首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Immediately after far (254) nm and near (300--380 nm) UV light in small and moderate doses alcian blue sorption by glycocalix of Zaidela ascitic hepatoma cells decrease, which is indicative of destruction and solubilization. The effect of UV light on the cell surface is compared with the action of trypsin. Contribution of the damage of outer perimembrane layers to the lethal effect of UV light is discussed.  相似文献   

2.
The curves of UV (254 nm) induced pyrimidine dimers (endonuclease sensitive sites) vs. photoreactivating blacklight (365 nm) dose for cultured chick embryo fibroblasts reveal several new features. When the cells are incubated in the dark at 37 degrees following UV (254 nm) treatment, the efficiency of subsequent photorepair increases for the first few hours post-UV. The efficiency then remains approximately constant for several hours. Photorepair data obtained during this later period were plotted as the logarithm of dimer-enzyme complexes available for photoreactivation vs. blacklight (365 nm) dose. For a fixed damaging UV (254 nm) dose, the resulting curve has a shoulder of approximately 6-10 kJ/m2 followed by a straight line portion with a slope of magnitude about 1.5 X 10(-4) m2/J for UV doses up to 15 J/m2. For higher UV doses the shoulder remains about the same, but the slope decreases in magnitude. The shoulder is interpreted to indicate that a light-dependent step is necessary to activate the enzyme. The decrease in slope with increased UV dose together with some split photoreactivation dose experiments suggests that some site-to-site motion and multiple site function of the photorepair enzyme molecules may come into play at the higher levels of damage, but the evidence indicates that these complications are relatively unimportant at low UV doses.  相似文献   

3.
李双明  孙蕊  骆浩  孙愫  王莹  付玉杰 《植物研究》2007,27(4):500-503
分别采用254、365 nm两种波长的紫外光对东北红豆杉鲜叶进行辐射,研究了波长、辐射时间以及样品处理方式对东北红豆杉鲜叶中紫杉醇及三尖杉宁碱含量变化的影响。结果表明,东北红豆杉鲜叶经匀浆处理后接受紫外辐射,两种波长的紫外光都可以使紫杉醇及三尖杉宁碱的含量增加,但不同波长对紫杉醇及三尖杉宁碱含量提高的趋势却不相同。365 nm的紫外光辐射2 h时使紫杉醇和三尖杉宁碱含量均提高到了最大值,两种物质含量分别提高了44.6%和53.0%,而254 nm的紫外光在辐射8 h时才达到最大值,两种物质含量分别提高了39.2%和24.3%。可以选取365 nm的紫外光对东北红豆杉鲜叶水匀浆体系进行辐射,快速高效地提高鲜叶内紫杉醇和三尖杉宁碱的含量。  相似文献   

4.
Reversion to tryptophan independence induced by 365-nm and 254-nm radiation was studied in Escherichia coli WP2s (B/r trp uvrA). Under aerobic conditions, the mutant frequency responses was of the fluence-square or "two-hit" type at both 365 and 254 nm when revertants were assayed on minimal agar supplemented with 2% nutrient broth (SEM plates). In contrast, when mutants were assayed on minimal agar supplemented with tryptophan only, the revertant yield was reduced to very low values at 365 nm, whereas values substantially greater than with SEM plates were obtained at 254 nm. Premutational lesions induced by both 365-nm and 254-nm radiation were photoreactivated more than 10-fold when assayed on SEM plates, implicating pyrimidine dimers as premutational lesions at both wavelengths. The strong photoreactivation of 365-nm-induced mutagenesis contrasted strikingly with the complete absence of photoreactivation of 365-nm-induced lethality in this strain.  相似文献   

5.
The cytophotometrical analysis of the relationships between the content of DNA--fuchsin and the duration of acid hydrolysis of the intranuclear DNA (the Feulgen reaction) in the Zaidela hepatoma cells allows to see the degree of the DNA--protein binding. The UV irradiation of different wave-lengths (254, 325 and 365 nm, resp.) irrespective of the degree of absorption by nucleic acids, causes changes in chromatin condensation, thus suggesting the labilization of DNA--protein bounds.  相似文献   

