首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A major challenge in the application of cytotoxic anti-cancer drugs is their general lack of selectivity, which often leads to systematic toxicity due to their inability to discriminate between malignant and healthy cells. A particularly promising target for selective targeting are the folate receptors (FR) that are often over-expressed on cancer cells. Here, we report on a conjugate of the pentadentate nitrogen ligand N4Py to folic acid, via a cleavable disulphide linker, which shows selective cytotoxicity against folate receptor expressing cancer cells.  相似文献   

2.
A major area of cancer research focuses on improving the specificity of therapeutic agents by engineering drug-delivery vehicles that target overexpressed receptors on tumor cells. One of the most commonly used approaches involves targeting of folate receptors using folic acid conjugated to a drug-containing macromolecular cargo. Once internalized via endocytosis, the drugs must be released from these constructs in order to avoid being trapped in the endosomes. Here, we describe the synthesis of a small-molecule conjugate that couples folic acid to doxorubicin via a photocleavable linker. Using HPLC we show that the doxorubicin can be released with light rapidly and with high efficiency. This approach has advantages over macromolecular systems due to its simplicity and efficiency.  相似文献   

3.
Aiming to develop selective anticancer drugs, we designed and synthesized three disulfides bearing a folic acid moiety as candidate folate receptor (FR)-targeted prodrugs of thiolate histone deacetylase inhibitors. Among them, compound 1 displayed growth-inhibitory activity toward folate receptor-positive MCF-7 breast cancer cells. The activity of 1 was significantly reduced by free folic acid, suggesting that cellular uptake of 1 is mediated by FR.  相似文献   

4.
A novel glucose-conjugated paclitaxel 5 was synthesized using succinic acid as linker between 2'-paclitaxel and methyl 2'-glucopyranose. 5 has not only improved the pharmaceutical properties of paclitaxel, such as solubility and stability, but also enhanced the specific target delivery to MCF-7 cells without the cytotoxicity against normal cells. Therefore, the glucose conjugation may be potentially used in the targeted delivery of other drugs into cells via glucose transporters (GLUTs) for cancer therapy.  相似文献   

5.
An efficient synthesis of the folate receptor (FR) targeting conjugate EC145 is described. EC145 is a water soluble derivative of the vitamin folic acid and the potent cytotoxic agent, desacetylvinblastine monohydrazide. Both molecules are connected in regioselective manner via a hydrophilic peptide spacer and a reductively labile disulfide linker.  相似文献   

6.
Recent researches in photodynamic therapy have focused on novel techniques to enhance tumour targeting of anticancer drugs and photosensitizers. Coupling a photosensitizer with folic acid could allow more effective targeting of folate receptors which are over-expressed on the surface of many tumour cells. In this study, different folic acid–OEG-conjugated photosensitizers were synthesized, characterized and their photophysical properties were evaluated. The introduction of an OEG does not significantly improve the hydrophilicity of the FA–porphyrin. All the FA-targeted photosensitizers present good to very good photophysical properties. The best one appears to be Ce6. Molar extinction coefficient, fluorescence and singlet oxygen quantum yields were determined and were compared to the corresponding photosensitizer alone.  相似文献   

7.
Lipotropes, a methyl group containing nutrients, including choline, methionine, folic acid, and vitamin B(12), are essential nutrients for humans. They are important methyl donors that interact in the metabolism of one-carbon units and are essential for the synthesis and methylation of deoxyribonucleic acid. The purpose of this study was to examine the effects of excess lipotropes on the growth of a human breast cancer cell line, MCF-7, and normal mammary cells, MCF-10A, in culture. Both cell lines were grown in basal culture medium for 24 h and then switched to medium supplemented with 50 times the amount of each lipotrope as basal culture medium (control). Although there were no significant differences in growth between treatments in either cell line, gene array and Northern analysis revealed that expression of bcl-2 was decreased in lipotrope-treated MCF-7 cells. The ability to induce tumor cell death could have many uses in the prevention and treatment of cancer. Bcl-2 regulates apoptosis and has been shown to directly affect the sensitivity of cancer cells to chemotherapy agents, and it is suggested that strategies designed to block Bcl-2 might prove useful in sensitizing tumor cells to chemotherapy-induced apoptosis. This study shows that although excess lipotropes do not inhibit the growth of breast cancer cells, they can down-regulate the bcl-2 gene, suggesting that lipotropes may increase the susceptibility of breast cancer cells to anticancer drugs.  相似文献   

