首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract

Molecular models are proposed to describe the relative arrangement of aminoacyl and peptidyl tRNAs when bound to their respective A. and P sites on the ribosome. The crystallographically determined structures of tRNAasp and tRNAphe have served as the models for these bound structures, while the imposed steric constraints for the model complexes were based on the results of published experimental data. The constructed models satisfy the stereochemical requirements needed for codon-anticodon interaction and for peptide bond formation. In this paper, the results of the complex containing tRNAphe as the A. and P site bound transfer RNAs, is compared to a similarly constructed model which uses tRNAlsp as the ribosome-bound transfer RNAs. The models have the following three major features: 1) the aminoacyl and peptidyl transfer RNAs assume an angle of approximately 45° relative to each other; 2) in providing the proper stereochemistry for peptide bond condensation, a significant kink must be present in the messenger RNA between the A. site and P site codons; and 3) a comparison of the two model complexes indicates that structural variations between the tRNAs or any allosteric transitions of the transfer RNAs associated with codon-anticodon recognition may be accommodated in the model by way of freedom of rotation about the phosphate backbone bonds in the mRNA between consecutive codons.  相似文献   

2.
When yeast tRNAPfPhe, a derivative of tRNAPhe in which proflavine replaces the Y base, is bound simultaneously to both the peptidyl and aminoacyl sites of a 70 S Escherichia coli ribosome, there is a rapid mutual energy transfer between the two bound tRNAs. Analysis of this energy transfer yields an upper limit for the proflavine-proflavine distance of 20 Å. It also allows an unequivocal measurement of the emission spectrum of tRNAPfPhe bound at the aminoacyl site. In the presence of message this spectrum is very different from that seen in the peptidyl site, implying that in the two sites the hypermodified bases exist in significantly different environments. The rapid energy transfer leads to some loss of fluorescence anisotropy. This can be analyzed to obtain an estimate of the angle between the two proflavines: 28 ° ± 10 ° or 152 ° ± 10 °. Taken together all of these results place severe constraints on possible models of codon-anticodon complexes. The mutual energy transfer seen and analyzed on the ribosome is a convenient aspect of fluorescence spectroscopy, and it is one that should see broad application where multiple copies of a fluorescent ligand interact on a macromolecular substrate.  相似文献   

3.
Following peptide bond formation, transfer RNAs (tRNAs) and messenger RNA (mRNA) are translocated through the ribosome, a process catalyzed by elongation factor EF-G. Here, we have used a combination of chemical footprinting, peptidyl transferase activity assays, and mRNA toeprinting to monitor the effects of EF-G on the positions of tRNA and mRNA relative to the A, P, and E sites of the ribosome in the presence of GTP, GDP, GDPNP, and fusidic acid. Chemical footprinting experiments show that binding of EF-G in the presence of the non-hydrolyzable GTP analog GDPNP or GDP.fusidic acid induces movement of a deacylated tRNA from the classical P/P state to the hybrid P/E state. Furthermore, stabilization of the hybrid P/E state by EF-G compromises P-site codon-anticodon interaction, causing frame-shifting. A deacylated tRNA bound to the P site and a peptidyl-tRNA in the A site are completely translocated to the E and P sites, respectively, in the presence of EF-G with GTP or GDPNP but not with EF-G.GDP. Unexpectedly, translocation with EF-G.GTP leads to dissociation of deacylated tRNA from the E site, while tRNA remains bound in the presence of EF-G.GDPNP, suggesting that dissociation of tRNA from the E site is promoted by GTP hydrolysis and/or EF-G release. Our results show that binding of EF-G in the presence of GDPNP or GDP.fusidic acid stabilizes the ribosomal intermediate hybrid state, but that complete translocation is supported only by EF-G.GTP or EF-G.GDPNP.  相似文献   

4.
E. coli unfractionated tRNA and tRNA phe both contain a single strong ethidium binding site. Singlet-singlet energy transfer has been used to measure the distance between this site and dansyl hydrazine covalently attached to the 3' end of the tRNAs. The distance obtained is between 33 and 40 A for both samples. This is completely consistent with results from earlier NMR studies which placed the single, strong ethidium binding site of yeast tRNAphe between base pairs 6 and 7 on the aminoacyl stem. From the known tertiary structure of tRNAphe it is possible to rationalize the unusual affinity of this site and its likely existence in all tRNAs.  相似文献   