6.
A strong lethal interaction was observed between various monochromatic wavelengths (254, 334, 365, and 405 nm) in the repair-proficient E. coli K-12 strain AB 1157, except in the case of preexposure to 405-nm radiation which resulted in a protection against the inactivation resulting from subsequent exposure to 365-or 254-nm radiations. The results may be tentatively explained by assuming two classes of DNA lesions and two classes of damage to repair (reversible and inrreversible) whose proportions vary according to wavelength.  相似文献   

7.
Action spectra were determined for cell killing and mutation by monochromatic ultraviolet and visible radiations (254-434 nm) in cultured human epithelial P3 cells. Cell killing was more efficient following radiation at the shorter wavelengths (254-434 nm) than at longer wavelengths (365-434 nm). At 254 nm, for example, a fluence of 11 Jm-2 gave 37% cell survival, while at 365 nm, 17 X 10(5) Jm-2 gave equivalent survival. At 434 nm little killing was observed with fluences up to 3 X 10(6) Jm-2. Mutant induction, determined at the hypoxanthine-guanine phosphoribosyltransferase locus, was caused by radiation at 254, 313, and 365 nm. There was no mutant induction at 334 nm although this wavelength was highly cytotoxic. Mutagenesis was not induced by 434 nm radiation, either. There was a weak response at 405 nm; the mutant frequencies were only slightly increased above background levels. For the mutagenic wavelengths, log-log plots of the mutation frequency against fluence showed linear regressions with positive slopes of 2.5, consistent with data from a previous study using Escherichia coli. The data points of the action spectra for lethality and mutagenesis were similar to the spectrum for DNA damage at wavelengths shorter than 313 nm, whereas at longer wavelengths the lethality spectrum had a shoulder, and the mutagenesis spectrum had a secondary peak at 365 nm. No correlation was observed for the P3 cells between the spectra for cell killing and mutagenesis caused by wavelengths longer than 313 nm and the induction of DNA breakage or the formation of DNA-to-protein covalent bonds in these cells.  相似文献   

8.
Phospholipid quantum dot micelles are useful for bio‐applications because of their amphiphilicity and exceptional biocompatibilities. We investigated the uptake of phospholipid [polyethylene glycol (PEG), biotin, and folic acid terminated] modified CdSe/ZnS quantum dot micelles by cancer cells and its photostability under ultrviolet light in the C spectrum (UV‐C) (254 nm) or UV‐A (365 nm) light irradiation. The stability of micelles to the exposure of UV‐C and UV‐A light was assessed. Biotin‐modified quantum dot micelles give photoluminescence enhancement under UV‐C light irradiation. Folate modified micelle under UV‐C and UV‐A results show considerable photoluminescence enhancement. Photoluminescence lifetime measurements showed 7.04, 8.11 and 11.42 ns for PEG, folate, and biotin terminated phospholipid micelles, respectively. Folate and biotin‐modified quantum dot micelles showed excellent uptake by HeLa cells under fluorescence confocal microscopy. Phospholipid CdSe/ZnS quantum dot micelles can be potentially used for diagnosis and treatment of cancer in the future.  相似文献   

9.
The effect of UV radiation (254 and 366 nm) on isoflavonoid production in Genista tinctoria callus cultures was investigated. The production of the separated isoflavonoids in callus culture of G. inctoria was changed in the dependence on wavelength of UV treatment. Genistin, genistein, daidzein, biochanin A in higher levels were formed after UV irradiation in callus culture in comparison with untreated callus culture. Maximal genistin content (3.03%) was reached after treatment of UV 254 nm for 300 s (sampled after 48 h). High genistin content (2.06%) was observed also after 120 s of UV 366 nm radiation (sampled after 48 h). Formononetin was detected only after UV treatment in G. tinctoria callus culture.  相似文献   