8.
Poly(vinyl alcohol) microcapsules have been tailored as carriers to deliver camptothecin, an anticancer drug poorly soluble in water. The capsules have been reacted with a chitosan--folate complex in order to selectively target cancer cells overexpressing the folic acid receptor. Microcapsules decorated with the chitosan--folate complex have been characterized in their uptake and release of camptothecin, following the absorption band at λ = 370 nm diagnostic of the drug molecule. The selectivity of chitosan-folate microcapsules in targeting cancer cells has been demonstrated by fluorescence microscopy using HeLa cells, overexpressing the folate receptor and NIH3t3 fibroblasts as a negative control. The chitosan--folate microcapsules loaded with camptothecin significantly reduce the proliferation of HeLa tumor cells, while they have a negligible effect on fibroblasts. This work demonstrates that the chitosan--folate microcapsules represent a promising system to selectively target hydrophobic drugs, such as camptothecin, to tumor cells.  相似文献   

9.
The vast majority of anticancer drugs in clinical use are limited by systemic host toxicity due to their non-specific side effects. These shortcomings have led to the development of tumour specific drugs which target a single-deregulated pathway or over expressed receptor in cancer cells. Whilst this approach has achieved clinical success, we have also learnt that targeting a single entity in cancer is rarely curative due to the large number of deregulated pathways, receptors and kinases which are also present, in addition to the target. An attractive alternative to improve targeting would be to harness the already established activity of known anticancer drugs by attaching them to a molecule that is transported into cancer cells via a selective transport system. One possibility for this approach is the polyamine pathway. This review provides a brief overview of the polyamine pathway and how, over the years, it has proved an exciting target for the development of novel anticancer agents. However, the focus of this article will be on the properties of the polyamine transport system and how these features could potentially be exploited to develop a novel and selective anticancer drug delivery system.  相似文献   

10.
The development of tumor-targeting drug delivery systems, able to selectively transport cytotoxic agents into the tumor site by exploiting subtle morphological and physiological differences between healthy and malignant cells, currently stands as one of the most attractive anticancer strategies used to overcome the selectivity problems of conventional chemotherapy. Owing to frequent overexpression of folate receptors (FRs) on the surface of malignant cells, conjugation of cytotoxic agents to folic acid (FA) via suitable linkers have demonstrated to enhance selective drug delivery to the tumor site. Herein, the chemical synthesis and biological evaluation of two novel folate-conjugates bearing the anticancer agent chlorambucil (CLB) tethered to either an aminoether (4,7,10-trioxa-1,13-tridecanediamine) or a pseudo-β-dipeptide (β-Ala-ED-β-Ala) linker is reported. The two drug delivery systems have been prepared in high overall yields (54% and 34%) through straightforward and versatile synthetic routes. Evaluation of cell specificity was examined using three leukemic cell lines, undifferentiated U937 (not overexpressing FRs, FR(-)), TPA-differentiated U937 (overexpressing FRs, FR(+)), and TK6 (FR(+)) cells. Both conjugates exhibited high specificity only to FR(+) cells (particularly TK6), demonstrating comparable antitumor activity to CLB in its free form. These data confirm the reliability of folate-based drug delivery systems for targeted antitumor therapy; likewise, they lay the foundations for the development of other folate-conjugates with antitumor potential.  相似文献   

11.
Synthesis and activity of a folate peptide camptothecin prodrug   总被引:4,自引:0,他引:4  
A folate receptor targeted camptothecin prodrug was synthesized using a hydrophilic peptide spacer linked to folate via a releasable disulfide carbonate linker. The conjugate was found to possess high affinity for folate receptor-expressing cells and inhibited cell proliferation in human KB cells with an IC(50) of 10nM. Activity of the prodrug was completely blocked by excess folic acid, demonstrating receptor-mediated uptake.  相似文献   

