首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Plants have the ability to colonize highly diverse environments. The zinc and cadmium hyperaccumulator Arabidopsis halleri has adapted to establish populations on soils covering an extreme range of metal availabilities. The A. halleri ZIP6 gene presents several hallmarks of hyperaccumulation candidate genes: it is constitutively highly expressed in roots and shoots and is associated with a zinc accumulation quantitative trait locus. Here, we show that AhZIP6 is duplicated in the A. halleri genome. The two copies are expressed mainly in the vasculature in both A. halleri and Arabidopsis thaliana, indicative of conserved cis regulation, and acquired partial organ specialization. Yeast complementation assays determined that AhZIP6 is a zinc and cadmium transporter. AhZIP6 silencing in A. halleri or expression in A. thaliana alters cadmium tolerance, but has no impact on zinc and cadmium accumulation. AhZIP6-silenced plants display reduced cadmium uptake upon short-term exposure, adding AhZIP6 to the limited number of Cd transporters supported by in planta evidence. Altogether, our data suggest that AhZIP6 is key to fine-tune metal homeostasis in specific cell types. This study additionally highlights the distinct fates of duplicated genes in A. halleri.  相似文献   

5.
6.
A draft genome sequence of Streptomyces zinciresistens K42, a novel Streptomyces species displaying a high level of resistance to zinc and cadmium, is presented here. The genome contains a large number of genes encoding proteins predicted to be involved in conferring metal resistance. Many of these genes appear to have been acquired through horizontal gene transfer.  相似文献   

7.
Heavy metal levels of cadmium, copper, mercury, manganese, and zinc were examined in the mummichog, Fundulus heteroditus from industrialized and non-industrialized environments. With one exception, the environment with the highest trace metal in its waters, had the fishes with the highest metal concentration. Except for mercury, the concentration factor varied inversely with the metal concentrations of the fish and water, suggesting a possible regulatory mechanism for metals in the tissues of mummichogs from environments with high metal concentrations. There was an inverse relationship between standard length and concentrations of zinc, manganese, copper and cadmium in whole male and female fishes. The viscera contained significantly greater concentrations of these metals than somatic muscle tissue. There were also significant differences between males and females with respect to whole-body zinc and copper concentrations, but no sex differences for manganese and cadmium.  相似文献   

8.
The Znu system, encoded for by znuABC, can be found in multiple genera of bacteria and has been shown to be responsible for the import of zinc under low zinc conditions. Although this high-affinity uptake system is known to be important for both growth and/or pathogenesis in bacteria, it has not been functionally characterized in a plant-associated bacterium. A single homologue of this system has been identified in the plant endosymbiont, Sinorhizobium meliloti, while two homologous systems were found in the destructive citrus pathogen, Candidatus Liberibacter asiaticus. To understand the role of these protein homologues, a complementation assay was devised allowing the individual genes that comprise the system to be assayed independently for their ability to reinstate a partially-inactivated Znu system. Results from the assays have demonstrated that although all of the genes from S. meliloti were able to restore activity, only one of the two Ca. Liberibacter asiaticus encoded gene clusters contained genes that were able to functionally complement the system. Additional analysis of the gene clusters reveals that distinct modes of regulation may also exist between the Ca. Liberibacter asiaticus and S. meliloti import systems despite the intracellular-plant niche common to both of these bacteria.  相似文献   

9.
Sinorhizobium meliloti is an alpha-proteobacterium able to induce nitrogen-fixing nodules on roots of specific legumes. In order to propagate in the soil and for successful symbiotic interaction the bacterium needs to sequester metals like iron and manganese from its environment. The metal uptake has to be in turn tightly regulated to avoid toxic effects. In this report we describe the characterization of a chromosomal region of S. meliloti encoding the sitABCD operon and the putative regulatory fur gene. It is generally assumed that the sitABCD operon encodes a metal-type transporter and that the fur gene is involved in iron ion uptake regulation. A constructed S. meliloti sitA deletion mutant was found to be growth dependent on Mn(II) and to a lesser degree on Fe(II). The sitA promoter was strongly repressed by Mn(II), with dependence on Fur, and moderately by Fe(II). Applying a genome-wide S. meliloti microarray it was shown that in the fur deletion mutant 23 genes were up-regulated and 10 genes were down-regulated when compared to the wild-type strain. Among the up-regulated genes only the sitABCD operon could be associated with metal uptake. On the other hand, the complete rhbABCDEF operon, which is involved in siderophore synthesis, was identified among the down-regulated genes. Thus, in S. meliloti Fur is not a global repressor of iron uptake. Under symbiotic conditions the sitA promoter was strongly expressed and the S. meliloti sitA mutant exhibited an attenuated nitrogen fixation activity resulting in a decreased fresh weight of the host plant Medicago sativa.  相似文献   