10.
Gelatin having p-nitrocinnamate pendant groups (Gel-NC) was prepared via an efficient one-pot synthesis, yield >87%. (1)H NMR data indicated that 1 mol of gelatin was modified with 18 +/- 6 mol of the photosensitive group. Upon exposure to low-intensity 365 nm UV light and in the absence of photoinitiators or catalysts, Gel-NC cross-linked within minutes into a gelatin-based hydrogel as monitored by UV-vis spectroscopy. The degree of swelling of this biodegradable hydrogel in aqueous solutions responded to changes in Gel-NC concentration levels, the ionic strength of the aqueous solutions, and photo-cross-linking time. Topography changes associated with phase transition resulting from "photocleavage" of the hydrogel network with 254 nm UV light were studied with AFM. Both Gel-NC and its hydrogel expressed low toxicity to human neonatal fibroblast cells. In addition, gelatin-based microgels were prepared via the photo-cross-linking of Gel-NC within inverse micelles.  相似文献   

11.
Haploid wild-type and mutant cells of Saccharomyces carrying one of the single genes rad2-20 or rad9-4 and the double mutant rad2-20rad9-4 were tested for their response to a treatment with 8-methoxypsoralen plus 365 nm light using immediate and delayed plating techniques. The mutant defective in the excision of ultraviolet-induced pyrimidine dimers (rad2-20) as well as that presumably deficient in a recombinational repair system (rad9-4) are more sensitive than wild type cells. The double mutant (rad2-20rad9-4) demonstrates a higher sensitivity than each of the single mutants, indicating that at least two pathways are involved in the repair of the 8-methoxypsoralen plus 365 nm induced damages. In all cases survival curves have shoulders. The survival of wild type and rad9-4 cells is increased after dark holding whereas it remains constant for the rad2-20 mutant and for the double mutant. These results show that the induced damages are reparable. Respiratory deficient mutant (p-) were compared to the corresponding respiratory competent cells. It is shown that the respiratory function is required for the expression of the excision repair activity. The 8-methoxypsoralen plus 365 nm ligh treatment appears to be less effective than ultraviolet irradiation (254 nm) in the induction of the cytoplasmic 'petite' mutation at the same survival levels.  相似文献   

12.
Hydroxamic acid-based histone deacetylase inhibitors (HDACi) are a class of epigenetic agents with potentially broad therapeutic application to several disease states including post angioplasty mediated neointimal hyperplasia (NIH). Precise spatiotemporal control over the release of HDACi at the target blood vessel site is required for the safe and successful therapeutic use of HDACi in the setting of drug eluting balloon catheter (DEBc) angioplasty treatment of NIH. We aimed to develop and characterise a novel photoactive HDACi, as a potential coating agent for DEBc.Metacept-3 1 was caged with a photo-labile protecting group (PPG) to synthesise a novel UV365nm active HDACi, caged metacept-3 15. Conversion of caged metacept-3 15 to active/native metacept-3 1 by UV365nm was achievable in significant quantities and at UV365nm power levels in the milliwatt (mW) range.In vitro evaluation of the biological activity of pre and post UV365nm activation of caged metacept-3 15 identified significant HDACi activity in samples exposed to short duration, mW range UV365nm. Toxicity studies performed in human umbilical vein endothelial cells (HUVEC’s) identified significantly reduced toxicity of caged metacept-3 15 pre UV365nm exposure compared with native metacept-3 1 and paclitaxel (PTX).Taken together these findings identify a novel photo-activated HDACi, caged metacept-3 15, with pharmacokinetic activation characteristics and biological properties which may make it suitable for evaluation as a novel coating for targeted DEBc angioplasty interventions.  相似文献   