12.
目的:探讨血清同型半胱氨酸(Hcy)、叶酸以及维生素B12在胃癌及癌前疾病中的水平及临床意义。方法:收集2014年1月至2016年8月我院收治的100例胃癌患者(胃癌组),及100例胃良性病变患者包括41例胃炎、34例胃溃疡、25例胃息肉(癌前病变组),并于同期随机选择200例健康体检者为对照组,采用循环酶法测定三组的血清Hcy,电化学发光免疫分析法测定叶酸及维生素B12水平,并分析各指标与胃癌临床病理特征的关系。结果:胃癌组、癌前病变组血清Hcy水平均高于对照组,叶酸及维生素B12水平均低于对照组,并且胃癌组血清Hcy水平高于癌前病变组,叶酸及维生素B12水平低于癌前病变组,差异有统计学意义(P0.05)。Ⅲ+Ⅳ期胃癌患者Hcy水平高于Ⅰ+Ⅱ期,进展期患者Hcy水平高于早期,有淋巴结转移患者Hcy水平高于无转移者,差异有统计学意义(P0.05);Hcy表达与性别、年龄、病变位置以及分化程度无关,差异无统计学意义(P0.05)。叶酸、维生素B12的表达在胃癌患者中与各临床病理特征(性别、年龄、TNM分期、肿瘤浸润深度、病变位置、有无淋巴结转移、分化程度)无明显关系,差异无统计学意义(P0.05)。结论:血清Hcy在胃癌患者中呈高水平表达,而叶酸及维生素B12呈低水平表达,联合检测三种指标有助于早期区分胃癌及癌前病变,同时血清Hcy还可能参与了胃癌的发生发展过程。Hcy、叶酸及维生素B12可作为早期鉴别诊断胃癌及其癌前病变的重要指标。  相似文献   

13.
Macromolecules have been developed as carriers of low-molecular-weight drugs in drug delivery systems (DDS) to improve their pharmacokinetic profile or to promote their uptake in tumor tissue via enhanced permeability and retention (EPR) effects. In the present study, recombinant human serum albumin dimer (AL-Dimer), which was designed by linking two human serum albumin (HSA) molecules with the amino acid linker (GGGGS)(2), significantly accumulated in tumor tissue even more than HSA Monomer (AL-Monomer) and appearing to have good retention in circulating blood in murine colon 26 (C26) tumor-bearing mice. Moreover, we developed S-nitrosated AL-Dimer (SNO-AL-Dimer) as a novel DDS compound containing AL-Dimer as a carrier, and nitric oxide (NO) as (i) an anticancer therapeutic drug/cell death inducer and (ii) an enhancer of the EPR effect. We observed that SNO-AL-Dimer treatment induced apoptosis of C26 tumor cells in vitro, depending on the concentration of NO. In in vivo experiments, SNO-AL-Dimer was found to specifically deliver large amounts of cytotoxic NO into tumor tissue but not into normal organs in C26 tumor-bearing mice as compared with control (untreated tumor-bearing mice) and SNO-AL-Monomer-treated mice. Intriguingly, S-nitrosation improved the uptake of AL-Dimer in tumor tissue through augmenting the EPR effect. These data suggest that SNO-AL-Dimer behaves not only as an anticancer therapeutic drug, but also as a potentiator of the EPR effect. Therefore, SNO-AL-Dimer would be a very appealing carrier for utilization of the EPR effect in future development of cancer therapeutics.  相似文献   