5.
Three-dimensional cryomaps have been reconstructed for tRNA-ribosome complexes in pre- and posttranslocational states at 17-A resolution. The positions of tRNAs in the A and P sites in the pretranslocational complexes and in the P and E sites in the posttranslocational complexes have been determined. Of these, the P-site tRNA position is the same as seen earlier in the initiation-like fMet-tRNA(f)(Met)-ribosome complex, where it was visualized with high accuracy. Now, the positions of the A- and E-site tRNAs are determined with similar accuracy. The positions of the CCA end of the tRNAs at the A site are different before and after peptide bond formation. The relative positions of anticodons of P- and E-site tRNAs in the posttranslocational state are such that a codon-anticodon interaction at the E site appears feasible.  相似文献   

6.
Ribosomal variants carrying mutations in active site nucleotides are severely compromised in their ability to catalyze peptide bond formation (PT) with minimal aminoacyl tRNA substrates such as puromycin. However, catalysis of PT by these same ribosomes with intact aminoacyl tRNA substrates is uncompromised. These data suggest that these active site nucleotides play an important role in the positioning of minimal aminoacyl tRNA substrates but are not essential for catalysis per se when aminoacyl tRNAs are positioned by more remote interactions with the ribosome. Previously reported biochemical studies and atomic resolution X-ray structures identified a direct Watson-Crick interaction between C75 of the A-site substrate and G2553 of the 23S rRNA. Here we show that the addition of this single cytidine residue (the C75 equivalent) to puromycin is sufficient to suppress the deficiencies of active site ribosomal variants, thus restoring "tRNA-like" behavior to this minimal substrate. Studies of the binding parameters and the pH-dependence of catalysis with this minimal substrate indicate that the interaction between C75 and the ribosomal A loop is an essential feature for robust catalysis and further suggest that the observed effects of C75 on peptidyl transfer activity reflect previously reported conformational rearrangements in this active site.  相似文献   

7.
Orientations of transfer RNA in the ribosomal A and P sites.   总被引:1,自引:1,他引:0       下载免费PDF全文
In protein synthesis, peptide bond formation requires that the tRNA carrying the amino acid (A site tRNA) contact the tRNA carrying the growing peptide chain (P site tRNA) at their 3' termini. Two models have been proposed for the orientations of two tRNAs as they would be bound to the mRNA in the ribosome. Viewing the tRNA as an upside down L, anticodon loop pointing down, acceptor stem pointing right, and calling this the front view, the R (Rich) model would have the back of the P site tRNA facing the front of the A site tRNA. In the S (Sundaralingam) model the front of the P site tRNA faces the back of the A site tRNA. Models of two tRNAs bound to mRNA as they would be positioned in the ribosomal A and P sites have been created using MC-SYM, a constraint satisfaction search program designed to build nucleic acid structures. The models incorporate information from fluorescence energy transfer experiments and chemical crosslinks. The models that best answer the constraints are of the S variety, with no R conformations produced consistent with the constraints.  相似文献   

8.
mRNAs are involved in complicated supramolecular complexes with human 40S and 80S ribosomes responsible for the protein synthesis. In this work, a derivative of nonaribonucleotide pUUCGUAAAA with nitroxide spin labels attached to the 5′-phosphate and to the C8 atom of the adenosine in sixth position (mRNA analog) was used for studying such complexes using double electron-electron resonance/pulsed electron-electron double resonance spectroscopy. The complexes were assembled with participation of tRNAPhe, which targeted triplet UUC of the derivative to the ribosomal peptidyl site and predetermined location of the adjacent GUA triplet coding for Val at the aminoacyl (A) site. The interspin distances were measured between the two labels of mRNA analog attached to the first nucleotide of the peptidyl site bound codon and to the third nucleotide of the A site bound codon, in the absence/presence of second tRNA bound at the A site. The values of the obtained interspin distances agree with those calculated for available near-atomic structures of similar complexes of 40S and 80S ribosomes, showing that neither 60S subunit nor tRNA at the A site have a noticeable effect on arrangement of mRNA at the codon-anticodon interaction area. In addition, the shapes of distance distributions in four studied ribosomal complexes allowed conclusions on conformational flexibility of mRNA in these complexes. Overall, the results of this study are the first, to our knowledge, demonstration of double electron-electron resonance/pulsed electron-electron double resonance application for measurements of intramolecular distances in multicomponent supramolecular complexes involving intricate cellular machineries and for evaluating dynamic properties of ligands bound to these machineries.  相似文献   