13.
Irradiation of the Zaidela ascite hepatoma cells with physiological doses of shortwave length (254 nm) and longwave length (300-380 nm) UV light (far and near UV radiation) is accompanied by the release of ribonucleoproteins (RNP) from the cells, whose amounts increase with dose. Irradiation with far and near UV light leads to the release of high-molecular and low-molecular RNP, respectively. No deoxyribonucleoprotein were found among the released substances. Non-protein fractions, released from irradiated cells, contain carbohydrate-like substances. At maximum far and near UV doses the amounts of these substances constitute 180-190% of the control and 6% of their amount in intact cells. After irradiation with far UV light, relatively high-molecular carbohydrates are released, while near UV light treatment induces the release of low-molecular carbohydrates. The criteria tested show that the efficiency of far UV light exceeds that of near UV light by one order.  相似文献   

14.
We examine whether the rate of delivery of photons from a UV radiation source has an effect on the inactivation of spores. We directly compare the output of a high-peak-power UV laser source at 248 nm to a low-power continuous lamp source (254 nm) in the inactivation of Bacillus subtilis spores. The two UV sources differ by a factor of 10(8) in peak power. Contrary to previous reports, no clear differences in spore survival were observed.  相似文献   

15.
The kinetics of photoreversal of UV-induced dimers in the DNA of early passage chick embryo fibroblasts was studied by monitoring disappearance of UV-endonuleae-sensitive sites. Photorepair was found to increase in efficiency when cells were incubated in the dark for several hours at 37°C following the dimer-inducing short-wavelength (254 nm) UV treatment, but prior to the photoreactivating black light (365 nm). Folllowing a UV dose of 10 J/m2 it took at least 4 h in the dark to saturate this effect. This UV dose inserts roughly 2.4 dimer/107 daltons of DNA. Dark repair removes about 0.08 dimers /h/107 daltons. After 6 h in the dark, exposure to black light removes an additional 1.4 dimers /107 daltons leaving about 0.5 dimers unaffected by this treatment. After saturation of the dark effect, the amount of photoreactivation depends only on total black light fluence and not on fluence rate for the range of rates studied. This indicates that during 30 min, the maximum time of black light exposure, no appreciable reattachment of the photorepair molecule to additional unrepaired dimer sites occurs. We estimate that the number of effective photorepair molecules per chick chick cell is at least of the order of 2 × 105.  相似文献   

16.
The digital fluorescent imaging for documentation and analysis of gel electrophoretic separations of nucleic acids and proteins is widely used in quantitative biology. Most fluorescent stains used in postelectrophoretic analysis of proteins and nucleic acids have significant excitation peaks with UV light (300-365 nm), making midrange UV (UV-B) as the excitation source of choice. However, coupling quantitative CCD imaging with UV is difficult due to lack of uniformity found in typical UV transilluminators. The apparent amount of those macromolecules depends on the position of the gel band on the imaging surface of the transilluminator. Here, we report the development and validation of a highly uniform UV transillumination system. Using a novel high density lighting system containing a single lamp formed into a high density grid, an electronic ballast, a phosphor coating, and a bandpass filter to convert 254 nm light produced to 300-340 nm, uniformity of 80% CV observed in typical UV transilluminators. This system has been used for the quantitative analysis of electrophoretically separated nucleic acids and proteins (CV相似文献   

17.
Mutation to tryptophan independence after exposure to radiation at the monocrhomatic wavelengths of 254 and 365 nm was studied and compared in 7 strains of Escherichia coli B/r that differ in repair capability. Efficient mutation induction was obtained with both 254-nm and 365-nm radiation with strains WP2 (wild-type), WP2s (uvrA), WP6s (polA uvrA). Mutants were not induced at either wavelength in the lexA strain WP5 or the recA strains WP10 and WP100. These results support the induction of mutants with 365-nm radiation through the error-prone (SOS) pathway of postreplication repair. Log-log plots of tryptophan revertant data at 254 nm showed the expected slopes of approximately 2.0 over the entire influence range tested. In contrast, similar plots of revertant data at 365 nm were complex in all cases tested: at low fluence values (survival greater than 0.5) in all cases where reversion occurred the slopes were approximately 1.0, while at higher fluences (survival less than 0.5) the slopes of the log-log plots were approximately 3.0 with strains WP2s and WP6s, approximately 4.0 with strain WP6 and approximately 6.0 with strain WP2. Differential sensitivity of components of excision and postreplication repair systems to 365-nm radiation may account for the 2-part mutation curves obtained with uvr+ rec+ lex+ strains. It is proposed that efficient error-free repair of mutational lesions occurs at 365-nm fluences below 2–4×105 J m2−; at greater 365-nm fluences, error-free excision repair may be selectively inhibited, forcing a greater fraction of mutational lesions to be processed by the error-prone component of the postreplication repair system. The similarity of the mutational responses of WP2s and WP6 at 365 nm supports the selective inhibition of error-free excision repair.  相似文献   