14.
Ligand-mediated targeting of drugs especially in anticancer drug delivery is an effective approach. Dendrimers, due to unique surface topologies, can be a choice in this context. In the present study, PAMAM (polyamidoamine) dendrimers up to fourth generation were synthesized and characterized through infrared (IR), nuclear magnetic resonance (NMR), electrospray ionization (ESI) mass spectrometric, and transmission electron microscopic (TEM) techniques. Primary amines present on the dendritic surface were conjugated through folic acid and folic acid-PEG (poly(ethylene glycol))-NHS (N-hydroxysuccinimide) conjugates. Tumor in mice was induced through the use of KB cell culture. Prepared dendritic conjugates were evaluated for the anticancer drug delivery potential using 5-FU (5-fluorouracil) in tumor-bearing mice. Approximately 31% of 5-FU was loaded in folate-PEG-dendritic conjugates. Results indicated that folate-PEG-dendrimer conjugate was significantly safe and effective in tumor targeting compared to a non-PEGylated formulation. Tailoring of dendrimers via PEG-folic acid reduced hemolytic toxicity, which led to a sustained drug release pattern as well as highest accumulation in the tumor area.  相似文献   

15.
光声治疗是一种利用纳米材料的光声效应选择性破坏癌细胞的方法。本研究采用叶酸作为肿瘤靶向分子,以聚乙二醇包裹吲哚菁绿形成纳米粒子(ICG-PL-PEG-FA),利用此纳米粒子在近红外区的光吸收特性,开展光声治疗研究。实验结果表明,这种叶酸标记的纳米探针对高表达叶酸的EMT6细胞具有高靶向选择性和靶向光杀伤性。这种基于包含吲哚菁绿纳米探针的光声治疗将有潜力发展为一种安全,高效的癌症治疗技术。  相似文献   

16.
Chemotherapy has been widely used as a clinical treatment for cancer over the years. However, its effectiveness is limited because of resistance of cancer cells to programmed cell death (PCD) after treatment with anticancer drugs. To elucidate the resistance mechanism, we initially focused on cancer cell-specific mitophagy, an autophagic degradation of damaged mitochondria. This is because mitophagy has been reported to provide cancer cells with high resistance to anticancer drugs. Our data showed that TRIP-Br1 oncoprotein level was greatly increased in the mitochondria of breast cancer cells after treatment with various anticancer drugs including staurosporine (STS), the main focus of this study. STS treatment increased cellular ROS generation in cancer cells, which triggered mitochondrial translocation of TRIP-Br1 from the cytosol via dephosphorylation of TRIP-Br1 by protein phosphatase 2A (PP2A). Up-regulated mitochondrial TRIP-Br1 suppressed cellular ROS levels. In addition, TRIP-Br1 rapidly removed STS-mediated damaged mitochondria by activating mitophagy. It eventually suppressed STS-mediated PCD via degradation of VDACI, TOMM20, and TIMM23 mitochondrial membrane proteins. TRIP-Br1 enhanced mitophagy by increasing expression levels of two crucial lysosomal proteases, cathepsins B and D. In conclusion, TRIP-Br1 can suppress the sensitivity of breast cancer cells to anticancer drugs by activating autophagy/mitophagy, eventually promoting cancer cell survival.  相似文献   

17.
Physiological cell conditions such as glucose deprivation and hypoxia play roles in the development of drug resistance in solid tumors. These tumor-specific conditions cause decreased expression of DNA topoisomerase IIalpha, rendering cells resistant to topo II target drugs such as etoposide. Thus, targeting tumor-specific conditions such as a low glucose environment may be a novel strategy in the development of anticancer drugs. On this basis, we established a novel screening program for anticancer agents with preferential cytotoxic activity in cancer cells under glucose-deprived conditions. We recently isolated an active compound, AA-98, from Streptomyces sp. AA030098 that can prevent stress-induced etoposide resistance in vitro. Furthermore, LC-MS and various NMR spectroscopic methods identified AA-98 as mithramycin, which belongs to the aureolic acid group of antitumor compounds. We found that mithramycin prevents the etoposide resistance that is induced by glucose deprivation. The etoposide-chemosensitive action of mithramycin was just dependent on strict low glucose conditions, and resulted in the selective cell death of etoposide-resistant HT-29 human colon cancer cells.  相似文献   