10.
11.
Resistance to a range of heavy metal ions wasdetermined for lead-resistant and other bacteria whichhad been isolated from a battery-manufacturing sitecontaminated with high concentrations of lead. Several Gram-positive (belonging to the genera Arthrobacter and Corynebacterium) andGram-negative (Alcaligenes species) isolateswere resistant to lead, mercury, cadmium, cobalt,zinc and copper, although the levels of resistance tothe different metal ions were specific for eachisolate. Polymerase chain reaction, DNA-DNAhybridization and DNA sequencing were used to explorethe nature of genetic systems responsible for themetal resistance in eight of the isolates. SpecificDNA sequences could be amplified from the genomic DNAof all the isolates using primers for sections of themer (mercury resistance determinant on thetransposon Tn501) and pco (copperresistance determinant on the plasmid pRJ1004) geneticsystems. Positive hybridizations with mer andpco probes indicated that the amplified segmentswere highly homologous to these genes. Some of thePCR products were cloned and partially sequenced, andthe regions sequenced were highly homologous to theappropriate regions of the mer and pcodeterminants. These results demonstrate the widedistribution of mercury and copper resistance genes inboth Gram-positive and Gram-negative isolates obtainedfrom this lead-contaminated soil. In contrast, theczc (cobalt, zinc and cadmium resistance) andchr (chromate resistance) genes could not beamplified from DNAs of some isolates, indicating thelimited contribution, if any, of these genetic systemsto the metal ion resistance of these isolates.  相似文献   

12.
Studies are continuing to explore the use of the earthworm (Lumbricus terrestris) for the determination of the acute toxicity of metal compounds. Worms were injected intraperitoneally with cadmium and zinc chlorides, and also zinc chloride followed by cadmium chloride to see if zinc could protect against the toxicity of cadmium. The 48 h acute toxicity (LD50) values were 22 and 23 mg/kg for Cd and Zn respectively and 30 mg/kg for Cd after the worms were pretreated with Zn. It appears that the earthworm can be a useful test subject for obtaining preliminary information on metal toxicity.  相似文献   

13.
Endogeneous levels of zinc and copper were found to be 1.2±0.1×10−2 and 0.3±0.1×10−2 μg/A260 unit, respectively, in polysomal fractions from control animals; cadmium, however, was undetectable. In experimental animals (injected with cadmium) zinc, copper, and cadmium were found in polysomal fractions isolated by two different methods. One hour after a cadmium injection there was a rise in both the zinc and copper content of the polysomal fractions, which then declined steadily to below control levels by 16 h. Neither zinc nor cadmium were dialyzable from these fractions by a TRIS buffer; however, addition of 0.01M EDTA to the buffer resulted in removal of 75% of the zinc and all of the detectable cadmium. The addition of cadmium (CdCl2) to control supernatants (adjusted to the cadmium concentration present in supernatants 6 h after in vivo exposure) resulted in metal binding to polysomal fractions in levels comparable to those observed after in vivo exposures to the metal. When cadmium was added in the form of cadmium thionein, a smaller fraction of the metal was isolated with the polysomal fraction. Cadmium bound to polysomal fractions in vivo (24 h after exposure) was sensitive to release by protease digestion, but insensitive to release by ribonuclease digestion.  相似文献   

14.
Cadmium and zinc are removed from cells of Ralstonia metallidurans by the CzcCBA efflux pump and by two soft-metal-transporting P-type ATPases, CadA and ZntA. The czcCBA genes are located on plasmid pMOL30, and the cadA and zntA genes are on the bacterial chromosome. Expression of zntA from R. metallidurans in Escherichia coli predominantly mediated resistance to zinc, and expression of cadA predominantly mediated resistance to cadmium. Both transporters decreased the cellular content of zinc or cadmium in this host. In the plasmid-free R. metallidurans strain AE104, single gene deletions of cadA or zntA had only a moderate effect on cadmium and zinc resistance, but zinc resistance decreased 6-fold and cadmium resistance decreased 350-fold in double deletion strains. Neither single nor double gene deletions affected zinc resistance in the presence of czcCBA. In contrast, cadmium resistance of the cadA zntA double mutant could be elevated only partially by the presence of CzcCBA. lacZ reporter gene fusions indicated that expression of cadA was induced by cadmium but not by zinc in R. metallidurans strain AE104. In the absence of the zntA gene, expression of cadA occurred at lower cadmium concentrations and zinc now served as an inducer. In contrast, expression of zntA was induced by both zinc and cadmium, and the induction pattern did not change in the presence or absence of CadA. However, expression of both genes, zntA and cadA, was diminished in the presence of CzcCBA. This indicated that CzcCBA efficiently decreased cytoplasmic cadmium and zinc concentrations. It is discussed whether these data favor a model in which the cations are removed either from the cytoplasm or the periplasm by CzcCBA.  相似文献   