18.
Mutations to ouabain resistance (selecting for base modifications at the co-dominant Na+K+-dependent ATP-ase locus) and thioguanine resistance (selecting for a wide range of genetic changes at the recessive hypoxanthine-guanine phosphoribosyl transferase locus) were measured in a repair-proficient human lymphoblastoid line with defined monochromatic radiations in the UVC (254 nm), UVB (302 nm, 313 nm), UVA (334 nm, 365 nm) and visible (405 nm) ranges. No mutations were detected at wavelengths in the range 334-405 nm. At 254 nm and 313 nm, both mutations to thioguanine resistance and survival were consistent with those expected from the relative levels of cyclobutane-type pyrimidine dimers induced. However, at 313 nm, the ratio of ouabain-resistant to thioguanine-resistant mutants is 10 times higher than at 254 nm, indicating that a unique type of pre-mutagenic base damage is induced at the longer wavelength. Radiation in the UVA (334 nm) range reduced the induction of mutations by a UVC (254 nm) wavelength at both mutation markers. These results suggest, first, that distinct types of biologically expressed genetic damage may be induced in the UVB region of sunlight and, second, that strong interactions may occur between the different wavelength regions of sunlight that can modify the expression of this genetic damage in human cells.  相似文献   

19.
The mutational interaction between radiation at 365 and 254 nm was studied in various strains of E. coli by a mutant assay based on reversion to amino-acid independence in full nutrient conditions. In the two repair-proficient strains (K12 AB 1157 and B/r), pre-treatment with radiation at 365 nm strongly suppressed the induction of mutations by far-UV, a phenomenon accompanied by a strong lethal interaction. The frequency of mutations induced by far-UV progressively declined with increasing dose of near-UV. Far-UV-induced mutagenesis to T5 resistance was almost unaltered by pre-treatment with near-UV. In AB 1886 uvrA there was no lethal interaction between the two wavelengths but the mutagenic interaction was synergistic. This synergism was maximal at a 365-nm dose of 8 X 10(5) J m-2. It is proposed that in the wild-type strain, cells containing potentially mutagenic lesions are selectively eliminated from the population because of abortive excision of an error-prone repair-inducing signal. In excisionless strains, 365-nm radiation may be less damaging to the error-prone than to the error-free post-replication repair system. Alternatively, mutation may be enhanced because of the occurrence of error-prone repair of 365-nm lesions by a system that is not induced in the absence of 254-nm radiation.  相似文献   

20.
The ability of ultraviolet (UV) light to inactivate viruses is well established. However, attempts to apply this to the manufacture of pharmaceutical proteins have been limited by incomplete treatment, low capacity or excessive dilution. Effective processing of large-scale batches of UV-opaque protein solutions has been achieved using a continuous-flow device. The operation of this device has been modelled and a design equation derived to relate the processing conditions and product characteristics to the degree of virus inactivation obtained. Variables included in the model are UV-absorbance at 254 nm (A(254)), hydrodynamic properties of the protein solution, residence time, intensity of UV light and diameter and length of irradiation tube. With this information a specific constant was calculated for each virus which denotes its relative sensitivity to UV and from which the degree of virus inactivation expected can be estimated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号