication proteins of several streptococcal plasmids, including the open reading frame E replication protein of the conjugative plasmid pAM beta 1. The nucleotide sequence of ori 44 and the amino acid sequence of its putative replication protein appear to be nonhomologous to other published replication origin sequences.  相似文献   

13.
An Escherichia coli F19 recA, nitrate reductase-deficient mutant was constructed by transposon mutagenesis and shown to be resistant to metronidazole. This mutant was a most suitable host for the isolation of Clostridium acetobutylicum genes on recombinant plasmids, which activated metronidazole and rendered the E. coli F19 strain sensitive to metronidazole. Twenty-five E. coli F19 clones containing different recombinant plasmids were isolated and classified into five groups on the basis of their sensitivity to metronidazole. The clones were tested for nitrate reductase, pyruvate-ferredoxin oxidoreductase, and hydrogenase activities. DNA hybridization and restriction endonuclease mapping revealed that four of the C. acetobutylicum insert DNA fragments on recombinant plasmids were linked in an 11.1-kb chromosomal fragment. DNA sequencing and amino acid homology studies indicated that this DNA fragment contained a flavodoxin gene which encoded a protein of 160 amino acids that activated metronidazole and made the E. coli F19 mutant very sensitive to metronidazole. The flavodoxin and hydrogenase genes which are involved in electron transfer systems were linked on the 11.1-kb DNA fragment from C. acetobutylicum.  相似文献   

14.
We describe a novel method of random chimeragenesis based on highly frequent deletion formation in the Escherichia coli ssb-3 strain and a deletion-directed chimera selection system that uses the rpsL(+) gene as a reporter. It enables the selection of chimeras without target gene expression and can therefore be applied to cytotoxic targets. When this system was applied to phospholipase D genes from Streptomyces septatus TH-2 and Streptomyces halstedii subsp. scabies K6 (examples of cytotoxic targets), chimeragenesis occurred between short identical sequences at the corresponding position of the parental genes with large variations. Chimeragenesis was >1,000 times more frequent in the ssb-3 background than in the ssb(+) background. We called this system repeat-length-independent broad-spectrum shuffling. It enables the convenient chimeragenesis and functional study of chimeric proteins. In fact, we found two amino acid residues related to the thermostability of phospholipase D (Phe426 and Thr433) by comparing thermostability among the chimeric enzymes obtained.  相似文献   

15.
Glutamic acid is synthesized in enteric bacteria by either glutamate dehydrogenase or by the coupled activities of glutamate synthase and glutamine synthetase. A hybrid plasmid containing a fragment of the Salmonella typhimurium chromosome cloned into pBR328 restores growth of glutamate auxotrophs of S. typhimurium and Escherichia coli strains which have mutations in the genes for glutamate dehydrogenase and glutamate synthase. A 2.2-kilobase pair region was shown by complementation analysis, enzyme activity measurements, and the maxicell protein synthesizing system to carry the entire glutamate dehydrogenase structural gene, gdhA. Glutamate dehydrogenase encoded by gdhA carried on recombinant plasmids was elevated 5- to over 100-fold in S. typhimurium or E. coli cells and was regulated in both organisms. The gdhA promoter was located by recombination studies and by the in vitro fusion to, and activation of, a promoter-deficient galK gene. Additionally, S. typhimurium gdhA DNA was shown to hybridize to single restriction fragments of chromosomes from other enteric bacteria and from Saccharomyces cerevisiae.  相似文献   

16.
The ssb-1 mutation confers severe temperature sensitivity and UV sensitivity on many strains of Escherichia coli K-12 and C, including strain C1412. However, ssb-1 confers only slight temperature sensitivity and slight UV sensitivity on strain C1a, suggesting that strain C1a contains extragenic suppressors of ssb-1. We found that introduction of the wild-type rep gene from C1a into strain C1412 ssb-1 gave strong suppression of temperature sensitivity and moderate suppression of UV sensitivity. Also, the C1a rep+ gene mildly suppressed the temperature sensitivity conferred by the ssb-113 mutation, formerly called lexC113. Suppression of the C1412 ssb-1 growth defect by C1a rep+ rendered the cells Gro- for phi X174. In contrast to the positive suppression of ssb-1 and ssb-113 by a wild-type rep gene, mutant rep alleles enhanced the severity of the ssb-1 defect, with several C1a ssb-1 double mutants being either more temperature sensitive or more UV sensitive than C1a ssb-1, depending on which mutant rep allele was used. As a control, the same rep alleles in combination with a dnaB mutation gave an allele-independent increase in temperature sensitivity. Our results on suppression of ssb-1 by rep and on the role of the genetic background in this suppression suggested that the rep and ssb proteins interact to form a subcomplex of the total DNA replication complex and that this subcomplex has some function in repair. The effects of NaCl and glucose on suppression of both the temperature sensitivity and the UV sensitivity conferred by ssb-1 and ssb-113 are described. The degree of suppression of temperature sensitivity by salt or glucose was dependent on the source of the wild-type rep allele, as well as on the genetic background.  相似文献   