9.
Virginiamycin M (VM) was previously shown to interfere with the function of both the A and P sites of ribosomes and to inactivate tRNA-free ribosomes but not particles bearing peptidyl-tRNA. To explain these findings, the shielding ability afforded by tRNA derivatives positioned at the A and P sites against VM-produced inactivation was explored. Unacylated tRNA(Phe) was ineffective, irrespective of its position on the ribosome. Phe-tRNA and Ac-Phe-tRNA provided little protection when bound directly to the P site but were active when present at the A site. Protection by these tRNA derivatives was markedly enhanced by the formation of the first peptide bond and increased further upon elongation of peptide chains. Most of the shielding ability of Ac-Phe-tRNA and Phe-tRNA positioned at the A site was conserved when these tRNAs were translocated to the P site by the action of elongation factor G and GTP. Thus, a 5-10-fold difference in the protection afforded by these tRNAs was observed, depending on their mode of entry to the P site. This indicates the occurrence of two types of interaction of tRNA derivatives with the donor site of peptidyl transferase: one shared by acylated tRNAs directly bound to the ribosomal P site (no protection against VM) and the other characteristic of aminoacyl- or peptidyl-tRNA translocated from the A site (protection of peptidyl transferase against VM). To explain these data and previous observations with other protein synthesis inhibitors, a new model of peptidyl transferase is proposed.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The many interactions of tRNA with the ribosome are fundamental to protein synthesis. During the peptidyl transferase reaction, the acceptor ends of the aminoacyl and peptidyl tRNAs must be in close proximity to allow peptide bond formation, and their respective anticodons must base pair simultaneously with adjacent trinucleotide codons on the mRNA. The two tRNAs in this state can be arranged in two nonequivalent general configurations called the R and S orientations, many versions of which have been proposed for the geometry of tRNAs in the ribosome. Here, we report the combined use of computational analysis and tethered hydroxyl-radical probing to constrain their arrangement. We used Fe(II) tethered to the 5' end of anticodon stem-loop analogs (ASLs) of tRNA and to the 5' end of deacylated tRNA(Phe) to generate hydroxyl radicals that probe proximal positions in the backbone of adjacent tRNAs in the 70S ribosome. We inferred probe-target distances from the resulting RNA strand cleavage intensities and used these to calculate the mutual arrangement of A-site and P-site tRNAs in the ribosome, using three different structure estimation algorithms. The two tRNAs are constrained to the S configuration with an angle of about 45 degrees between the respective planes of the molecules. The terminal phosphates of 3'CCA are separated by 23 A when using the tRNA crystal conformations, and the anticodon arms of the two tRNAs are sufficiently close to interact with adjacent codons in mRNA.  相似文献   

11.
Eukaryotic translation termination is triggered by peptide release factors eRF1 and eRF3. Whereas eRF1 recognizes all three termination codons and induces hydrolysis of peptidyl tRNA, eRF3's function remains obscure. Here, we reconstituted all steps of eukaryotic translation in vitro using purified ribosomal subunits; initiation, elongation, and termination factors; and aminoacyl tRNAs. This allowed us to investigate termination using pretermination complexes assembled on mRNA encoding a tetrapeptide and to propose a model for translation termination that accounts for the cooperative action of eRF1 and eRF3 in ensuring fast release of nascent polypeptide. In this model, binding of eRF1, eRF3, and GTP to pretermination complexes first induces a structural rearrangement that is manifested as a 2 nucleotide forward shift of the toeprint attributed to pretermination complexes that leads to GTP hydrolysis followed by rapid hydrolysis of peptidyl tRNA. Cooperativity between eRF1 and eRF3 required the eRF3 binding C-terminal domain of eRF1.  相似文献   