18.
Human cancer chemotherapy is limited by two major problems: the failure of commonly used anticancer drugs to act against tumor cells in a specific manner and the ability of malignant cells to resist killing by antineoplastic agents. Experimentally, both of these problems can be solved by using L-histidinol in combination with conventional anticancer drugs. A structural analogue of the essential amino acid L-histidine and an inhibitor of protein biosynthesis. L-histidinol improves the selectivity and the efficacy of a variety of cancer drugs in several transplantable murine tumors. Furthermore, L-histidinol circumvents the drug-resistant traits of a variety of cancer cells, including those showing multidrug resistance. This review will summarize these properties of L-histidinol, present new evidence on its ability to increase the vulnerability of both drug-sensitive and drug-resistant human leukemia cells to various anticancer drugs, and show that, in addition to inhibiting protein synthesis, L-histidinol acts as an intracellular histamine antagonist. The establishment of a connection between the latter mechanism and the capacity to modulate anticancer drug action has resulted in a clinical trial in the treatment of human cancer.  相似文献   

19.
The use of poly(lactide-co-glycolide) (PLGA) nanoparticles (NPs) as carriers for chemotherapeutic drugs is regarded as an actively targeted nano-therapy for the specific delivery of anti-cancer drugs to target cells. However, the exact mechanism by which PLGA NPs boost anticancer cytotoxicity at the molecular level remains largely unclear. This study employed different molecular approaches to define the response of carcinoma FaDu cells to different types of treatment, specifically: paclitaxel (PTX) alone, drug free PLGA NPs, and PTX-loaded PTX-PLGA NPs. Functional cell assays revealed that PTX-PLGA NPs treated cells had a higher level of apoptosis than PTX alone, whereas the complementary, UHPLC-MS/MS (TIMS-TOF) based multi-omics analyses revealed that PTX-PLGA NPs treatment resulted in increased abundance of proteins associated with tubulin, as well as metabolites such as 5-thymidylic acid, PC(18:1(9Z)/18:1(9Z0), vitamin D, and sphinganine among others. The multi-omics analyses revealed new insights about the molecular mechanisms underlying the action of novel anticancer NP therapies. In particular, PTX-loaded NPs appeared to exacerbate specific changes induced by both PLGA-NPs and PTX as a free drug. Hence, the PTX-PLGA NPs’ molecular mode of action, seen in greater detail, depends on this synergy that ultimately accelerates the apoptotic process, resulting in cancer cell death.  相似文献   

20.
Although much progress has been achieved in the development of cancer therapies in recent decades, problems continue to arise particularly with respect to chemotherapy due to resistance to and low specificity of currently available drugs. Host defense peptides as effector molecules of innate immunity represent a novel strategy for the development of alternative anticancer drug molecules. These cationic amphipathic peptides are able to discriminate between neoplastic and non-neoplastic cells interacting specifically with negatively charged membrane components such as phosphatidylserine (PS), sialic acid or heparan sulfate, which differ between cancer and non-cancer cells. Furthermore, an increased number of microvilli has been found on cancer cells leading to an increase in cell surface area, which may in turn enhance their susceptibility to anticancer peptides. Thus, part of this review will be devoted to the differences in membrane composition of non-cancer and cancer cells with a focus on the exposure of PS on the outer membrane. Normally, surface exposed PS triggers apoptosis, which can however be circumvented by cancer cells by various means.Host defense peptides, which selectively target differences between cancer and non-cancer cell membranes, have excellent tumor tissue penetration and can thus reach the site of both primary tumor and distant metastasis. Since these molecules kill their target cells rapidly and mainly by perturbing the integrity of the plasma membrane, resistance is less likely to occur. Hence, a chapter will also describe studies related to the molecular mechanisms of membrane damage as well as alternative non-membrane related mechanisms. In vivo studies have demonstrated that host defense peptides display anticancer activity against a number of cancers such as e.g. leukemia, prostate, ascite and ovarian tumors, yet so far none of these peptides has made it on the market. Nevertheless, optimization of host defense peptides using various strategies to enhance further selectivity and serum stability is expected to yield novel anticancer drugs with improved properties in respect of cancer cell toxicity as well as reduced development of drug resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号