15.
The metal(zinc)-inducible smtA gene promoter (smt O-P) from cyanobacteria was applied for the expression of mouse MT-1 cDNA in the filamentous cyanobacterium Anabaena sp. PCC 7120 to enhance its metal-binding capability and to change its main binding specificity from zinc to cadmium. Shuttle expression vector pKT-MRE transformed the cyanobacterial cells by triparent conjugal transfer. Positive clones were screened and identified by streptomycin, DNA dot blot, SDS-PAGE and Western blot analysis. Photosynthetic oxygen evolution and metal atom absorption indicated that under the cadmium stress the metal-induced expression of foreign mMT-1 doubled their cadmium resistance and developed cells showing a much higher preference to absorb cadmium other than zinc in medium. The cadmium content in cell extract rose from 11% to 36%, and the cadmium cleared from media by transgenic cells rose from 18% to 62%. There was only a slight enhancement for zinc binding in the wild or transgenic type. Received: 1 March 1999 / Received last revision: 9 July 1999 / Accepted: 1 August 1999  相似文献   

16.
17.
Two transposon-induced mutants of Sinorhizobium meliloti 242 were isolated based on their inability to grow on rich medium supplemented with the metal chelator ethylenediamine di-o-hydroxyphenylacetic acid (EDDHA) and either heme-compounds or siderophores as iron sources. Tagged loci of these mutants were identified as sit B and sit D genes. These genes encode components of an ABC (ATP-binding cassette) metal-type permease in several Gram-negative bacteria. In this work, the phenotypes of these two mutants were compared with those of two siderophore-mediated iron transport mutants. The results strongly implicate a role of the sit genes in manganese acquisition when this metal is limiting in S. meliloti.  相似文献   

18.
19.
Summary The influence of heavy metal additions on availability and uptake of cadmium, lead, zinc, copper, manganese and iron by oat was studied. The experiments were carried out as pot experiments using sandy loam, sandy soil and organic soil. Selective extractants were used to remove metals held in different soil fractions.Lead and copper were preferently bound by organics and oxides, zinc by oxides and inorganics, and cadmium by inorganics and organics.Addition of cadmium to the soils resulted in higher cadmium concentrations in all plant parts but lower concentrations of lead, zinc, copper, manganese and iron, and the accumulation indexes of these metals were also lower when cadmium was added to the soil.Addition of cadmium plus lead, zinc and copper resulted in higher cadmium concentrations in leaves and straw of plants grown in sandy loam and sandy soil, but lower concentrations when plants were grown in organic soil as compared with the results when cadmium was added separately. The transfer of cadmium, lead, zinc and copper from soil to plant was greatest from sandy soil, and zinc and cadmium were more mobile in the plant than were lead and copper.Cadmium concentrations in leaves correlated significantly with CaCl2 and CH3COOH extractions in sandy loam and sandy soil and with CH3COOH extractions in organic soil.Generally, the total metal uptake was lowest from organic soil.  相似文献   

20.
Cadmium is a highly toxic metal whose presence in the environment represents a challenge for all forms of life. To improve our knowledge on cadmium toxicity, we have explored Salmonella Typhimurium responses to this metal. We have found that cadmium induces the concomitant expression of the cation efflux pump ZntA and of the high affinity zinc import system ZnuABC. This observation suggests that cadmium accumulation within the cell induces a condition of apparent zinc starvation, possibly due to the ability of this metal to compete with zinc for the metal binding site of proteins. This hypothesis is supported by the finding that strains lacking ZntA or ZnuABC are hyper-susceptible to cadmium and that the cadmium-induced growth defect of a znuABC mutant strain is largely relieved by zinc supplementation. A similar growth defect was observed for a mutant with impaired ability to acquire iron, whereas cadmium does not affect growth of a strain defective in manganese import. Cadmium also influences the expression and activity of the two cytoplasmic superoxide dismutases FeSOD and MnSOD, which are required to control cadmium-mediate oxidative stress. Exposure to cadmium causes a reduction of FeSOD activity in Salmonella wild type and the complete abrogation of its expression in the strain defective in iron import. In contrast, although MnSOD intracellular levels increase in response to cadmium, we observed discrepancies between protein levels and enzymatic activity which are suggestive of incorporation of non-catalytic metals in the active site or to cadmium-mediated inhibition of manganese import. Our results indicate that cadmium interferes with the ability of cells to manage transition metals and highlight the close interconnections between the homeostatic mechanisms regulating the intracellular levels of different metals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号