17.
I van Die  B van Geffen  W Hoekstra  H Bergmans 《Gene》1985,34(2-3):187-196
The genes responsible for expression of type 1C fimbriae have been cloned from the uropathogenic Escherichia coli strain AD110 in the plasmid vector pACYC184. Analysis of deletion mutants from these plasmids showed that a 7-kb DNA fragment was required for biosynthesis of 1C fimbriae. Further analysis of this DNA fragment showed that four genes are present encoding proteins of 16, 18.5, 21 and 89 kDal. A DNA fragment encoding the 16-kDal fimbrial subunit has been cloned. The nucleotide sequence of the structural gene and of the C- and N-terminal flanking regions was determined. The structural gene codes for a polypeptide of 181 amino acids, including a 24-residue N-terminal signal sequence. The nucleotide sequence and the deduced amino acid sequence of the 1C subunit gene were compared with the sequences of the fimA gene, encoding the type 1 fimbrial subunit of E. coli K-12. The data show absolute homology at the N- and C-termini; there is less, but significant homology in the region between the N- and C-termini. Comparison of the amino acid compositions of the 1C and FimA subunit proteins with those of the F72 and PapA proteins (subunits for P-fimbriae) revealed that homology between these two sets of fimbrial subunits is also maximal at the N- and C-termini.  相似文献   

18.
大肠杆菌单链结合蛋白SSB在DNA复制、重组和修复中起着重要作用。为研究单链结合蛋白SSB的体外生物功能构建了融合蛋白SSB的表达载体并使其高效表达及易于纯化。ssb基因片段是以E.coli K-12基因组为模板经PCR扩增获得,并通过基因的体外拼接成功构建了表达载体pQE30-ssb。重组菌株M15/ pQE30-ssb经过IPTG的诱导表达了蛋白SSB。收集菌体细胞、超声波破碎后离心取上清进行SDS-PAGE分析,结果表明有一与预期分子量(20.6 kD)相应的诱导表达条带出现,其表达量约占全细胞蛋白的30%且以可溶形式存在。利用固定化金属离子(Ni2+)配体亲和层析柱纯化融合蛋白SSB,其纯度达到90%。通过凝胶层析和等离子共振技术对SSB的生物功能进行了系统研究分析。结果表明,SSB蛋白以四聚体形式与单链DNA分子结合,其亲和力常数(KD)为4.79×10-7 M。  相似文献   

19.
G Villani  A Pierre  B Salles 《Biochimie》1984,66(6):471-476
Using a two-site immunometric assay (IRMA) we quantified the concentration of single-stranded DNA binding protein (SSB) in several E. coli strains. We found approximately 7,000 monomers of SSB present per bacterium, and this number remained constant throughout the exponential phase of growth. Two ssb- mutants (ssb-1 and ssb-113) are defective in the induction of the S.O.S. pathway. One of the first functions expressed upon induction of the S.O.S. pathway is the amplification of recA protein (RECA), which we monitored by an IRMA assay similar to the one used for SSB quantification. By combining the two assays we determined the level of SSB and RECA in ssb- mutants or in SSB and RECA overproducer strains. We found: a) a normal induction of RECA following UV irradiation of E. coli bacteria overproducing SSB, b) a normal level of SSB in wild type and ssb-1 and ssb-113 mutants either in the absence or in the presence of S.O.S. inducing agents. We confirmed a severe impairment in the induction of RECA in these two mutants after nalidixic acid treatment. Our results suggest that the concentrations of RECA and SSB protein in E. coli are regulated by independent biochemical pathways.  相似文献   

20.
The thermophilic bacterium Thermoanaerobacter tengcongensis has two single-stranded DNA-binding (SSB) proteins, designated TteSSB2 and TteSSB3. In a SSB complementation assay in Escherichia coli, only TteSSB3 took over the in vivo function of EcoSSB. We have cloned the ssb genes obtained by PCR and have developed E. coli overexpression systems. The TteSSB2 and TteSSB3 consist of 153 and 150 amino acids with a calculated molecular mass of 17.29 and 16.96 kDa, respectively. They are the smallest known bacterial SSB proteins. The homology between amino acid sequences of these proteins is 40% identity and 53% similarity. They are functional as homotetramers, with each monomer encoding one single-stranded DNA binding domain (OB-fold). In fluorescence titrations with poly(dT), both proteins bind single-stranded DNA with a binding site size of about 40 nt per homotetramer. Thermostability with half-life of about 30 s at 95 degrees C makes TteSSB3 similar to the known SSB of Thermus aquaticus (TaqSSB). The TteSSB2 was fully active even after 6 h incubation at 100 degrees C. Here, we show for the first time paralogous thermostable homotetrameric SSBs, which could be an attractive alternative for known homodimeric thermostable SSB proteins in their applications for molecular biology methods and analytical purposes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号