12.
Ribosomes translate genetic information encoded by messenger RNAs (mRNAs) into proteins. Accurate decoding by the ribosome depends on the proper interaction between the mRNA codon and the anticodon of transfer RNA (tRNA). tRNAs from all kingdoms of life are enzymatically modified at distinct sites, particularly in and near the anticodon. Yet, the role of these naturally occurring tRNA modifications in translation is not fully understood. Here we show that modified nucleosides at the first, or wobble, position of the anticodon and 3'-adjacent to the anticodon are important for translocation of tRNA from the ribosome's aminoacyl site (A site) to the peptidyl site (P site). Thus, naturally occurring modifications in tRNA contribute functional groups and conformational dynamics that are critical for accurate decoding of mRNA and for translocation to the P site during protein synthesis.  相似文献   

13.
Trobro S  Aqvist J 《Molecular cell》2007,27(5):758-766
A major unresolved question in messenger RNA translation is how ribosomal release factors terminate protein synthesis. Class 1 release factors decode stop codons and trigger hydrolysis of the bond between the nascent polypeptide and tRNA some 75 A away from the decoding site. While the gross features of the release factor-ribosome interaction have been revealed by low-resolution crystal structures, there is no information on the atomic level at either the decoding or peptidyl transfer center. We used extensive computer simulations, constrained by experimental data, to predict how bacterial release factors induce peptide dissociation from the ribosome. A distinct structural solution is presented for how the methylated Gln residue of the universally conserved GGQ release factor motif inserts into the ribosomal A site and promotes rapid reaction with the peptidyl-tRNA substrate. This model explains key mutation experiments and shows that the ribosomal peptidyl transfer center catalyzes its two chemical reactions by a common mechanism.  相似文献   

14.
Using singlet-singlet energy transfer, we have measured the distance between the anticodons of two transfer RNAs simultaneously bound to a messengerprogramed Escherichia coli 70 S ribosome. The fluorescent Y base adjacent to the anticodon of yeast tRNAYPhe serves as a donor. A proflavine (Pf) chemically substituted for the Y base in tRNAPfPhe serves as an acceptor. By exploiting the sequential binding properties of 70 S ribosomes for two deacylated tRNAs, we can fill the strong site with either tRNAYPhe or tRNAPfPhe and then the weak site with the other tRNA. In both cases donor quenching and sensitized emission of the acceptor are observed. Analysis of these results leads to an estimate for the Y-proflavine distance of 18 ± 2 Å. This distance is very short and suggests strongly that the two tRNAs are simultaneously in contact with adjacent codons of the message. Separate experiments show that binding of a tRNA to the weak site does not perturb the environment of the hypermodified base of a tRNA bound to the strong site. This supports the assignment of the strong site as the peptidyl site. It also indicates that binding of the second tRNA proceeds without a change in the anticodon structure of a pre-existing tRNA at the peptidyl site.  相似文献   

15.
16.
Models for two tRNAs bound to successive codons on mRNA on the ribosome   总被引:2,自引:0,他引:2  
We have investigated the structural changes necessary to build a model complex of two molecules of phenylalanine transfer RNA (tRNA(Phe) bound to successive codons in a short segment of a model messenger RNA (mRNA), consisting of U6. We keep the mRNA in an ideal helical conformation, deforming the tRNAs as necessary to eliminate steric overlaps while bringing the two 3' termini together. The resulting model has the two tRNAs oriented relative to one another in a manner that is very similar to a model developed by McDonald and Rein (1) in which the tRNAs maintain their ideal crystallographic conformations and all of the deformations are introduced into the mRNA. Consequently, regardless of how one divides the deformations between the tRNAs and the mRNA it is clear that, on the ribosome, the tRNA in the P site has its "front" side (that side with the variable loop) close to the "back" side of the tRNA in the A site (that side with the D loop). The space between the two molecules must be left free on the ribosome, in order to facilitate the transition from the A site to the P site. A detailed pathway is also proposed for changing the anticodon loop structure from that of the A site to that of the P site. The anticodon loop is always kept in a 3'-stacked conformation, since we find that the shift between the 3'-stacked and 5'-stacked structures proposed by Woese (2) is not feasible.  相似文献   

17.
The 3' terminus of tRNAs has the universally conserved bases C74C75A76 that interact with the ribosomal large subunit. In the ribosomal P site, bases C74 and C75 of tRNA, form Watson-Crick base-pairs with G2252 and G2251, respectively, present in the conserved P-loop of 23 S rRNA. Previous studies have suggested that the G2252-C74 base-pair is important for peptide bond formation. Using a pure population of mutant ribosomes, we analyzed the precise role of this base-pair in peptide bond formation, elongation factor G-dependent translocation, and peptide release by release factor 1. Surprisingly, our results show that the G2252-C74 base-pair is not essential for peptide bond formation with intact aminoacyl tRNAs as substrates and for EF-G catalyzed translocation. Interestingly, however, peptide release was reduced substantially when base-pair formation between G2252 and C74 of P site tRNA was disrupted, indicating that this conserved base-pair plays an important role in ester bond hydrolysis during translation termination.  相似文献   

18.
Ribosomes catalyze the formation of peptide bonds between aminoacyl esters of transfer RNAs within a catalytic center composed of ribosomal RNA only. Here we show that the reaction of P-site formylmethionine (fMet)-tRNA(fMet) with a modified A-site tRNA substrate, Phelac-tRNA(Phe), in which the nucleophilic amino group is replaced with a hydroxyl group, does not show the pH dependence observed with small substrate analogs such as puromycin and hydroxypuromycin. This indicates that acid-base catalysis by ribosomal residues is not important in the reaction with the full-size substrate. Rather, the ribosome catalyzes peptide bond formation by positioning the tRNAs, or their 3' termini, through interactions with rRNA that induce and/or stabilize a pH-insensitive conformation of the active site and provide a preorganized environment facilitating the reaction. The rate of peptide bond formation with unmodified Phe-tRNA(Phe) is estimated to be >300 s(-1).  相似文献   

19.
The ribosomes stalled at the end of non‐stop mRNAs must be rescued for productive cycles of cellular protein synthesis. Escherichia coli possesses at least three independent mechanisms that resolve non‐productive translation complexes (NTCs). While tmRNA (SsrA) mediates trans‐translation to terminate translation, ArfA (YhdL) and ArfB (YaeJ) induce hydrolysis of ribosome‐tethered peptidyl‐tRNAs. ArfB is a paralogue of the release factors (RFs) and directly catalyses the peptidyl‐tRNA hydrolysis within NTCs. In contrast, the mechanism of the ArfA action had remained obscure beyond its ability to bind to the ribosome. Here, we characterized the ArfA pathway of NTC resolution in vitro and identified RF2 as a factor that cooperates with ArfA to hydrolyse peptidyl‐tRNAs located in the P‐site of the stalled ribosome. This reaction required the GGQ (Gly–Gly–Gln) hydrolysis motif, but not the SPF (Ser–Pro–Phe) codon–recognition sequence, of RF2 and was stimulated by tRNAs. From these results we suggest that ArfA binds to the vacant A‐site of the stalled ribosome with possible aid from association with a tRNA, and then recruits RF2, which hydrolyses peptidyl‐tRNA in a GGQ motif‐dependent but codon‐independent manner. In support of this model, the ArfA‐RF2 pathway did not act on the SecM‐arrested ribosome, which contains an aminoacyl‐tRNA in the A‐site.  相似文献   

20.
Scanning transmission electron microscopic images of transfer RNAs reveal the molecular dimensions and compact morphology of these small macromolecules in unprecedented detail. Selective labeling of a sulfhydryl group on 2-thiocytidine enzymatically inserted at position 75 at the 3' end of yeast tRNA(Phe) with an undecagold cluster permits identification of this specific tRNA site by dark field STEM. Imaging of a single nucleotide at a defined location on the tRNA molecule should make it possible to localize in situ tRNAs at the A, P, and E sites of the ribosomal peptidyl transferase center, and in complexes of tRNA with enzymes and elongation factors. In addition, this approach may be used for the highly specific topographical mapping of other RNAs and/or biological macromolecular complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号